
Extending the Petri Box Calculus with Time

Olga Marroqúın Alonso and David de Frutos Escrig

Departamento de Sistemas Informáticos y Programación
Universidad Complutense de Madrid, E-28040 Madrid, Spain

{alonso,defrutos}@sip.ucm.es

Abstract. PBC (Petri Box Calculus) is a process algebra where real
parallelism of concurrent systems can be naturally expressed. One of
its main features is the definition of a denotational semantics based on
Petri nets, which emphasizes the structural aspects of the modelled sys-
tems. However, this formal model does not include temporal aspects of
processes, which are necessary when considering real-time systems. The
aim of this paper is to extend the existing calculus with those tempo-
ral aspects. We consider that actions are not instantaneous, that is, their
execution takes time. We present an operational semantics and a denota-
tional semantics based on timed Petri nets. Finally, we discuss the intro-
duction of other new features such as time-outs and delays. Throughout
the paper we assume that the reader is familiar with both Petri nets and
PBC.

1 Introduction

Formal models of concurrency are widely used to specify concurrent and dis-
tributed systems. In this research field, process algebras and Petri nets are well-
known. Each of them has its own advantages and drawbacks: In Petri nets and
their extensions one can make assertions about events, even if causality rela-
tions are not given explicitly. Emphasis is put on the partial order of events and
on structural aspects of the modelled systems. However, their algebraic basis
is poor, thus modelling and verification of systems are affected. On the other
hand, the main feature of process algebras is the simple algebraic characteriza-
tion of the behaviour of each of the syntactic operators, although it is true that
in most of the cases, we obtain it by losing important information concerning
event causality.

Recently, a new process algebra, PBC (Petri Box Calculus) [1,2,3], has arisen
from the attempts to combine the advantages of both Petri nets and process
algebras. When defining PBC the starting point were Petri nets and not any
well known process algebra, so their authors looked for a suitable one whose
operators could be easily defined on Petri nets. As a consequence, they obtained
a Petri net’s algebra which can be seen as the denotational semantics of PBC [1,
2,3] and since Petri nets are endowed with a natural operational semantics, we
also also derive an operational semantics of the given process algebra which can
be also directly defined by means of Plotkin-like syntax-guided rules.

J.-M. Colom and M. Koutny (Eds.): ICATPN 2001, LNCS 2075, pp. 303–322, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

304 O. Marroqúın Alonso and D. de Frutos Escrig

Nevertheless, these models do not include any temporal information, and
it is obvious that some kind of quantitative time representation is needed for
the description of real-time systems. Many timed process algebras have been
proposed. Among them we will mention: timed CCS [11], temporal CCS [7],
timed CSP [10] and timed Observations [8]. Besides, since long time ago we
have several timed extensions of Petri nets like Petri nets with time [6], and
timed Petri nets [9].

The aim of this paper is to extend PBC with time maintaining its main prop-
erties and the basic concepts in which it is based. In this way, we propose TPBC
(Timed Petri Box Calculus). Our model differs from the previous approach by
M. Koutny [4] in several relevant aspects, among which we mention the duration
of actions and the nonexistence of illegal action occurrences. Both models cor-
respond to different ways of capturing time information, and as a consequence
they are not in competition but are complementary.

Here we consider a discrete time domain. Most of the systems which we are
interested in can be modelled under this hypothesis, and some of the definitions
and results in the paper can be presented in a more simple way. Our results
cannot be generalized to the case of continuous time, because of the fact that
discrete time cannot be considered just as a simplification of continuous time.

In order to improve the readability of the paper, we will layer the presenta-
tion: first we present a simple extension in which actions have a minimal dura-
tion, that is, we allow that their executions will take more time than expected.
We can find an intuitive justification of this fact considering the behaviour in
practice of real-time systems. One usually knows which is the minimum time
needed to execute a task, but depending on how it interacts with the environ-
ment, it could take more time than expected. Besides, even if we consider that
the duration of each action is fixed, when we execute an action α whose minimal
duration is d but the real duration is d′ > d, we could consider that we are just
representing a delayed execution of the action, which would start after d′−d time
units, in such a way that d would still be the effective duration of the action.

In this simplified timed extension there is no limit to the time a process
can be idle without changing its state. So, we cannot model in it any kind of
urgency or time-out. In order to do it, we present in Section 6 of the paper a
more elaborate extension where these characteristics are introduced.

As we said before, we introduce time information by means of duration of
actions instead of combining delays and instantaneous actions. There are several
reasons that justify our choice. First, one can find in the literature both kind of
timed models; since Koutny has already investigated the other case, by studying
here the case of actions with duration we are somehow completing the picture. It
is true that similar results to these in the paper could be obtained for the case of
delays and instantaneous actions, although the corresponding translation could
be non-immediate in all the cases. But it is not the consideration of actions
with duration what makes our models rather more complicated than Koutny’s
one: The introduced complications are necessary in order to avoid illegal action
occurrences. We will compare more in depth the two timed models in the last
sections of the paper.

Extending the Petri Box Calculus with Time 305

2 The TPBC Language

Although probably it would be more than desirable, by lack of space we cannot
give here a fast introduction to PBC. Unfortunately, this is a technically involved
model whose presentation require several pages [1,2,3]. But you can also infer
from our paper the main characteristics of PBC, just by abstracting all the
references to time in it.

Throughout the paper we use standard mathematical notation. In particular,
the set of finite multisets over a set S is denoted by M(S), and defined as the
set of functions α : S −→ IN such that { s ∈ S | α(s) �= 0 } is finite. ∅ denotes
the empty multiset, and {a} is a unitary multiset containing a.

To define the syntax of TPBC, we consider a countable alphabet of labels A,
which will denote atomic actions. In order to support synchronization we assume
the existence of a bijection ̂ : A −→ A, called conjugation, by means of which
we associate to each label a ∈ A a corresponding one â ∈ A. This function must
satisfy the following property: ∀a ∈ A â �= a ∧ ˆ̂a = a.

As in plain PBC, the basic actions of TPBC are finite multisets of labels,
called bags. In the prefix operator of the language each bag α ∈ M(A) carries
a duration d ∈ IN+, thus we obtain the basic action α : d. In the following, we
will denote by BA = M(A)× IN+ the set of those basic actions.

The rest of the syntactic operators in TPBC are those in PBC. Although
recursive processes have not been included, the calculus is not finite: We have
infinite behaviours due to the presence of the iteration operator.

Definition 1 (Static expressions). A static expression of TPBC is any
expression generated by the following BNF grammar:

E ::= α : d | E;E | E✷E | E‖E | [E ∗ E ∗ E] | E[f] | E sy a | E rs a | [a : E]

where d ∈ IN+ and f : A −→ A is a conjugate-preserving function. The set of
static expressions of TPBC is denoted by Exprs, and we use letters E and F to
denote its elements.

3 Operational Semantics

The operational semantics of TPBC is defined by means of a labelled transition
system including two types of transitions: instantaneous transitions, which re-
late equivalent processes, and non-instantaneous transitions, which express how
processes evolve due to the execution of actions and the progress of time. The
set of states of this transition system corresponds to a new class of expressions,
the so called dynamic expressions.

Definition 2 (Dynamic expressions). A dynamic expression of TPBC is
any expression generated by the following BNF grammar:

G ::= E | E | α̃ : d, d′ |G;E | E;G |G✷E | E✷G |G‖G |
[G ∗ E ∗ E] | [E ∗G ∗ E] | [E ∗ E ∗G] |G[f] |G sy a |G rs a | [a : G]

306 O. Marroqúın Alonso and D. de Frutos Escrig

where d ∈ IN+, d′ ∈ IN and f is a conjugate-preserving function from A to A.
The set of dynamic expressions of TPBC will be denoted by Exprd, and we use
letters G and H to represent its elements.

In the definition above the static expressions of the calculus are marked with
three types of barring: overlining, underlining and executing barring. The first
two have the same meaning as in PBC: E denotes that E has been activated and
it offers all the behaviours E represents, whereas E denotes that the process E
has reached its final state and the only move it can perform is letting time pass.
Finally, the dynamic expression α̃ : d, d′ represents that the action α ∈ M(A)
has begun its execution some time ago with a minimum duration of d time units,
and from now on its execution will take d′ time units until it terminates.

Since we are interested in expressing locally the passage of time, and it is at
the level of basic actions where this can be done in a proper way, the overline
operator will be distributed over the current expression until a basic action is
reached. Then the executing bar ˜ will only be applied to this kind of actions.

As we already mentioned, non-instantaneous transitions represent the execu-
tion of actions and their labels indicate which bags have just begun to execute
together with their durations. This information is expressed by means of timed
bags, αd′ , which consist of a bag α and a temporal annotation d′ ∈ IN+. The set
of timed bags will be denoted by T B.

Timed bags express the first level of concurrency we can distinguish in a
concurrent system. They represent the simultaneous execution of atomic actions
in the same component of the system. To cover also a second level, which rep-
resents the concurrent evolution of the different components of the system, we
introduce timed multibags, which are finite multisets of timed bags.

Thus non-instantaneous transitions have the form G Γ−−→G′, where Γ ∈
M(T B). This can be interpreted as follows: process G has changed its state to
G′ by starting to execute the multiset of timed bags Γ during one unit of time.
More in general, we assume that each labelled transition represents the passing
of one time unit. As a consequence, the execution of a multibag Γ is only ob-
servable (at the level of labels of the transition system) at the first instant of
it. Afterwards, we will let time to progress until the execution of Γ terminates,
although in between the execution of some other actions whose performance do
not need the termination of Γ could be initiated.

The passage of one time unit without starting the execution of any new bag
is represented by transitions labelled by ∅. Since for any overlined or underlined
process we let time pass without any change in the state, we have the rules:

E
∅−−→E (V1) E

∅−−→E (V2)

Instantaneous transitions take the form G←→ G′, and their intended meaning
is that the involved process has these two different syntactic representations:
G and G′. Therefore this kind of transitions relates expressions with the same
operational behaviour.

Extending the Petri Box Calculus with Time 307

3.1 Transition Rules

In this section we first present those transition rules that represent the timed
aspects of our model. They are basic actions rules and synchronization rules.
We also provide the operational semantics of iteration, since it is not common
in most of process algebras. The rest of the operators behave as in the untimed
model [1,2,3]. A complete set of rules will appear in the PhD thesis of the first
author (see [5] for a partial preliminary version).

α : d
{αd′ }−−−−−→ ˜α : d, d′ − 1 if d′ ≥ d (B1) α̃ : d, d′ ∅−−→ ˜α : d, d′ − 1 if d′ > 0 (B2)

α̃ : d, 0 ←→ α : d (B3)

Operational semantics of basic actions

E sy a ←→ E sy a (S1)

G←→ G′

G sy a←→ G′ sy a
(S2a) G

Γ−−→G′

G sy a Γ−−→G′ sy a
(S2b)

G sy a
{{α+{a}}d′ }+{{β+{â}}d′ }+Γ−−−−−−−−−−−−−−−−−−−−−−→G′ sy a

G sy a
{{α+β}d′ }+Γ−−−−−−−−−−−→G′ sy a

(S2c)

E sy a ←→ E sy a (S3)

Operational semantics of synchronization

[E ∗ F ∗ E′] ←→ [E ∗ F ∗ E′] (It1)

G←→ G′

[G ∗ F ∗ E]←→ [G′ ∗ F ∗ E]
(It2a) G

Γ−−→G′

[G ∗ F ∗ E] Γ−−→[G′ ∗ F ∗ E]
(It2b)

[E ∗ F ∗ E′]←→ [E ∗ F ∗ E′] (It2c) [E ∗ F ∗ E′]←→ [E ∗ F ∗ E′] (It2d)

G←→ G′

[E ∗G ∗ E′]←→ [E ∗G′ ∗ E′]
(It3a) G

Γ−−→G′

[E ∗G ∗ E′] Γ−−→[E ∗G′ ∗ E′]
(It3b)

[E ∗ F ∗ E′]←→ [E ∗ F ∗ E′] (It3c) [E ∗ F ∗ E′]←→ [E ∗ F ∗ E′] (It3d)

G←→ G′

[E ∗ F ∗G]←→ [E ∗ F ∗G′]
(It4a) G

Γ−−→G′

[E ∗ F ∗G] Γ−−→[E ∗ F ∗G′]
(It4b)

[E ∗ F ∗ E′]←→ [E ∗ F ∗ E′] (It5)

Operational semantics of iteration

Rule (B1) states that basic processes can only leave its initial state by start-
ing the execution of the corresponding bag. The duration of this execution will
be greater or equal than the annotated minimum duration. Once this execution
starts, the process will let time pass until its termination (rule (B2)). Then the
basic action has finished its execution, what is represented by rule (B3).

The synchronization is activated whenever its first argument becomes active
(rule (S1)), but synchronization is not forced, so that G sy a can mimic all the
behaviours of G (rule (S2b)). Rule (S2c) shows what happens when the process
synchronizes with itself: The timed bags involved in the operation must have the

308 O. Marroqúın Alonso and D. de Frutos Escrig

same real duration, and they join together in a new timed bag in which we have
removed a pair of labels (a, â) such that each component is in a different multiset.
Finally, the process finishes when its argument terminates, as indicated by rule
(S3). All the rules can be applied on any equivalent state of G (rule (S2a)).

Iteration rules define the behaviour of this syntactic operator. Control is
transmitted from each argument to some other (either the next, or the same in
the case of the second argument), until the last one terminates. More in detail,
rules (It2c) and (It2d) state that once the entry condition has finished (first
argument) we can choose between executing the loop body (second argument)
or the exit condition (third argument). Rules (It3c) and (It3d) state that each
time the second argument terminates, we can choose between executing it again
or we advance to execute the last argument.

4 Denotational Semantics

The denotational semantics of any language is defined by means of a function
which maps the set of its expressions into the adequate semantic domain. In this
way we associate to each expression of the language an object which reflects its
structure and behaviour. The denotational semantics of TPBC is based on timed
Petri nets, whose transitions have a duration. A labelled timed Petri net, denoted
by TPN, is a tuple (P, T, F,W, δ, λ) such that P and T are disjoint sets of places
and transitions; F ⊆ (P ×T)∪(T ×P) is the set of arcs of the net;W is a weight
function from F to the set of positive natural numbers IN+; δ is a function from
the transition set T to IN+ that defines the duration of each transition; and λ is a
function from P ∪T into a set of labels L. In our case, λ maps elements in P into
the set {e, i, x} and transitions in T into the set C = P(M(BA)\{∅} × BA).
Its intended meaning is the same as in PBC, that is, we consider that a net
has three types of places: entry places (those with λ(p) = e), internal places
(those with λ(p) = i), and exit places (those with λ(p) = x). Moreover, each
transition v is labelled with a binary relation λ(v) ⊆M(BA)\{∅}×BA, whose
elements are pairs of the form ({α1 : d1, α2 : d2, . . . , αn : dn}, α : d). The
informal meaning of such a pair is that the behaviour represented by the multiset
{α1 : d1, α2 : d2, . . . , αn : dn} will be substituted by the execution of the bag α
with a minimum duration of d time units. The most usual binary relations are
the following:

1. Constant relation: ρα:d = { ({β : d}, α : d) }.
2. Identity: ρid = { ({α : d}, α : d) }.
3. Synchronization: ρsy a is defined as the smallest relation satisfying:

– ρid ⊆ ρsy a,
– (Γ, α+ {a} : d1), (∆,β + {â} : d2) ∈ ρsy a

=⇒ (Γ +∆,α+ β : max{d1, d2}) ∈ ρsy a.

4. Basic relabelling: ρ[f] = { ({α : d}, f(α) : d) | f(â) = f̂(a) ∀a ∈ A }.
5. Restriction: ρrs a = { ({α : d}, α : d) | a, â /∈ α }.
6. Hiding: ρ[a:] = { (Γ, α : d) ∈ ρsy a | a, â /∈ α }.

Extending the Petri Box Calculus with Time 309

As it is done in PBC, we distinguish two kinds of nets: plain nets, whose transi-
tions are labelled with a constant relation; and operator nets, in which transitions
are labelled with non-constant relations.

Only plain nets will be marked, and therefore they are the only ones able to
fire transitions. Due to this fact, it is not necessary to include time information
in operator nets. The formal definitions are the following:
Definition 3 (Timed plain net). A timed plain net N = (P, T, F,W, δ, λ)
is a timed Petri net such that λ : P∪T −→ {e, i, x}∪{ρα:d |α ∈M(A), d ∈ IN+}
where ∀p ∈ P λ(p) ∈ {e, i, x} and ∀v ∈ T λ(v) = ρα:d with δ(v) = d.

Definition 4 (Operator net). An operator net N is a labelled Petri net
(P, T, F,W, λ) such that λ : P ∪T −→ {e, i, x}∪C where ∀p ∈ P λ(p) ∈ {e, i, x}
and ∀v ∈ T λ(v) ∈ C\{ ρα:d | α ∈M(A), d ∈ IN+ }.

To support the duration of transitions, markings of timed plain nets will
be constituted by two components, M1 and M2. M1 represents the available
marking of the net, that is, where the tokens are and how many of them are.
M2 is the multiset of transitions currently in execution, each one carrying the
time units its execution will still take from now on. Formally speaking, if N =
(P, T, F,W, δ, λ) is a timed plain net, a marking M of N is a pair (M1,M2)
where M1 ∈M(P) andM2 is a finite multiset of tuples in T ×IN+. We say that
a transition v is inM2, v ∈M2, iff there is some d′ ∈ IN+ such that (v, d′) ∈M2.
In order to visualize the set of transitions in execution, and also simplify some
results, it is useful to introduce the derived concept of frozen token. A place
p ∈ P is occupied by a frozen token iff there is a transition v ∈ T such that
(p, v) ∈ F and v ∈ M2. In this case, if there exists only one value d′ for v,
we denote it by rem(v). Then we define the token-marking T (M) associated to
M = (M1,M2) by T (M) = (M1,M

2
) whereM

2
is the multiset of places defined

by M
2
(p) =

∑
(p,v)∈F, d∈IN+

M2(v, d). In the following we will call available tokens

to the ordinary tokens in a marking in order to avoid confusion with frozen
tokens.

A marking M = (M1,M2) is safe if each place is occupied, at most, by one
token, either ordinary or frozen. That is, ∀p ∈ P

M1(p) +M
2
(p) ≤ 1

A safe marking M = (M1,M2) is clean if the following conditions hold:

• (∀p ∈ •N M1(p) +M
2
(p) �= 0 =⇒ (∀p ∈ P λ(p) �= e⇒M1(p) +M

2
(p) = 0)

• (∀p ∈ N• M1(p) �= 0) =⇒ N• = M1

In order to define the firing of transitions we need to know their real dura-
tions. So, we consider timed transitions, which are pairs of the form (v, d′) where
v is a transition and d′ ∈ IN+. Then we say that a multiset of timed transitions
RT is enabled at a marking M if the following conditions are satisfied:
• ∀(v, d′) ∈ RT d′ ≥ δ(v)
• ∀p ∈ P M1(p) ≥ ∑

v∈T

RT (v) ·W (p, v) where RT (v) =
∑

d′∈IN+
RT (v, d′).

310 O. Marroqúın Alonso and D. de Frutos Escrig

Once we know when a multiset of timed transitions RT is enabled at a
marking, the following firing rule defines the effect of its firing:

Definition 5 (Firing rule). Let N = (P, T, F,W, δ, λ) be a TPN, and M =
(M1,M2) be a marking of N at some instant β ∈ IN . If a multiset of timed
transitions RT is enabled at M and its transitions are fired, then the marking
M ′ = (M ′1,M ′2) reached at the instant β + 1 is defined as follows:

• M ′1 = M1 − ∑
v∈C0

RT (v)W (−, v) + ∑
v∈C1

RT (v)W (v,−) + ∑
(v,1)∈C2

M2(v, 1)W (v,−)
where
C0 = { v ∈ T | ∃d′ ∈ IN+, RT (v, d′) > 0 }, C1 = { v ∈ T | (v, 1) ∈ RT }, and
C2 = { (v, 1) ∈ T × IN+ |M2(t, 1) > 0 }.

• M ′2 : T × IN+ −→ IN
with

M ′2(v, β′) =
{
RT (v, d′) if (v, d′) ∈ RT ∧ β′ = d′ − 1
M2(v, β′ + 1) otherwise

The step generated by the firing of a set of transitions RT is denoted by
M [RT 〉M ′. Step sequences are defined as usual, and the set of reachable markings
in N from M is denoted by Reach(N,M).

So, frozen tokens are those consumed by a transition in execution. Whenever
that execution finishes they become available tokens in the postconditions of the
fired transitions.

4.1 A Domain of Timed Boxes

Timed Petri boxes are equivalence classes of labelled timed Petri nets. A suitable
equivalence relation should allow, at least, the derivation of identities such as
those induced by associativity and commutativity of several operators, such as
parallel composition or choice. Besides, this relation must allow us to abstract
away the names of places and transitions; also it must provide a mechanism to
identify duplicate elements in the nets. The relation that we propose is a natural
extension of the one used in plain PBC, by adequately considering the temporal
aspects of the nets, which means to preserve the duration of related transitions.

Definition 6 (Structural equivalence). Being N1 = (P1, T1, F1,W1, λ1) and
N2 = (P2, T2, F2,W2, λ2) two operator nets, they are said to be structurally
equivalent (or just equivalent) iff there is a relation ϕ ⊆ (P1 ∪ T1)× (P2 ∪ T2)
such that:

1. ϕ(P1) = P2 and ϕ−1(P2) = P1,
2. ϕ(T1) = T2 and ϕ−1(T2) = T1,
3. ∀(p1, p2), (v1, v2) ∈ ϕ W1(p1, v1) =W2(p2, v2), W1(v1, p1) =W2(v2, p2),
4. If (x1, x2) ∈ ϕ then λ1(x1) = λ2(x2),
5. ∀v1 ∈ T1, v2 ∈ T2 |ϕ(v1)| = 1 and |ϕ−1(v2)| = 1.

Being N1 = (P1, T1, F1,W1, δ1, λ1,M1) and N2 = (P2, T2, F2,W2, δ2, λ2,M2) two
marked timed plain nets, they are said to be structurally equivalent (or just
equivalent) iff there is a binary relation ϕ ⊆ (P1 ∪ T1)× (P2 ∪ T2) such that:

Extending the Petri Box Calculus with Time 311

1-4. As before,
5. If (v1, v2) ∈ ϕ then δ1(v1) = δ2(v2),
6. If (p1, p2) ∈ ϕ then M1

1 (p1) =M1
2 (p2),

7. If (v1, v2) ∈ ϕ then ∀d ∈ IN+ M2
1 (v1, d) =M2

2 (v2, d).

There are several conditions that a net N has to satisfy in order to generate
a timed box. First, we impose T-restrictedness which means that the pre-set
and post-set of each transition are non-empty sets. Besides, we impose ex-
restrictedness (there is at least one entry place and one exit place) and ex-
directedness (pre-sets of entry places and post-sets of exit places are empty). All
these assumptions are inherited from the untimed version of the calculus.

Remark 7. Next we will only consider nets N satisfying the following conditions:

• N is T-restricted: ∀v ∈ T •v �= ∅ �= v•,
• There are no side conditions : ∀v ∈ T •v ∩ v• = ∅,
• N has at least one entry place: •N �= ∅,
• N has at least one exit place: N• �= ∅,
• There are no incoming arcs to entry places and no outgoing arcs from exit

places: •(•N) = ∅ ∧ (N•)• = ∅,
• N is simple: ∀p ∈ P ∀v ∈ T W (p, v),W (v, p) ∈ {0, 1}.

Definition 8 (Plain and operator timed boxes).

• A marked timed plain box B is an equivalence class B = [N] induced by the
structural equivalence over labelled nets, where N is a marked plain net.

• An operator box Ω is an equivalence class Ω = [N] induced by the structural
equivalence over labelled nets, where N is an operator net.

Plain timed boxes will be the semantic objects to be associated with syntactic
expressions, that is, the denotational semantics of an expression will be always
a plain box. Its structural construction relies on operator boxes. Each semantic
operator has a certain number of arguments (the same as the corresponding
syntactic operator has). By applying them to a tuple of arguments we can obtain
a new plain box, using the refinement procedure which we will explain later.

Next we define static and dynamic boxes. A plain box B is static if the
marking of its canonical representative is empty (M1 = ∅ ∧ M2 = ∅), and the
reachable markings from the initial one (•B,∅) are safe and clean. A plain box
B = [(P, T, F,W, λ)] is dynamic if the following conditions are satisfied:

• The marking of its canonical representative is non-empty,
• The plain box [(P, T, F,W, δ, λ, (∅,∅))] is static,
• The reachable markings from M are safe and clean.

The set of static boxes is Boxs, and the set of dynamic boxes is Boxd.
Plain boxes are classified in several classes depending on the type of tokens

that they contain, and the labels of the places they are in.

312 O. Marroqúın Alonso and D. de Frutos Escrig

Definition 9 (Classes of plain boxes). Let B = [(P, T, F,W, δ, λ, (M1,M2))]
be a plain box. We say that B is a stable box if M2 = ∅; otherwise we say
that B is unstable. If B is a stable box, then we say that it is an entry-box if
M1 = •B; an exit-box if M1 = B•; and an intermediate-box, otherwise. All
these classes are denoted by Boxst, Boxust, Boxe, Boxx, Boxi, respectively.

For operator boxes we need the additional property of being factorisable. In
order to extend this notion to the timed case we first present the concept of
(reachable) marking of an operator box. In this case it is enough to know how
available and frozen tokens are distributed. By means of them we define which
arguments of the operator are stable and which ones are in execution.

Definition 10 (Markings of operator boxes). Being Ω = [(P, T, F,W, λ)]
an operator box, a marking M of Ω is a pair (M1,M2) ∈M(P)×M(P).

In the definition above M1 represents the multiset of available tokens, while
M2 defines the set of places where we have frozen tokens.

Definition 11 (Reachable markings of operator boxes). Let
Ω = [(P, T, F,W, λ)] be an operator box. We say that a multiset of transition
RT ∈M(T) is enabled at a marking M if the following condition is satisfied:

∀p ∈ P M1(p) ≥ ∑
v∈T

RT (v) ·W (p, v)

The set of reachable markings of Ω after the firing of RT is defined as the
set of markings (M ′1,M ′2) such that:

– M ′1 = M1 − ∑
v∈T

RT (v) ·W (−, v) + ∑
v∈C

W (v,−)
– M ′2 = M2 +RT − C where C ⊆M2 ∪RT .

Available tokens indicate the arguments of the connective which are in stable
form (that is, they have no executing transition), while frozen tokens say us the
ones that are currently in execution. The condition of factorisability tries to cap-
ture these distributions of tokens. Basically, it means that when a postcondition
(precondition) of a transition is marked, all its postconditions (preconditions)
must be also marked with tokens of the same type. To define the condition three
sets of transitions are considered, one for frozen tokens and two for available
tokens. This distinction is necessary because frozen tokens are always placed
in the preconditions of the transitions in execution, while available tokens can
either be consumed by the firing of a transition or obtained as a consequence of
the execution of another transition.

Definition 12 (Factorisability). Let Ω = [(P, T, F,W, λ)] be an operator box
and M = (M1,M2) be a marking of Ω. A factorisation of M is a triple of
sets of transitions Φ = (Φ1, Φ2, Φ3) such that the following conditions hold:

•M1 =

 ⊎

v∈Φ1

•v

 �

 ⊎

v∈Φ3

v•

 •M2 =

 ⊎

v∈Φ2

•v

We say that Ω is factorisable iff every safe marking M ∈ Reach(Ω, (•Ω,∅))
satisfies that for every set U of transitions enabled at M , there is a factorisation

Extending the Petri Box Calculus with Time 313

Φ = (Φ1, Φ2, Φ3) of M such that U ⊆ Φ1. In the following, the set of factorisa-
tions of Ω is denoted by factΩ, and we will use Φ̃ to denote Φ1 ∪ Φ2 ∪ Φ3.

If factorisability were violated, the marking of an operator box could not
be distributed over its arguments. Indeed, when factorisability is violated there
must be a token (available or frozen) which neither can have been produced by
the firing of any transition, nor enables by itself any marking; otherwise all the
preconditions or postconditions of the involved transition would be marked.

Now we can finally define operator boxes:

Definition 13 (Acceptable operator boxes). Let (P, T, F,W, λ) be an op-
erator net satisfying the requirements in Remark 7. The equivalence class Ω =
[(P, T, F,W, λ)] is an acceptable operator box if it is factorisable, and all the
markings reachable from (•Ω,∅) are safe and clean.

e α e
e d x

• α e
e d x

eα◦
e d, d′ x

e α •
e d x

e

ρid

e

e

ρid

e

e

x

e

x

e ρid x ρid x
e i x

e

ρid ρid

e

e

x

e ρsy a x
e x

e ρrs a x
e x

eρ[a:]x
xe

e ρ[f] x
e x

ρid e ρid

e ρid ρid e

ρid e ρid

e x

i

i

Fig. 1. Denotational semantics of TPBC

The denotational semantics of the algebra is defined in Figure 1. From left
to right and top to bottom, we show the semantics of: basic actions (α : d,
α : d, α̃ : d, d′ and α : d); disjoint parallelism (‖), sequential composition (;),
and choice (✷); synchronization (sy a), restriction (rs a), hiding ([a :]),
basic relabelling ([f]) and iteration ([∗ ∗]). In this figure, frozen tokens only
appear in the semantics of α̃ : d, d′, where the corresponding marking is given
by M1 = ∅ and M2 = {(α, d′)}.

4.2 Refinement

Refinement is the mechanism to obtain a plain box opΩ(B1, B2, . . . , Bn) from
a given operator box Ω and a tuple of plain boxes (B1, B2, . . . , Bn). The basic
idea is that every transition of the operator box is replaced by one element of
the tuple (B1, B2, . . . , Bn), where we have previously done the changes indicated
by the label of the transition.

In the static case, when the involved boxes are unmarked, the mechanism
followed is the same as in plain PBC. The same happens when frozen tokens are
not involved. We will just comment how it works in the remaining case.

314 O. Marroqúın Alonso and D. de Frutos Escrig

When frozen tokens appear the refinement basically involves the same struc-
tural changes as those in plain PBC [1,2,3]. However this procedure has been
slightly modified with two purposes. First, we avoid the existence of arcs with
a weight greater than one, which in fact were useless, since they only increase
the size of the obtained box, without allowing new firings. The second and more
important aim is the inclusion of time. The underlying intuition is that any
transition in execution in a box remains the same when this box is “mixed”
with some others, unless it proceeds from a synchronization, in which case the
synchronized transitions can be considered in execution.

The following definition of the refinement domain reflects the fact that each
operator box is a partial operation from plain boxes to plain boxes.

Definition 14 (Refinement domain). Let Ω = (P, T, F,W, λ) be an operator
box with n arguments. The domain of application of Ω, denoted by domΩ, is
defined by the following conditions:

1. It comprises all the tuples (Bv1 , Bv2 , . . . , Bvn) of static plain boxes,
2. For every factorisation of Ω, Φ = (Φ1, Φ2, Φ3) ∈ factΩ, it comprises all tuples

of boxes B = (Bv1 , Bv2 , . . . , Bvn) such that:
• ∀v ∈ Φ1 Bv ∈ Boxe ∪Boxi,
• ∀v ∈ Φ2 Bv ∈ Boxust,
• ∀v ∈ Φ3 Bv ∈ Boxx,
• ∀v ∈ T\Φ̃ Bv ∈ Boxs.

Φ1 indicates which transitions will be replaced by boxes that contribute with
stable non-final markings; Φ2 represents the transitions corresponding to unsta-
ble boxes; Φ3 denotes the transitions instantiated by boxes with terminal mark-
ings, and T\Φ̃ are the remaining transitions, that is, those which contribute with
empty markings to the generated plain box.

In order to simplify the formal definition of refinement, we assume that in
operator boxes all place and transition names of their canonical representatives
are primitive names from Pop and Top, respectively. We shall further assume that
in basic plain boxes, that is, in the denotational semantics of basic actions, all
places and transitions have primitive names from, respectively, Pbox and Tbox.
As we will see, when we apply this mechanism, we have as names of the newly
constructed places and transitions labelled trees in two sets which are denoted
by Ptree and Ttree, respectively. These trees are defined in a recurrent way and
then each subtree of such a tree is also in the corresponding set.

Next we define a collection of auxiliary concepts which will be later used in
order to adequately define the frozen tokens of any net obtained by refinement.

Definition 15. If q = l(q1, . . . , qn) ∈ Ttree, where l is the label of its root and
q1, . . . , qn are the root’s sons, we say that each qi is a component of q. In the
following, we will denote the set of components of q, {q1, . . . , qn}, by comp(q).

Definition 16. Given T1, T2 ⊆ Ttree, we say that dec : T1 −→ T2 × IN is a
decomposition of T1 iff the following condition holds:

∀q ∈ T1 dec(q) = 〈l(q1, . . . , qn), k〉 with qk = q

Extending the Petri Box Calculus with Time 315

dec is a consistent decomposition iff the following condition is satisfied:

∀q′ = l(q1, . . . , qn) ∈ T2 (∃k ∈ IN ∃q ∈ T1, dec(q) = 〈q′, k〉) =⇒
=⇒ (∀k ∈ 1..n ∃q ∈ T1, dec(q) = 〈q′, k〉)

Finally, if B = [(P, T, F,W, δ, λ, (M1,M2)] is a timed plain box, T1 ⊆ T , and
dec : T1 −→ T2 × IN is a decomposition of T1, we say that dec is a timed
consistent decomposition iff the following condition holds:

∀q′ = l(q1, . . . , qn) ∈ T2 (∃k ∈ IN ∃q ∈ T1, dec(q) = 〈q′, k〉) =⇒
=⇒ (∃d ∈ IN+ ∀k ∈ 1..n ∃q ∈ T1, (q, d) ∈M2 ∧ dec(q) = 〈q′, k〉)

The formal definition of refinement is the following:

Definition 17 (Refinement). Let Ω = [(P, T, F,W, λ)] be an operator box,
and for each v ∈ T Bv = [(Pv, Tv, Fv,Wv, δv, λv, (M1

v ,M
2
v))] be a timed plain

box. Under the assumptions above on Ω and B = (Bv1 , Bv2 , . . . , Bvn
), the result

of the simultaneous substitution of the nets Bvi
for the transitions in Ω is any

plain timed box whose canonical representative is a timed plain net

opΩ(B) = (P0, T0, F0,W0, δ0, λ0, (M1
0 ,M

2
0))

defined as follows:

1. Places, their labels and markings: The set of places, P0, is given by

P0 =

 ⋃

v∈T

IP v
new

 ∪

 ⋃

p∈P

OP p
new

where the sets IP v
new and OP p

new are defined as follows:
– For each v ∈ T , IP v

new is the set of places {v.pv |pv internal place in Pv }.
The label of all these places is i and their marking is given by M1

v (pv).
– Let p ∈ P with •p = {v1, v2, . . . , vk} and p• = {vk+1, vk+2, . . . , vk+m}.

Then, OP p
new is the set of places p(v1 ✁ p1, . . . , vk+m ✁ pk+m) where{

pi ∈ (Pvi)
• ∀i ∈ {1, . . . , k}

pi ∈ •(Pvi) ∀i ∈ {k + 1, . . . , k +m}.
Each one of these places will be labelled by λ(p) and its marking is

M1
v1

(p1) +M1
v2

(p2) + . . .+M1
vk+m

(pk+m).

2. Transitions, their labels and durations: The set of transitions T0 is
defined by

T0 =
⋃
v∈T

T v
new

where for each v ∈ T the set T v
new is obtained as follows: Whenever we have

a pair of the form ({λ(q1) : d1, λ(q2) : d2, . . . , λ(qn) : dn}, α : d) ∈ λ(v) for
qi ∈ Tv, and the following condition holds:

∀i, j ∈ {1, . . . , n} i �= j =⇒ (•qi ∩• qj = ∅) ∧ (q•
i ∩ q•

j = ∅),

a new transition v.α(q1, . . . , qn) is generated. Its duration is d and its label is
α. In the following, we will denote the transition v by root(v0).

316 O. Marroqúın Alonso and D. de Frutos Escrig

3. Set of arcs: For each transition v0 in T0, the set of arcs leaving or reaching
v0 in F0 are those obtained as follows:
• p0 ∈ IP v

new {
if ∃qi ∈ comp(v0), (pv, qi) ∈ Fv then (p0, v0) ∈ F0

if ∃qi ∈ comp(v0), Wv(qi, pv) = 1 then (v0, p0) ∈ F0

• p0 ∈ OP p
new{

if ∃i ∈ {1, . . . , k +m} ∧ ∃qj ∈ comp(v0), (pi, qj) ∈ Fv then (p0, v0) ∈ F0

if ∃i ∈ {1, . . . , k +m} ∧ ∃qj ∈ comp(v0), (qj , pi) ∈ Fv then (v0, p0) ∈ F0

The weight function returns 1 for all the arcs in F0.
4. Transitions in execution (frozen tokens): The frozen marking M2

0 will
be defined as the union of a collection of submarkings M2

0,v with v ∈ T . As a
matter of fact, each M2

v will be not defined in a unique way and therefore we
will have several possible frozen markings M2

0 . This is justified for technical
reasons, since once we prove the equivalence between the operational and the
denotational semantics, we obtain as a consequence that all the different boxes
defining the denotational semantics of an expression are in fact equivalent.
Thus, we could also select any of the possibilities to obtain a function instead
of a relation, but if we would do it in this way the definition would be much
less readable.
Then, in order to get a value for each M2

0,v we consider any timed consistent
decomposition dec :M2

v −→ T0 × IN , and we take as M2
0,v

M2
0,v = { q′ ∈ T0 | ∃q ∈M2

v , dec(q) = q′ }

where for each q′ ∈M2
0,v we take rem(q′) = rem(q).

Theorem 18.

1. Every step sequence of the operational semantics of G is also a step sequence
of any of the timed plain boxes corresponding to G.

2. Every step sequence of any of the timed plain boxes corresponding to G is also
a step sequence of the operational semantics of G.

Proof. It follows the lines of that for plain PBC [1,2,3] with the changes needed
to cope with time information (see [5]). Unfortunately, even the original proof
is so long and involved that even it is not possible to sketch it here. It would
be nice to comment at least the necessary changes to extend the proof, but this
is neither possible since they are both local and distributed all along the proof.
Therefore, we will only justify here why we need nondeterminism in the definition
of the denotational semantics. This is needed in order to preserve a one to one
relation between the evolution of the expressions and that of their denotational
semantics, since there are some expressions which evolve to the same one after
the execution of different multibags, but the same is not true for the evolution
of a single box.

Extending the Petri Box Calculus with Time 317

5 Example: A Producer/Consumer System

In this section we present an example that models the producer/consumer system
with a buffer of capacity 1. The system describes the behaviour of a simple
production line which involves two workers. A conveyor belt is between them,
so it can hold any item that has been produced by the first worker and has to
be consumed by the second.

The given specification consists on three components that are combined to
obtain the TPBC expression of the system: the producer system, the consumer
system and the conveyorBelt system. The timing assigned to them reflects a set of
hypotheses about the production and consumption speed and the characteristics
of the conveyor belt.

• producer = [({a, b} : 1) ∗ ((p : 2); (pb : 1)) ∗ ({¬a,¬b} : 1)]
• consumer = [({â, b} : 1) ∗ ((gb : 1); (c : 1)) ∗ ({¬̂a,¬b} : 1)]
• conveyorBelt = [G1∗ [(p̂b : 1) ∗ ((ĝb : 1; ĝb : 1)✷(ĝb : 1; p̂b : 1)) ∗ (ĝb : 1)]∗ G2]

where G1 = ({b, b} : 1) and G2 = ({¬̂b, ¬̂b} : 1)
• system = (((producer‖consumer)sy A‖conveyorBelt)sy B)rs(A ∪ B)

where A = {a,¬a} B = {b,¬b, pb, gb}
The meaning of the actions is the following:

p: Produce an item.
c: Consume an item.
pb: Put an item into the conveyor belt.
gb: Get an item from the conveyor belt.
b,¬b: Activate and deactivate the running of the conveyor belt.
a,¬a: Activate and deactivate the production/consumption of items.

Figure 2 shows the denotational semantics of producer and consumer expressions.
The construction of the boxes corresponding to conveyorBelt and the full system
expressions can be completed in the same way, but due to lack of space we can
not show the obtained nets. You can check by hand the equivalence between the
operational semantics of the given expressions and those of the obtained nets.

e

{â, b} e {¬̂a,¬b}

e

gb gb

e e

c c

{â, b} e {¬̂a,¬b}

1 1

1 1

1 1

1 1

e i i x

i

i

e

{a, b} e {¬a,¬b}

e

p p

e e

pb pb

{a, b} e {¬a,¬b}

1 1

1 1

2 2

1 1

e i i x

i

i

Fig. 2. The producer/consumer problem

6 The Time-Constraining Operators

The previous sections describe a simple timed extension of the basic model where
we need not to introduce any new operator. Note that due to rules (V1) and

318 O. Marroqúın Alonso and D. de Frutos Escrig

(V2), processes can let time progress indefinitely. More precisely, for any over-
lined or underlined process time passes without causing any change of the state,
out of the fact that processes become stable after finishing their pending actions.

This property, called unlimited waiting, is not too useful from a practical
point of view. We need to introduce some kind of urgency in the formalism;
otherwise, the expressive power of TPBC would be limited to specify very simple
systems. Therefore, in this section we will add to our model some new features
that force systems to evolve, namely timed choice and time-out with exception
handler.

6.1 Timed Choice

Timed choice constraints an action to occur at some instant of a given interval
[t0, t1]. That is, a so restricted action cannot begin its execution either before t0
or after t1. The static expression used to implement this behaviour is α[t0,t1] : d,
where α ∈M(A), t0 ∈ IN , d ∈ IN+, and t1 ∈ IN+ ∪ {∞}.

Depending on the values of t0 and t1 there are three particular cases of timed
choice. A rough description of each one is as follows:

1. Finite delay: It corresponds to expressions of the form α[t0,∞] : d, where
t0 �= 0 (note that processes of the form α[0,∞] : d will be just equivalent to
α : d.) When such an expression gets the control of the system, it delays the
execution of the action α : d for at least t0 time units.

2. Time-out: It is obtained when t0 = 0 and t1 �= ∞. If a process of the form
α[0,t1] : d is activated, the beginning of the execution of α : d cannot be
postponed more than t1 units of time.

3. Time-stamped actions: We say that an action is time-stamped when its
execution is enforced to start at a given instant. The corresponding static
expressions are α[t0,t0] : d with t0 �= ∞, which we will usually syntactic sugar
by αt0 : d.

Now, activated timed choices need to have information about the passage of
time over the system components. More exactly, it is necessary to know for how
long a timed choice has been activated, in order to restrict the beginning of the
execution of the corresponding action. Until now, dynamic expressions only give
us information about the global state of processes, in such a way that an external
observer is able to determine whether a process has pending actions or not, but
there is no way to obtain quantitative information about time aspects, unless
the observer knows the full history of the process.

With the purpose of avoiding this limitation, we introduce a temporal an-
notation over both overlined and underlined expressions. In the first case, the
new clock tells us for how long the process has been activated, while in the sec-
ond case it tells us how long ago the process finished. This annotation will be
included as an index close to the corresponding bars.

Due to these modifications, the operational semantics previously defined must
be changed. In particular, any clock of the system needs to be updated when
time progresses. This is done by means of new rules (V1) and (V2):

E
k ∅−−→ E

k+1
(V1) Ek

∅−−→ Ek+1 (V2)

Extending the Petri Box Calculus with Time 319

Table 1. New transition rules with time information

α : d
k {αd′ }−−−−−→ ˜α : d, d′ − 1 d′ ≥ d (B1) α̃ : d, 0 ←→ α : d0 (B3)

E‖F k ←→ E
k‖F k

(Pc1) Ek‖F k′ ←→ E‖F
min{k,k′} (Pc3)

E;F
k ←→ E

k
;F (Sc1) Ek;F ←→ E;F

k
(Sc3)

E;F k ←→ E;F
k

(Sc5)

E✷F
k ←→ E

k
✷F (Ch1a) E✷F

k ←→ E✷F
k

(Ch1b)

Ek✷F ←→ E✷F k (Ch2a) E✷F k ←→ E✷F k (Ch2b)

E sy a
k ←→ E

k
sy a (S1) Ek sy a ←→ E sy a

k
(S3)

E rs a
k ←→ E

k
rs a (Rs1) Ek rs a ←→ E rs ak (Rs3)

[a : E]
k ←→ [a : E

k
] (Sp1) [a : Ek] ←→ [a : E]

k
(Sp3)

E[f]
k ←→ E

k
[f] (Rl1) Ek[f] ←→ E[f]

k
(Rl3)

[E ∗ F ∗ E′]
k ←→ [E

k ∗ F ∗ E′] (It1)

[Ek ∗ F ∗ E′] ←→ [E ∗ F k ∗ E′] (It2c) [Ek ∗ F ∗ E′] ←→ [E ∗ F ∗ E′k] (It2d)

[E ∗ F k ∗ E′] ←→ [E ∗ F k ∗ E′] (It3c) [E ∗ F k ∗ E′] ←→ [E ∗ F ∗ E′k] (It3d)

[E ∗ F ∗ E′
k] ←→ [E ∗ F ∗ E′]

k
(It5)

In addition to this, we have to modify most of the rules concerned with control
transmission. The resulting rules are those shown in Table 1, and the reason-
ing supporting them is straightforward. Next the definition of the operational
semantics of timed choice, which is shown in Table 2. Rule (TCh1) states that
such a process can perform the empty timed bag at any time. In order to restrict
the execution of the action α : d, the value k of the system clock is compared
with the limits of the interval [t0, t1]. If t0 ≤ k ≤ t1 we can apply rule (TCh2),

which establishes that the corresponding (activated) timed choice, α[t0,t1] : d
k
,

can perform the timed bag {αd′}. Afterwards, rules (TCh3) and (TCh4) de-
fine the expected behaviour: The remaining execution of {αd′} is hidden to the
observer, who only sees the passage of time (rule (TCh3)). When the action
terminates, the process is underlined and the value of its clock is reset to zero
(rule (TCh4)).

6.2 Time-Out with Exception Handler

By means of the timed choice operator just introduced, we are able to limit
the time at which a process will be able to start its execution. If this time is
exceeded, the process dies, and there is no way to express that some alternative
continuation will be activated. In order to get this, we introduce a new operator
called time-out with exception handler. This operator has two arguments, E,F ∈
Exprs, and a parameter t0 ∈ IN+. E is called the body and F the exception
handler of the time-out.

320 O. Marroqúın Alonso and D. de Frutos Escrig

Table 2. Operational semantics of timed choice

α[t0,t1] : d
k

∅−−→ α[t0,t1] : d
k+1

(TCh1)

α[t0,t1] : d
k {αd′ }−−−−−→ ˜α[t0,t1] : d, d′ − 1 if k ≥ t0, k ≤ t1 and d′ ≥ d (TCh2)

˜α[t0,t1] : d, d′ ∅−−→ ˜α[t0,t1] : d, d′ − 1 if d′ > 0 (TCh3)

˜α[t0,t1] : d, 0←→ α[t0,t1] : d0 (TCh4)

When a time-out with exception handler gets the control, it behaves as its
body whenever it begins to perform actions before the instant t0; otherwise, after
time t0, the process behaves as defined by its exception handler.

The static form of a time-out with exception handler is "E#t0F . The possible
dynamic forms are equivalent to either "G#t0;tF , with t ≥ −1, or "E#t0;−1G. In
both cases, the expressions include two temporal annotations. The former is the
parameter of the time-out and it is immutable, that is, it does not change during
the execution of the process. If t is the value of the latter, this means that the
exception handler F will be activated within t time units, unless the body of the
time-out begins its execution before. t is set to -1 when either the body of the
time-out has begun to execute its first action before t0 or that limit has been
exceeded without performing any non-empty transition of E. The operational
semantics reflecting these ideas is shown in Table 3.

Rules (Te1a) and (Te1b) state that we have two cases depending on the
elapsed time from the activation of the process: If k ≤ t0 then the body gets the
control of the system, and it has t0−k time units to execute its first action (rule
(Te1a)). Otherwise, the exception handler of the time-out is activated, just as
rule (Te1b) states. Rule (Te2a)1 shows how the passage of time affects this class
of processes. Notice carefully that control is transmitted according to the second
temporal annotation, so the first argument remains active as long as t ≥ 0.
Otherwise, the body has totally consumed its disposal time and the exception
handler is activated. The performance of actions is formalized by means of rules
(Te2b), (Te3b), and (Te4b), whose explanation is straightforward. They can
be applied on any equivalent form of the arguments (rules (Te3a) and (Te4a)).
Finally, a time-out with exception handler finishes its execution when either its
body or its exception handler terminates (rules (Te5a) and (Te5b)).

6.3 Remarks on Denotational Semantics

Denotational semantics of the time-constraining operators can be found in [5].
Plain nets have been modified by adding temporal restrictions [t0, t1] to tran-
sitions, and labelling the available tokens in the net with their age. Then, a
modified firing rule uses this information, in such a way that a transition v
restricted by [t0, t1] can only consume tokens younger than t1.
1 Predicate Init(G) (see [5]) returns true if and only if G is equivalent to some
overlined expression H.

Extending the Petri Box Calculus with Time 321

Table 3. Operational semantics of the time-out with exception handler

�E�t0F k ←→ �Ek�t0;t0−kF if k ≤ t0 (Te1a)

�E�t0F k ←→ �E�t0;−1F
(k−t0−1)

if k > t0 (Te1b)

G
∅−−→G′ Init(G) ∧ t ≥ 1

�G�t0;tF
Γ−−→�G′�t0;t−1F

(Te2a)

G
Γ−−→G′ Γ �= ∅ Init(G) ∧ t ≥ 0

�G�t0;tF
Γ−−→�G′�t0;−1F

(Te2b)

G←→ G′

�G�t0;tF ←→ �G′�t0;tF
(Te3a)

G
Γ−−→G′ ¬Init(G)

�G�t0;−1F
Γ−−→�G′�t0;−1F

(Te3b)

G←→ G′

�E�t0;−1G←→ �E�t0;−1G′ (Te4a)

G
Γ−−→G′

�E�t0;−1G
Γ−−→�E�t0;−1G′ (Te4b)

�Ek�t0;−1F ←→ �E�t0F
k

(Te5a)

�E�t0;−1F k ←→ �E�t0F k
(Te5b)

As a consequence, we obtain that a transition generated by synchronization
is enabled at a marking M if and only if all its component transitions would be
enabled. This is also true even if any of these components have been removed
by application of a restriction operator. This is probably the most important
difference between our model and that in [4]. There the author had to intro-
duce illegal action occurrences in order to reflect some (intuitively undesirable)
synchronizations whenever they become executable in the box defining the de-
notational semantics of an expression. This happens when the application of
a restriction operator removes some timing restrictions which made that the
synchronization was non-executable before the application of the restriction op-
erator.

Although in that paper the author does not explain why he decided to get
the equivalence between both semantics by allowing the execution of impossible
synchronizations, we assume that he wants to maintain that equivalence result
without changing too much the ideas of untimed PBC. As a consequence, it is
not possible to avoid the fireability of those impossible synchronizations. To do
it, it is mandatory the introduction of age information in the tokens, as we have
done in our model. So, we have to pay the price of a more complicated model,
but as a reward we avoid those undesirable transitions.

322 O. Marroqúın Alonso and D. de Frutos Escrig

7 Conclusions and Work in Progress

In this paper we have presented a new proposal to introduce time in PBC,
preserving the main ideas of this model as far as possible. In the discussed model,
called TPBC (Timed PBC), processes execute actions which have a duration.

The work by Koutny [4] has been somehow completed by considering an
alternative model. More importantly, we have defined a more involved model in
order to avoid the generation of undesired transitions. This cannot be done if
we just work with plain time Petri nets since these are not prepared to support
the correct definition of some time operators such as urgency.

As work in progress, currently we are introducing in the calculus new features
enhancing its time characteristics, mainly maximal parallelism and urgency. An-
other line of research concerns not only TPBC but also the original PBC. In
order to exploit these Petri box calculi, we are working on the axiomatization of
the semantics, as it is done in the framework of process algebras. Once we will
get the equations in this axiomatization, we will try to interpret them at the
level of Petri nets, obtaining a collection of basic correct transformations. We
are sure that this will be a fine way to exploit the facilities of both PBC and
TPBC.

References

1. E. Best, R. Devillers and J. Hall The Petri Box Calculus: A New Causal Alge-
bra with Multi-label Communication. Advances in Petri Nets 1992, LNCS vol.609,
pp.21-69. Springer-Verlag, 1992.

2. E. Best and M. Koutny A Refined View of the Box Algebra. Petri Net Confer-
ence’95, LNCS vol.935, pp.1-20. Springer-Verlag, 1995.

3. M. Koutny and E. Best Operational and Denotational Semantics for the Box Al-
gebra. Theoretical Computer Science 211, pp.1-83, 1999.

4. M. Koutny A Compositional Model of Time Petri Nets. Application and Theory
of Petri Nets 2000, LNCS vol.1825, pp.303-322. Springer-Verlag, 2000.

5. O. Marroqúın Alonso and D. Frutos Escrig. TPBC: Timed Petri Box Calculus.
Technical Report, Dept. Sistemas Informáticos y Programación. UCM, 2000. In
Spanish.

6. P. Merlin A Study of the Recoverability of Communication Protocols. PhD. Thesis,
University of California, 1974.

7. F. Moller and C. Tofts A Temporal Calculus of Communicating Systems. CON-
CUR’90: Theories of Concurrency: Unification and Extension, LNCS vol.458,
pp.401-415. Springer-Verlag, 1990.

8. Y. Ortega Mallén En Busca del Tiempo Perdido. PhD. Thesis, Universidad Com-
plutense de Madrid. 1990.

9. C. Ramchandani Analysis of Asynchronous Concurrent Systems by Timed Petri
Nets. Technical Report 120. Project MAC. 1974.

10. G.M. Reed and A.W.Roscoe Metric Spaces as Models for Real-time Concurrency.
Mathematical Foundations of Programming, LNCS vol.298, pp.331-343. Springer-
Verlag, 1987.

11. Wang Yi A Calculus of Real Time Systems. PhD. Thesis, Chalmers University of
Technology, 1991.

	Introduction
	The TPBC Language
	Operational Semantics
	Transition Rules

	Denotational Semantics
	A Domain of Timed Boxes
	Refinement

	Example: A Producer/Consumer System
	The Time-Constraining Operators
	Timed Choice
	Time-Out with Exception Handler
	Remarks on Denotational Semantics

	Conclusions and Work in Progress

