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An extension of the radiosity method is presented that rigorously accounts for the presence of a small 

number of specularly reflecting surfaces in an otherwise diffuse scene, and for the presence of a small 

number of specular or ideal diffuse transmitters. The relationship between the extended method and 

earlier radiosity and ray-tracing methods is outlined. It is shown that all three methods are based on 

the same general equation of radiative transfer. A simple superposition of the earlier radiosity and 

ray-tracing methods in order to account for specular behavior is shown to be physically inconsistent, 

as the methods are based on different assumptions. Specular behavior is correctly included in the 

present method. The extended radiosity method and example images are presented. 

Categories and Subject Descriptors: 1.3.3 [Computer Graphics]: Picture/Image Generation; 1.3.7 

[Computer Graphics]: Three-Dimensional Graphics and Realism 

General Terms: Algorithms 
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1. INTRODUCTION 

A two-pass method that combines the radiosity and ray-tracing approaches to 

illumination calculations has recently been introduced by Wallace, Cohen, and 

Greenberg [13] for the generation of realistic synthetic images. The method 

consists of a first pass, which is an extended radiosity method due to Rushmeier 

[ll], and a second pass, which is a modified form of the distributed ray-tracing 

technique introduced by Cook, Porter, and Carpenter [2]. Wallace et al. presented 

a practical application of the two-pass method. The present paper, based on [ll], 

provides the theory and implementation of the first pass, the extended radiosity 

method. The extended radiosity method accounts for specular and ideal diffuse 
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2 * H. E. Rushmeier and K. E. Torrance 

Nomenclature list 

A Area 

B Radiosity 

F b,n,,,p Backward mirror form factor 

F f,n,,,p Forward mirror form factor 

F ““I Forward diffuse form factor 

I Intensity 

L Number of light sources 

N Number of surfaces 

Q Energy flux density 

Th.nmp Backward window form factor 

T f,n,,,p Forward window form factor 

T “rn Backward diffuse form factor 

V Visibility function 

x Cartesian coordinate 

01 Absorptance 

P Reflectance 

B Polar angle 

; 

Transmittance 

Azimuthal angle 

w Solid angle 

Subscripts 

ahs Absorbed 

b Back of surface 

bd Bidirectional 

d Diffuse 

dh Directional hemispherical 

e Emitted 

f Front of surface 

i Incident 

1 Particular light source 1 

m Particular surface m 

n Particular surface n 

0 Outgoing 

P Particular surface p 

r Reflected 

S Specular 

t Transmitted 

Superscripts 

Virtual point or surface 

Other 

Underscore indicates vector quantity. 

n(t) indicates the surface intersected by a 

ray specularly transmitted through 

surface n. 

n(s) indicates the surface intersected by a 

ray specularly reflected against 

surface n. 

reflection from surfaces, and specular and ideal diffuse transmission through 

translucent materials. The relationship of earlier radiosity and ray-tracing meth- 

ods to the extended method is also reviewed. 

The generation of realistic images requires modeling global illumination effects. 

Ray tracing was introduced by Whitted [14] to account for multiple specular 

reflections in an environment. Radiosity methods, based on concepts from 

radiative heat transfer, were independently developed by Goral et al. [6], and by 

Nishita and Nakamae [9, lo] to account for multiple diffuse interreflections. 

Recognizing that a complete illumination model must account for all types of 

interreflection, Kajiya [8] and Immel, Cohen, and Greenberg [7] independently 

introduced methods to solve the general equation of radiative transfer, with no 

theoretical restrictions on the type of reflection. The general methods are 

extremely expensive computationally. Kajiya’s Monte Carlo method is basically 

a ray-tracing method and can be efficient in environments in which directional 

reflection is important. For diffuse surfaces, however, particularly those that do 

not have a direct view of a light source, large numbers of rays need to be cast at 

each pixel to converge to a solution. Immel’s method is a type of radiosity method, 

in which a very large set of simultaneous equations is formed to solve for the 

intensities from all surfaces in an environment in all directions. Immel’s method 

can be efficient for environments consisting of nearly diffuse surfaces, but the 

number of equations becomes unmanageable for nearly specular surfaces. 
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Wallace et al.‘s two-pass method was introduced as a practical alternative to 
the methods of Kajiya and Immel et al. In the first pass, an augmented set of 
form factors is found to account for the important specular reflections that may 
affect the intensity of diffuse surfaces. In the second pass, a method of ray tracing 
for specular reflections is used. This paper provides the underlying theoretical 
framework for the first step in Wallace et al.‘s method. Such a framework is 
needed to understand the limitations and possible future developments of the 
two-pass method. 

The extended method will be derived by starting with the general equation of 
radiative transfer. The approach will employ terminology commonly used in 
radiative heat transfer [12] and optics [3]. Also beginning with the general 
equation of transfer, the radiosity and ray-tracing methods will be derived. Kajiya 

has previously outlined the relationship between computer graphics lighting 
models and a general equation of transfer [S]. The present derivation illustrates 
the assumptions needed to produce the extended radiosity method. Finally, a 
series of images illustrates the capabilities of the extended radiosity method. 

2. GOVERNING EQUATIONS 

Light intensities within a scene are governed by the principles of radiative 
transfer, and a physically correct lighting model must be based on those princi- 
ples. An enclosure as shown in Figure la will be considered. In this section, all 
surfaces in the enclosure are allowed to have arbitrary directional and spectral 
radiation properties for the emission, reflection, absorption, and transmission of 
light energy (radiation). The material filling the space between the surfaces (the 
atmosphere) is assumed to be transparent (i.e., radiatively nonparticipating). 
Furthermore, it will be assumed that light energy is not transferred from one 
wavelength to another by the aforementioned processes. Thus, each wavelength, 
or wavelength interval, is independent of all others. With the above assumptions, 
a general equation governing radiative transport can be developed (i.e., eq. (10)). 

2.1 Light Energy 

Light is electromagnetic energy and can be expressed as an energy flux density, 
q, in units of energy per unit area and time. When q represents the total energy 
flux density leaving a surface (e.g., by emission, reflection, and transmission), it 
is referred to as the radiosity, B, of the surface. 

To account for the directional character of light energy, it is necessary to 
introduce the radiant intensity I. With angles as defined in Figure lb, the 
intensity leaving a surface element dA in a direction (0, 4) is given by 

where dq(0, 4) is the differential energy flux density leaving the surface within a 
small solid angle dw in the given direction. Intensity is found by expressing dq 
per unit projected area (thus introducing cos 8) and by dividing by dw. 

For synthetic image generation, intensity is the appropriate quantity with 
which to work. The energy flux density reaching the eye from a surface in a scene 
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4 * H. E. Rushmeier and K. E. Torrance

varies with distance according to an inverse square law. Similarly, the solid angle

subtended by a surface as viewed by the eye also varies according to an inverse

square law. The intensity, or brightness, perceived by the eye is proportional to

the ratio of these two quantities. Thus, from eq. (1), the intensity of a surface in

a scene remains constant to an observer as the observer moves toward or away

from a scene.

2.2 Interactions of Light with Surfaces

Light is assumed to be emitted, reflected, absorbed, or transmitted only at surfaces

within an environment. In an environment, every object will be represented by a

set of bounding surfaces. Bounding surfaces may be either opaque or transmitting.

To construct a synthetic image of a scene, it is necessary to know the intensity

of light leaving a surface in a scene. As sketched in Figure 1c, this is an intensity

function of the form I,,,(;c,, &,,,),  where o denotes the outgoing intensity, n

denotes the particular surface n, z, is a vector to a point on the surface from

a coordinate system based on n, and e,,, denotes a unit vector in the direction
(O,,,, &,,) leaving surface n, referenced to the coordinate system based on n and

the local surface normal. The intensity I,,, is composed of emitted, reflected, and
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Fig. lb. Geometry of light of intensity I 

leaving a surface element dA. 

Surface n 

Fig. 1~. Definition of position vector 2, and direction vector @,,. 

transmitted light leaving surface IL, expressed as 

L,n(Xn, &3,,) = L!,n(x,, eo,n) + Lnkn, eo,rJ + L,“(&rL, eoJA (2) 

where the subscripts e, r, and t respectively denote the emitted, reflected, and 
transmitted components of the outgoing intensity. 

In a typical scene, only a few surfaces, or light sources, emit light. For such 
emitters, the light source intensity 1,,,(~ n, &,) in eq. (2) must be a given, 

independently prescribed function of position and direction. The second and 
third terms in eq. (2) are due to reflection and transmission, and couple the 
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intensity leaving surface n to the intensities arriving at IZ from all of the other 
surfaces in the environment. This introduces the reflectance and transmittance 
of the surface n, as described next. 

Consider the geometry shown in Figure 2, in which an incident beam of energy 
flux density dqi impinges with a solid angle dwi onto a surface. The subscript i 
denotes incident quantities. The direction of the incident beam is described by 
the angles (Oi, 4;) associated with a unit vector &. In general, the incident beam 
will be reflected, absorbed, or transmitted at the surface. For discussion purposes 
the surface is assumed to be of a finite thickness, in which absorption occurs. 
The intensity of the reflected and transmitted components may display a complex 
directional pattern, as sket.ched by the intensity distributions I,(&) and It@,) in 
Figure 2. The appropriate quantities to describe these distributions are the 
bidirectional reflectance and the bidirectional transmittance [ 2, 121, respectively 
defined by 

dIr(O,) -. 
Pbcl(@r, ei) = dqi(oiI 3 (3) 

Bidirectional refers to the two directions involved: the direction of illumination 
and the direction of either reflection or transmission. The bidirectional quantities 
are defined as ratios of th.e reflected or transmitted intensities to the incident 

energy. 
Light that is not reflected or transmitted is absorbed. A parameter that 

describes the total amount of absorbed energy, as a function of incidence angle, 
is the absorptance, 

The light energy in the incident beam must be fully accounted for when light 
interacts with a surface. This leads to the following energy conservation state- 
ment at the surface, involving &b, 7bd, and o(: 

s 
Pbd(ei, Or) COS or dar + 

s 
Tbd(@i, &)COS Bt da, + OJ(Qi) = 1. (6) 

2s 27r 

The first integral is over the hemisphere of reflection angles above the surface, 
and the second is over the hemisphere of transmission angles below the surface. 
These integrals also serve to define, respectively, a reflectance for directional 
illumination and hemispherical reflection, P&, and a transmittance for directional 
illumination and hemispherical transmission, 7dh. In terms of these quantities, 
eq. (6) becomes 

I)dh(ei) + Tdb(@i) + a(@,) = 1. 
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Incident 
beamof \ 
light 

Back 

c Surface 
normal 

J 
Reflected intensity 

distribution Ir @ r) 

Fig. 2. General intensity distributions of reflected and transmitted 

light. 

2.3 A General Equation for the Radiant Intensity of a Surface 

The intensity leaving a surface n, I,,, is given by eq. (2). The second and third 
terms on the right side of this equation are developed in greater detail in this 
section. Specifically, using the definition of intensity in eq. (1) and integrating 
eq. (3) over the hemisphere of incident directions, the intensity of light Ir+ 
reflected from surface n is 

L,n(xn, eo,rJ = S 2s Pbd,n(Qif,n, Bo,n)~i,n&n9 @if,n)cos eif,n d@if,n- (8) 

The subscript if,n denotes incident directions referred to the front of surface n. 
Because intensity is constant along an unobstructed path, the intensity inci- 

dent onto surface n, li,n(gn, bir,,), is equal to the intensity of radiation leaving 
another surface, say, m, which is visible from surface n. Let the latter intensity 
be denoted by lo,m(~m, Q,,,). The geometric relationship between surfaces n and 
m is sketched in Figure 3. A ray connecting points g, and x, on the two surfaces, 
as measured by coordinate systems fixed to the surfaces, makes angles of Qif,n 

and !A,, with respect to the normals to the two surfaces as shown. Next, introduce 
a function V,(&,, x,,,) that is unity if point x,,, on the front’of surface m is visible 
to point &, when looking out from the front of surface n, and zero otherwise. 
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Surface normal 

*m 

Surface normal 

*n 

Fig. 3. Geometric relationship between surfaces n and m. 

Thus, eq. (8) can be written as 

where the summation is over the number of surfaces and the integration is over 
the area of each surface. Note that no generality has been lost in rewriting 
eq. (8) as eq. (9), since any environment can be considered a set of surfaces. 

Similarly, an expression fbr transmitted intensity can be found by using eqs. 
(1) and (4). In the expression for transmitted intensity, the visibility function 
for reflection, V,(r,, x,), is replaced by a visibility function for transmission, 

Vt(zn, xm), which is unity if a point E,,, on the front of surface m is visible from 
a point g, on the back of surface n, and zero otherwise. Introducing eq. (9) 

for I,,,, and the analogous equation for It,n, into eq. (2), results in the 
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following general equation for IO+: 

+; S Pbd,n(eif,n, Qo,n)vr(~n, &m)~o,m(lcm, eo,m)COS eif,n dW,n (10) 

m=l A, 

The subscript ib,n denotes incident directions on the back of surface n. 
An equation of the form of eq. (10) holds for each of the N surfaces in the 

environment. The solution of the system of N simultaneous integral equations 
yields the N intensity functions 1,+(x,, f?,,,). 

3. SIMPLIFICATIONS FOR IDEAL SURFACE REFLECTION/TRANSMISSION 

The general equation for the radiant intensity of a surface, eq. (lo), is the 
appropriate starting point for deriving a lighting model. However, eq. (10) is 
difficult to use directly, because it allows complicated directional and spatial 
dependencies of the bidirectional quantities (&,d, Tbd) and the intensities (I,, I,). 
It is helpful to express the directional dependencies of let &d, and Tbd in terms of 
simplified, yet still fairly general, models. Models that have produced useful 
results in radiative heat transfer include ideal diffuse, ideal specular, and com- 
bined diffuse/specular behavior. Use of the simplified models results in a revised 
equation of transport, eq. (15). 

Light is said to be ideal diffuse when the light intensity is independent of 
direction. The case of ideal diffuse emission is sketched in Figure 4a. For ideal 
diffuse emission, the light source term in eq. (10) becomes simply 1,+(x,), a 
position-dependent light intensity. 

Ideal diffuse reflection and transmission are sketched in Figure 4b. For 
this case the intensities I,,, and It,, are independent of direction. When ideal dif- 
fuse behavior is assumed, &i( &, Q,) and Tbd( oi, 0,) in eq. (10) may be replaced 
by Pd/?T and T~/~T, where the subscripts denote diffuse. (For an ideal diffuse 
surface, & and 7d are the directional-hemispherical reflectance and transmittance, 
respectively, as defined by eqs. (6) and (7)). From thermodynamics it can be 
shown that the diffuse assumption implies that Pd and 7d must be independent 
Of Qi* 

If the emission, reflection, and transmission are all ideal diffuse, it is impossible 
to distinguish between them in the emergent radiation from a surface. Also, the 
outgoing intensity I,,+ does not vary with angle, and the intensity definition, 
eq. (l), may be integrated to obtain 

~L,n(&n) = qo,n(zn) = &(&rJ. (11) 

This provides a useful relationship between I,,, and the radiosity, B,, for the 
special case of a fully diffuse surface. 
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Back X -” 

Fig. 4a. Intensity distribution of ideal diffuse emission. 

Fig. 4b. Intensky distribution of ideal diffuse and ideal specular 
reflection and transmission. 

Directional distributions for ideal specular reflection and ideal specular trans- 
mission are also shown in Figure 4b. In this case, the bidirectional reflectance is 
zero except when (19,, d,) is equal to (dip Ni + 7r), and the bidirectional transmit- 
tance is zero except when (O,, &) is equal to (r - Bi, $i + r). Note that the latter 
neglects refraction effects at the interface. At a refracting surface, the bidirec- 

tional transmittance is zero except when (O,, &) is equal to (r - SF, 4; + 7r), 

where 0: is related to Bi by Snell’s law. Such effects can be included, but, in the 
interests of simplicity, are neglected in this paper. The neglect of refraction is 
valid if the interface is a thin transmitting plate, such as a window. In what 
follows, a nonrefracting surface will be referred to as a specular transmitter. 
Ideal specular behavior i:s usually expressed in terms of a reflectance and a 
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transmittance defined as ratios of intensities: 

I, 
L%!=jp 

It 
7, = -. 

Ii 

(12) 

(13) 

It is understood that I, and It are zero except in the specular reflection or 
transmission directions, respectively. 

The ideal diffuse and ideal specular behaviors shown in Figure 4b represent 
approximations to the behavior of real materials. A somewhat more general 
approximation is possible by superposing the two limits. When Pbd and Tb,j are 
written as linear combinations of ideal diffuse and ideal specular behavior, 
conservation of energy, as expressed in eq. (6), requires that 

pa + pd + 7, + ,-d + a = 1. (14) 

When the reflection/transmission coefficients are taken as constant over each 
area A,,, the general equation for the radiant intensity of a surface, eq. (lo), 
becomes 

Note that the ideal diffuse assumption is not invoked for I,,,, in eq. (15). As 
shown in Figure 5, n(s) denotes the surface intersected by a ray leaving point Z, 
in the specular reflection direction (&,,,, &n + 7r), and n(t) denotes the surface 

intersected by a ray leaving gn in the specular transmission direction (r - 8,,,, 
&,,, + r). Appropriate forms of eq. (15) for purely diffuse or purely specular 
environments are found by setting ps,,, = T,,, = 0, or &in = Td,,, = 0, respectively. 

4. DERIVATION OF RADIOSITY AND RAY-TRACING METHODS 

The basic radiosity method and a basic form of ray tracing are derived from 
eq. (15) in this section. The assumptions are contrasted, and the failure of 
ad hoc combinations of the two approaches is discussed. 

4.1 The Radiosity Method 

In the basic radiosity method, all emission and reflection processes are 
assumed to be ideal diffuse, and all surfaces are taken as opaque. Thus, in 
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12 - H. E. Rushmeier and K. E. Torrance 

Fig. 5. Surfaces n(s) and n(t) from which light is specularly reflected and 
transmitted, respectively, by surface n into the direction of interest &,,. 

eq. (Is), ps = 7, = Td = 0. Since &n is independent of direction, eq. (15) reduces 
to 

I (g)=I (x)+&Z O,R n e,n n vr(~:,, Xm)Io,m(&m)COS oif,n dW,n- (16) 
x S m=l Am 

Further, the assumption is made that I,,, and I,,, are constant for each surface 
n. After averaging eq. (16) over the area A,, there results 

or (17) 

IO,, = Ie,n + Pd,n ; Io,mFnm. 
TTl=l 

The second equation serves to define the forward diffuse form factor F,,,, which 
depends on geometry alone. F,,,,, denotes the fraction of diffuse energy leaving 
surface n that impinges on surface m. 
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Equation (17) is the basic radiosity method. Since eq. (11) applies, the inten- 
sities may be replaced by radiosities by using Io,n = B,/T. 

4.2 A Basic Ray-Tracing Method 

A brief outline of a basic ray-tracing method [ 141 will now be given. The necessary 
assumptions were originally outlined by Cook, Porter, and Carpenter [2]. The 
term basic is used because many sophisticated ray-tracing variations have been 
developed that will not be considered here. 

In a basic ray-tracing method, light sources are assumed to be small and to be 
nonreflectors and nontransmitters of other light. The governing equations either 
have only the first term on the right side of eq. (15), or only the other four terms. 
Since the light source intensities are given, only the second category of equations 
needs to be considered. Diffuse transmission is also usually neglected, so that 
7d = 0. The ray-tracing equation, derived from eq. (15), becomes 

The surfaces that are light sources, L in number, have been placed in the first 
summation. 

Next, assume all light intensities I,,, not multiplied by ps or 7, in eq. (18) can 
be lumped into an average intensity I,, usually called the ambient intensity. 
Further, by taking I, outside of the integral and defining the coefficient that 
remains to be pa, a term p,I, appears. Thus, the governing equation for the 
intensity leaving a point becomes 

To obtain an explicit equation for I,,,, the terms la, L,,n(sj, and lo,n(t) must be 
expressed in terms of light source intensities. In principle, 1, should account for 
the light intensity of every surface visible from x,. In practice, 1, is usually 
assigned a constant value for all surfaces. 

The points gncs) and gnct) are found by the intersections of rays with surfaces. 
The intensities at these intersection points, I,,,(sj and l,,,n(tj, are also governed by 
eq. (19). Further rays must be cast to determine the appropriate next intersec- 
tions. Thus, eq. (19), when expressed in terms of light source intensities, has an 
infinite number of terms, implying the need for a tree of ray intersections of 
infinite depth. As the depth increases, the contribution of each additional term 
diminishes. Thus, in practice, the depth of the tree can be limited. 
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4.3 Simple Superposition 

In the radiosity method, o:nly the energy exchange between diffusely reflecting 
surfaces is calculated, assuming that any other energy exchange is insignificant. 
In the ray-tracing method, only the energy exchange between surfaces with 
strongly directional properties is assumed to be important. In the simplest 
superposition of the two approaches, the first two terms of eq. (19) would be 
replaced by intensities calculated with the radiosity method. However, this 
superposition omits energy that is received by diffusely reflecting surfaces from 
surfaces with strongly directional properties. To account for this energy, an 
alternative approach, starting with eq. (15), is needed. 

5. THE EXTENDED RADIOSITY METHOD 

In this section an extended radiosity method is derived from the surface intensity 
equation, eq. (15). This equation assumes that all surfaces are ideal specular, 

ideal diffuse, or ideal linear combinations of the two. The extended method places 
no additional restrictions on diffuse/specular behavior, and includes reflection 
and transmission processes. In what follows, the basic radiosity method is 
extended in steps, by adding diffuse transmission, specular transmission, and, 
finally, specular reflection. The last step results in the extended method given in 
Section 5.3. 

5.1 Diffuse Transmission 

In the extension of the radiosity method to include diffuse transmission [4, 121, 
surfaces are modeled as ideal diffuse reflectors and transmitters. Emission is 
assumed to be ideal diffuse. Neglecting specular behavior (p, = 7, = 0) and 
assuming I,,, and I,,, are constant for each surface, the surface intensity relation, 
eq. (15), simplifies to 

IO,, = Ie,n + Pd,n :; Io,mFn, 
m=l 

SS 
(204 

I 7d,n :; I,,, 

m=l A, A, A, 
Vt(&n, Zm) COS eib,n duib,n dAn 

?l- 

or 

Io,n = I,,, + Pd,n ; LmFnm + N Td,n c LmTnm. (2Ob) 

m=l m=l 

The forward diffuse form factor F,,, now denotes the fraction of diffuse energy 
leaving n from its front side and impinging on m. A new form factor, T,,,, arises 
through the transmission term. This is the backward diffuse form factor, which 
denotes the fraction of diffuse energy leaving n from its back side and impinging 
on surface m. The two form factors are similar mathematically, except that the 
integration with respect to surface n is over the front hemisphere of solid angles 
for Fnm and over the back hemisphere for T,,. 
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5.2 Specular Transmission 

The extension to include specular transmission introduces additional geometrical 
complexity [12]. Now neglecting specular reflection (p, = 0), but including Pd+, 

Td,n, and 7&n, and assuming ideal diffuse emission, eq. (15) reduces to 

Ln(Xn, eo,lJ 

; 7d,n ; 
7r s 

G-3 

Vt(~n, Xm)Io,m(Xm, @o,m) COS oib,n duib,n 
m=l A, 

Note that the intensity I,,, depends on (x,, Q,,,) due to the ideal specular 
component of the transmittance. Let I,,, be separated into two components-an 
ideal diffuse component I,,d,n and an ideal specular component I,,,,--defined by 

and 

L,n(?Cn, ecd = I (x 0 7s,n o,n(t) -n(t), -o,n(t) ). (22b) 

With this definition, I,,,, depends on direction, but IO+, does not. 
The intensity I,,, on the right of eq. (22a) can similarly be expressed as the 

sum of I&,, and I,,,,. Assume that no two ideal specular surfaces are visible to 
one another. The specular component of intensity for a surface m can then be 
expressed as 

~o,,m(&n, k&n) = ~.&od,m(t)(&m(t))* (23) 

The equation for I&, can now be written in terms of diffuse intensities: 

&d,n(&) 

= L,n(xn) 

S Vr(~n, Xnz){Iod,m(%rn) + 7s,mIod,m(t)(~m(t))) COS eif,n dWf,n (24) P m=l A,,, 
+&i S Vt(?Cn, Zm)(Iod,m(Zm) + Ts,mIod,m(t)(Xm(t))} COS oib,n dmib,n- 

7r m=l A, 

Note the absence of a directional dependence for the Is on the right side, and 
that only one additional term arises inside the braces to account for specular 
transmission. 
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As before, assume that the diffuse component of intensity is constant over 
each surface. The integrals involving diffuse intensity Iod,,, in the second and 

third terms on the right of eq. (24) can be replaced by Iod,mFnm and lod,mTnm, 
respectively, where F,,, and T,, are forward and backward form factors. 

The integral of intensity L,,mCtj in eq. (24) is diagramed in Figure 6. lo,m(t) 
is the intensity of the surface m(t) that is visible through surface m (in this case 
surface p). The integral over A, can be written as the sum of the integrals 

over the surfaces A, that are visible through specularly transmitting surfaces m. 
That is, 

’ A 
Ts,m 

m=l s 
V*(Icn, Xrn)Io,m(t) COS oif,n dWf,n 

m (25) 

= ,E Vr(Xn, Xm, 3cp) COS dif,n dWf,n* 
m=1 

7~ ; Iod,p A, 
p=l S 

The function V, with three parameters indicates that point z,,, when viewing a 
point x, on m, can see point gp on p. The integral over Ap in eq. (25) represents 
a geometric factor that will be denoted by Tf,nmp. This factor is equal to the form 
factor F,,p, if calculated using surface m as a restrictive window in the environ- 

ment. Thus, eq. (24) becomes 

I od, n = I,,, + Pd,n ; Iod,mFnm + T,,, ; 

m=l p=l 

+ Td,n ; Iod,mTnm + Ts,m z * 
m=l p=l 

Tb,n,,,p is given by the same integral as Tf,nmp, except that the integration is over 
the hemisphere of directions on the back of surface n. 

5.3 General Case 

The addition of specular reflection leads to the most general case. Both reflection 
and transmission are written as linear combinations of ideal specular and ideal 
diffuse behavior. This case represents a straightforward extension of the results 
of the previous section [5]. 

The starting point is again eq. (15). Ideal diffuse emission is assumed, and &$n, 

h,,,, Td,n, and T,,, are included for all surfaces. Diffuse and specular components 
of intensity are defined. The equation for the diffuse intensity is the same as 
eq. (22). The equation for the specular intensity is 

Ls,m(&m, !?o,d = 7.s,mIo,m(t)(?Cm(t), bnct,) + Ps,mIo,m(s)(?Cm(s), hs,). (27) 

The approach in [5] allows any number of specular surfaces. In this paper only 
specular reflecting surfaces that are not visible to one another, or to specularly 
transmitting surfaces, are considered. The specular component of intensity can 
then be written as 

L,m(xm, eo,,) = ~s,mIod,m(t)(&m(t)) + Ps,mIod,m(s)(&m(s))* 
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Surface n / X --n 

Fig. 6. The integral of light intensity over a specularly transmitting surface m is 

equal to the sum of the integrals of light intensity over the surfaces p that are visible 
through surface m. 

Consider Figure 7, in which a surface m serves to create a mirror image p’, as 
seen from n, of the surface p. Thus, the problem of specular reflection from the 
real environment can be replaced by the problem of specular transmission from 
a virtual environment. 

Once again, assume the diffuse component of intensity is constant over each 
surface. Equation (22) for lod,n becomes 

I od,n = Ie,n + Pd,n i Iod,mFnm + Ts,m i Iod,pTf,nmp 
?Tl=l p=* 

+ Ps,m s Vr(?~n, Xm)lod,m’(t) COS oif,n &f,n 

‘%I 

(29) 

+ Td,n ; &nTnm + T,,, ; Iod,pTb,nmp 
m=, p=1 

+ Ps.m 
s 

Vt(~n, Xm)Iod,m’(t) COS eih,n dWib,n * 

A, 
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Fig. 7. From point xn, a mirror image p’ of the real surface p can be 

seen in the specularly reflecting surface m. Finding the point xP from 
which light is specularly reflected from surface m to surface n is 

equivalent to finding the point zP, from which light is specularly 

transmitted through surface m. 

The integrals over A, in eq. (29) can be written as the sum over all virtual 
surfaces p ’ that are visible through surface m, or 

The integral over A,, is a geometric factor, which will be denoted by Ff,nm,,, and 
will be referred to as the forward mirror form factor. Ff,n,,,p is equal to the factor 
F' if the virtual environment is viewed through a window formed by surface m. 
Szilarly, the integral over the hemisphere behind surface n can be written as a 
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factor FI,,,,,,,~, the backward mirror form factor. Using these factors, eq. (29) for 
I od,n is 

I od,n = ~e,n + Pd,n fE Iod,mFnm + ~s,m fZ Iod,pTf,nmp + Ps,m Z L,pFf,nmp 

ITI= i p=l p=1 I- (31) 

+ Td,n i 
1 

Iod,mTnm + Ts,m z Iod,pTb,nmp + Ps,m E zod,pFb,nmp 

I- 

* 

m=l p=l p=l 

Because no two specular surfaces are visible to one another or to any specularly 
transmitting surface, the diffuse and specular components of intensity in eqs. 
(31) and (28) are decoupled. The diffuse component of intensity for all surfaces 
is found by solving the set of simultaneous equations given in eq. (31). While 
eq. (31) includes more terms, the number of equations is the same as if all 
surfaces were diffuse. This solution is view independent. Once a view direction 
has been selected, the specular components are found from eq. (28) by ray tracing 
with a tree depth of one. The result is a two-pass solution procedure, as described 
in [13]. 

The extended method is readily generalized to any number of specular surfaces 
in arbitrary arrangement [ll]. When two or more specular surfaces see one 
another, additional factors must be introduced into eq. (31), leading to added 
complexity [5]. These factors allow a higher number of specular interreflections/ 
transmissions. Conservation of energy, as expressed in eq. (14), dictates that 
with each interreflection/transmission the light intensity is attenuated. Conse- 
quently, in most environments, the first specular reflection/transmission is the 
most important for the illumination of diffuse surfaces. Thus, the present 
extended method, which does not allow multiple interreflections/transmissions, 
is rigorously valid when specular surfaces do not see one another, but is generally 
a good approximation even in cases when they do. In fact, cases for which the 
multiple reflections from specular surfaces will have a visible impact on the 
illumination of a diffuse surface must be carefully constructed. An example would 
be laser light in a darkroom reflecting through a series of mirrors making a spot 
on a diffuse piece of paper. 

6. FORM FACTOR ALGORITHMS 

The form factors appearing in eq. (31) are evaluated using extensions of the 
hemicube algorithm [ 11. 

6.1 Hemicube Algorithm 

The forward diffuse form factor is given by 

SS Vr(~n, urn) ~0s oif,n daif,n dAn. 
An Am 

If surfaces in the environment are divided into sufficiently small areas, the 
integral over A, can be approximated by the value of the inner integral at the 
center of A,: 

F”,,Ei 
s X Am 

Vr(~n, Zrn) COS 0if.n dmif,n* 
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A fictitious hemicube is placed over the center of the surface A, for which form

factors are to be found, as shown in Figure 8. Each side of the hemicube is divided

into grid cells. A form factor can be determined analytically for each grid cell.

The grid cells through which surface ITS is visible to surface n are found efficiently

by using the depth buffer algorithm. The form factor F,,, is equal to the sum of

the form factors associated with the grid cells through which surface m is visible

to surface n.

6.2 Backward Diffuse Form Factors

The form factors T,,, are calculated in the same manner as the factors F,,,,

except that the hemicube is placed on the back of the surface A,. Frequently a

diffusely transmitting object will be defined as two surfaces, say, i and j, defined

by the same coordinates, but that have opposite designations of front and back.

In this case additional calculations are not needed to find Tjm and Tim, since

T,,,, = Fi, and Ti, = Fj,.

6.3 Window Form Factors

A specularly transmitting surface is treated as a window restricting the view of

the environment, as shown in Figure 8. For each surface n, surfaces in front of

the transmitting surface are checked to see if they obscure the transmitting

surface. Surfaces behind the transmitting surface are checked to see if they are

visible through the transmitting surface. The factor Tf,nmp is equal to the sum of
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the form factors associated with the grid cells through which surface p is visible 
to surface rz through surface m. The backward form factors Tb,nmp are similarly 
constructed, except the hemicube is positioned on the back of surface n. 

6.4 Mirror Image Form Factors 

A specularly reflecting surface is treated as a window in the real environment, 
through which the mirror image of the real environment is seen. Coordinates are 
calculated to define the virtual images of all real surfaces. For each surface n, the 
real surfaces in front of the mirror surface are checked to see if they obscure the 
view that n has of the mirror surface. Virtual surfaces behind the mirror surface 
are checked to see if they are visible through the mirror surface. Graphically, the 
process of finding mirror image form factors Ff,n,,,p is the same as in Figure 8, 
except that the surface behind the mirror surface is a virtual surface. The factors 
F b,nmp are found either by constructing a hemicube on the back side of the surface 
or by defining transmitting surfaces in pairs. 

The algorithms for the window and mirror form factors discussed above can 
be applied when the specular surfaces (either reflectors or transmitters) are 
planar and the transmitting surfaces are very thin. As mentioned in [13], window 
and mirror form factors for specular surfaces of arbitrary geometry can be 
calculated by finding the real or virtual surfaces behind the specular surface by 
ray tracing, rather than by using the depth buffer algorithm. 

7. IMPLEMENTATION OF THE EXTENDED METHOD 

The implementation of the extended method begins by defining the geometry 
and optical properties (i.e., I,, p, and 7) of each surface. These definitions are 
used to find the forward diffuse form factors, and the backward, window, and 
mirror form factors, if necessary. The form factors are used to form a set of 
simultaneous algebraic equations, of the form of eq. (31), for the diffuse intensities 
of all surfaces. The image is rendered by summing the diffuse intensity calculated 
by bilinear interpolation across each surface, and the specular intensity calculated 
by ray tracing. 

As in the basic radiosity method, if the geometry is unchanged, new form 
factors are not needed to solve for intensities when I,, p, and T are changed. If a 
different view of an environment is needed, only the rendering step needs to be 
redone. 

Images illustrating results from the extended method are shown in 
Figures 9-11. These figures demonstrate extensions of the basic radiosity method. 
Approximate times to generate the form factors required for each environment 
ranged from 30 to 60 cpu minutes on a VAX 8700. Approximate times for solving 
the simultaneous equations for each lighting condition ranged from 5 to 8 cpu 
minutes. Rendering each image at a resolution of 1000 x 1000 pixels required 5 
to 10 cpu minutes. 

Figure 9 shows a pole lamp with a diffusely transmitting shade in an otherwise 
empty room. The room walls are opaque and diffuse. The bulb in the lamp is 
modeled as a cube with emitting white sides. The shade is modeled as eight red 
transmitting surfaces. The diffuse transmission through the shade is clearly 
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/-

Blue
window

Left room Right room

Fig. 10a.  Diagram of two rooms that share a wall containing a blue,

specularly transmitting, window.

visible. The light on the walls shows the contrast between diffusely transmitted

light and light received directly from the bulb. No superposition of radiosity and

ray tracing could account for the diffusely transmitted light and its diffuse

reflection from the walls.
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Figure 10 shows a room under different lighting conditions. The walls of the

room are yellow, and the ceiling and table are white. As shown in Figure 10a, the

room is adjacent to a similar room on the right. The wall between the rooms has

a specularly transmitting blue window. Figure 10b shows the left room when the

overhead lights in both rooms are on, whereas Figure 10c shows the left room

when the overhead light in the left room is turned off. In Figure 10b the

transmitting window has little effect on the appearance of the other surfaces in

the room. The transmitted light is of low intensity compared to that received

directly from the ceiling light. In Figure 10c the transmitting window has a

dramatic effect. All the light in the left room has passed through the window.

There is a blue cast in the room, including the ceiling. The ceiling is illuminated

by light reflected from the walls and floor of the right room, and then transmitted

through the blue window, and by blue light reflected from the table, floor, and

walls in the left room. The basic radiosity and ray-tracing methods would

incorrectly illuminate the ceiling and other portions of the left room. Those

methods do not allow specular transmission/diffuse reflection interactions.

Figure 11 shows three views of a small lamp and mirror sitting on a table in a

room. The figure illustrates the reflection of light from a specular surface to a

diffuse surface. The lamp is modeled as a diffusely emitting surface recessed in a

long square tube. The mirror is modeled as an opaque ideal specularly reflecting

surface, All other surfaces are opaque ideal diffuse reflectors. The close-up in

Figure 11b shows a bright spot on the table that is the mirror reflection of the

small light source. Figure 11c is a view looking into the mirror. The small lamp

and the bright spot on the table are visible in the mirror. This image could not
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have been constructed with the basic radiosity method, by the ray-tracing method, 
or by a superposition of the methods. 

8. SUMMARY 

An extension of the basic radiosity method has been presented. The extended 
method fully accounts fclr ideal specular and ideal diffuse reflection, and 
ideal specular and ideal diffuse transmission. The method is implemented by 

computing additional form factors using variations of the hemicube method for 
calculating forward diffuse form factors. The implementation is restricted t,o 
environments in which a small number of specular surfaces have a visible impact 
on the illumination of diffuse surfaces. Images with a translucent lamp shade, a 
colored window, and a mirror illustrate the application of the method. 

The extended radiosity method is used as the first pass in Wallace et al.‘s two- 

pass method [13]. The two-pass method is a practical alternative to the more 
general, but also more computationally expensive, methods of Immel et al. [7] 
and Kajiya [8]. Like Immel et al.‘s method, the extended radiosity method uses 
additional form factors to account for the effect of specular surfaces on the 
illumination of diffuse surfaces. Unlike Immel et al.‘s method, the number of 
additional factors is limited to a few that have a visible impact on the image, and 
the number of simultaneous equations to be solved has not been increased. In 
this paper the assumptions behind the extended radiosity method have been 
discussed with a view to defining the accuracy and utility of the method. 

Future efforts to improve the extended radiosity method should include devel- 
oping a database for actual bidirectional reflectances, expressed as linear com- 
binations of ideal diffuse/ideal specular. Also, a procedure is needed to help 
determine when specular reflections will have a visible impact on a diffuse surface 
and to thereby automatically determine when to calculate the additional form 

factors. 
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