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The adiabatic connection fluctuation-dissipation theorem with the random phase approximation (RPA) has
recently been applied with success to obtain correlation energies of a variety of chemical and solid state systems.
The main merit of this approach is the improved description of dispersive forces while chemical bond strengths
and absolute correlation energies are systematically underestimated. In this work we extend the RPA by including
a parameter-free renormalized version of the adiabatic local-density (ALDA) exchange-correlation kernel. The
renormalization consists of a (local) truncation of the ALDA kernel for wave vectors q > 2kF , which is found
to yield excellent results for the homogeneous electron gas. In addition, the kernel significantly improves
both the absolute correlation energies and atomization energies of small molecules over RPA and ALDA. The
renormalization can be straightforwardly applied to other adiabatic local kernels.
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Increasing computational resources has recently boosted
a major interest in calculating electronic correlation energies
from first principles using the adiabatic connection fluctuation-
dissipation theorem (ACDF).1–4 The computational cost for
such methods is much higher than traditional correlation
functionals in density functional theory, but has the great
advantage that it includes nonlocal effects and does not rely
on error cancellation between exchange and correlation. The
random phase approximation (RPA) represents the simplest
approach to ACDF calculations and has already been applied
to a broad range of electronic structure problems.5–11 While the
nonlocality of RPA makes it superior to semilocal function-
als when dispersive interactions are important,5,7,10,12–14 the
accuracy for molecular atomization energies is comparable to
that of the Perdew-Burke-Ernzerhof (PBE) functional.3,6 The
relatively poor performance for atomization energies can be
attributed to a deficient description of short-range correlation
effects. Furthermore, total correlation energies are severely
underestimated in RPA and an accurate description of energy
differences is highly dependent on detailed error cancellation.
A simple and intuitively appealing idea to remedy this problem
was proposed by Yan et al.15 (RPA+), however, the method
does not seem to improve atomization energies although total
correlation energies are much better described.3,6,7 From a
perturbative point of view, RPA can be improved by including
a screened second-order exchange term (SOSEX),16 which
exactly cancels the one-electron self-correlation energy of
RPA, albeit with a significant increase in computational
cost. In addition, it has been shown that RPA results
can be improved by explicitly including single excitation
terms, which correct the use of non-self-consistent input
orbitals.17

From the point of view of time-dependent density functional
theory (TDDFT), it is natural to try to improve the description
of short-range correlation effects by extending RPA with an
exchange-correlation kernel. For the homogeneous electron
gas (HEG), this approach has been analyzed for a range of
known exchange-correlation kernels1,18 and led to the con-
struction of new adiabatic kernels fitted to reproduce the HEG
correlation energy.4,19 So far, it seems that for accurate total

energy calculations, the nonlocality of exchange-correlation
kernels is very important, whereas the frequency dependence
is less critical. Moreover, the pair-distribution function derived
from any local approximation for the exchange-correlation
kernel exhibits an unphysical divergence at the origin.2 While
correlation energies are still well defined, the divergence
makes it very hard to converge correlation energies based on
local kernels. Recently, a frequency-dependent exact exchange
kernel has been shown to produce accurate correlation energies
for atoms and molecules.20,21 However, the computational cost
of this approach is significantly larger than that of RPA and the
method may not be directly applicable to periodic systems.

In this Rapid Communication we derive a nonlocal
exchange-correlation kernel which does not contain any fitted
parameters. The construction is based on a renormalization of
the HEG correlation hole, which removes the divergence of the
pair-distribution function and brings total correlation energies
much closer to experimental values than both RPA and local
approximations for the kernel.

From the adiabatic connection and fluctuation-dissipation
theorem, it follows that the correlation energy of an electronic
system can be written

Ec[n] = −
∫ 1

0
dλ

∫ ∞

0

dω

2π
Tr[vχλ(iω) − vχKS(iω)]. (1)

Here χKS is the exact Kohn-Sham response function and χλ

is the interacting response function of a system where the
electron-electron interaction v has been replaced by λv. Using
TDDFT, one may express the interacting response function in
terms of the Kohn-Sham response function as

χλ = χKS + χKSf λ
Hxcχ

λ, (2)

where f λ
Hxc = λv + f λ

xc is the Hartree-exchange-correlation
kernel at coupling strength λ. The simplest approximation
for f λ

Hxc is the random phase approximation where the
exchange-correlation part is neglected. A natural next step
is to include an approximation for the exchange-correlation
kernel. In particular, one could try the adiabatic local density
approximation (ALDA) kernel

f ALDA
xc [n](r,r′) = δ(r − r′)f ALDA

xc [n], (3)
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FIG. 1. (Color online) Fourier transform of the coupling constant
averaged correlation hole for the homogeneous electrons gas. Left:
rs = 1. Right: rs = 10.

where f ALDA
xc [n] = d2

dn2 (neHEG
xc )|n=n(r). In the following we will

only consider the exchange part of the adiabatic kernel, since
it has the simplifying property that f λ

x = λfx . Additionally,
we expect the effect of including a kernel in Eq. (2) will
be dominated by the exchange contributions. As it turns
out, the kernel Eq. (3) does not improve on total correlation
energies1 or molecular atomization energies2 and is plagued
by convergence problems related to the divergence of the
pair-distribution function.

For the homogeneous electron gas the problem is naturally
analyzed in reciprocal space where an accurate parametrization
of the correlation hole is known.1,22 In Fig. 1 we show the
exact coupling constant averaged correlation hole of the ho-
mogeneous electron gas and compare with RPA and ALDAX

results. Whereas RPA underestimates the value at a large
range of q values, ALDAX gives a reasonable description at
small q but overestimates the value for q > 2kF . The ALDAX

correlation hole becomes zero when f λ
Hx = 0, which happens

exactly at q = 2kF . The divergence of the pair-distribution
function originates from the slowly decaying tail at large
q where fHxc is complete dominated by the q-independent
f ALDA

x .2 The full ALDA correlation hole is very similar to the
ALDAX correlation hole displayed here.1

The correlation energy is essentially given by the integral of
the coupling constant averaged correlation hole. Despite the
divergent pair-distribution function, the ALDAX correlation
energy is well defined but converges very slowly due to
the slow decay of ḡ(q) at large q. From the shape of
the correlation hole it is expected that RPA underestimates
the correlation energy, while ALDAX overestimates it. Since
the bad behavior of ALDAX primarily comes from large
values of q, it is now tempting to introduce a renormalized
ALDAX correlation energy obtained by cutting the q integral
at the zero point of ḡ(q). The result is shown in Fig. 2 along
with RPA, Petersilka-Gossmann-Gross (PGG),23 and ALDAX

correlation energies. It is seen that the renormalized ALDAX

gives a remarkable improvement compared to RPA, ALDAX,
and PGG. Except for the rs → 0 limit, it also performs better
than the functionals proposed by Corradini et al.24 and the
static version of the Richardson-Ashcroft kernel25 (not shown),
which were fitted to quantum Monte Carlo data and derived
from many-body perturbation theory, respectively.1

For the homogeneous electron gas, the cutoff is equivalent
to using the Hartree-exchange-correlation kernel

f rALDA
Hxc [n](q) = θ (2kF − q)f ALDA

Hx [n]. (4)

FIG. 2. (Color online) Correlation energy per electron of the
homogeneous electron gas evaluated with different approximations
for fxc.

Fourier transforming this expression yields

f rALDA
Hxc [n](r) = f rALDA

x [n](r) + vr [n](r),

f rALDA
x [n](r) = f ALDA

x [n]

2π2r3
[sin(2kF r) − 2kF r cos(2kF r)],

vr [n](r) = 1

r

2

π

∫ 2kF r

0

sin x

x
dx. (5)

Since kF is related to the density, it is now straightforward
to generalize this to inhomogeneous systems. We simply
take r → |r − r′| and kF → [3π2ñ(r,r′)]1/3 with ñ(r,r′) =
[n(r) + n(r′)]/2. Thus, we obtain a nonlocal functional with
no free parameters by performing a simple local renormal-
ization of the correlation hole. It can be regarded as an
ALDA functional where the delta function in Eq. (3) has
acquired a density-dependent broadening. At large separation
it reduces to the pure Coulomb interaction and it is expected
to retain the accurate description of van der Waals interactions
characteristic of RPA. For example, in a jellium with rs = 2.0
two points separated by 5 Å give a renormalized interaction
vr [rs = 2](|r − r′|) = 0.97v(|r − r′|) and the magnitude of
the Coulomb part of the kernel is a factor of 30 larger than
f rALDA

x .
The renormalized ALDA functional has been implemented

in the DFT code GPAW,26,27 which uses the projector augmented
wave (PAW) method.28 The response function is calculated in
a plane wave basis set as described in Ref. 29. The coupling
constant integration is evaluated using eight Gauss-Legendre
points and the frequency integration is performed with 16
Gauss-Legendre points with the highest point situated at
800 eV. Since the kernel Eq. (5) is only invariant under
simultaneous lattice translation in r and r′, its plane wave
representation takes the form

f rALDA
GG′ (q) = 1

V

∫
V

dr
∫

V

dr′e−iG·rf̃ (q; r,r′)eiG′ ·r′
, (6)
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FIG. 3. (Color online) Correlation energy per valence electron in
Na evaluated with RPA, ALDA, and rALDA. The dashed lines show
the values obtained with the functionals for the homogeneous electron
gas using the average valence density of Na.

where G and G′ are reciprocal lattice vectors, q belongs to the
first Brillouin zone, and

f̃ (q; r,r′) = 1

N

∑
i,j

eiq·Rij e−iq·(r−r′)f (r,r′ + Rij ). (7)

Here we have introduced the lattice point difference Rij =
Ri − Rj and the number of sampled unit cells N (k points).
f̃ (q; r,r′) is thus periodic in both r and r′ and f rALDA

GG′ (q)
should be converged by sampling a sufficient number of nearest
neighbor unit cells. While the response function is calculated
within the full PAW framework, it is not trivial to obtain the
PAW corrections for a nonlocal functional and we use the bare
ALDAX kernel to calculate contributions to the rALDA kernel
from the augmentation spheres.29

As a first test of the functional for ab initio applications, we
have calculated the correlation energy of the valence electrons
of bulk Na. We do not have a number for the exact value of
the correlation energy, but due to the delocalized nature of the
valence electrons it is expected that the result should be close
to the correlation energy of the homogeneous electron gas at
the average valence density of Na. This is supported by the
close agreement between the RPA correlation energy of Na
and the homogeneous electron gas.30 We found the rALDA
calculations to be converged when two nearest unit cells were
included. The result is shown in Fig. 3 as a function of plane
wave cutoff energy along with the RPA and ALDAX results.
As expected, RPA underestimates the correlation energy while
ALDAX overestimates it. Again, one should note the slow
convergence of the ALDAX calculation originating from the
q-independent kernel. For plane wave implementations, an
additional problem is posed by the divergens of f ALDA

x ∼ n−2/3

at small densities. A particularly nice feature of the kernel (5)
is that the small density divergence of ALDA is regulated. For
example, for small r = |r − r′| one obtains

f rALDA
x [n](r) = 4nf ALDA

x [n], (8)

whereas ALDA diverges.

TABLE I. Correlation energies of H, H2, and He evaluated with
different functionals. Exact values are taken from Ref. 31. All
numbers are in kcal/mol.

LDA PBE RPA ALDAX rALDA Exact

H −14 −4 −13 6 −2 0
H2 −59 −27 −51 −16 −28 −26
He −70 −26 −41 −19 −27 −26

The accuracy of molecular atomization energies by RPA
is comparable to that of PBE, however, total correlation
energies are typically severely underestimated. ALDA, on the
other hand, tends to overestimate total correlation energies
by approximately the same amount. This is clearly seen
for homogeneous systems displayed in Figs. 2 and 3 and
the trend is also observed for inhomogeneous systems. In
Table I we show a few examples of atomic and molecular
correlation energies calculated with the rALDA functional
and compared with LDA, PBE, RPA, and ALDA results. The
ACDF correlation energies were calculated in a 6 × 6 × 7 Å
unit cell. The RPA and rALDA results were calculated at
increasing cutoffs up to 400 eV and extrapolated to infinity.
The ALDAX results were extrapolated from 1000 eV, but are
still not well converged with respect to cutoff and represent a
lower bound on the absolute ALDAX correlation energies. It
is clear that the rALDA functional performs much better than
both RPA and ALDA.

The significantly improved total correlation energies are a
very nice feature of the rALDA kernel. However, most physical
properties depend on energy differences and the kernel is not of
much use if it does not perform at least as well as RPA for such
quantities. In Table II, we display the atomization energies of a
few simple molecules calculated with different methods. The
RPA@LDA and RPA@PBE columns show the sum of Hartree-
Fock and RPA energies evaluated at self-consistent LDA and
PBE orbitals, respectively. Whereas the Hartree-Fock term
is nearly independent of input orbitals, the RPA correlation
energies show a significant dependence on the ground state
functional. This dependence is unfortunate since there is no
obvious choice for the set of input orbitals. In contrast, when an
adiabatic approximation for the exchange-correlation kernel is

TABLE II. Atomization energies of diatomic molecules. The
ALDA values are taken from Ref. 2 and experimental values
(corrected for zero point vibrational energies) are taken from Ref. 32.
Results in parentheses are from Ref. 6. All number are in kcal/mol.
The bottom line shows the mean absolute error for this small test set.

LDA PBE RPA@LDA RPA@PBE ALDA rALDA Expt.

H2 −113 −105 −109 −109 (109) −110 −107 −109
N2 −268 −244 −225 −224 (223) −229 −226 −228
O2 −174 −144 −103 −112 (113) −155 −118 −120
CO −299 −269 −234 −242 (244) −287 −253 −259
F2 −78 −53 −13 −30 (30) −74 −39 −38
HF −161 −142 −122 −130 (133) −157 −136 −141
H2O −266 −234 −218 −222 (223) −249 −225 −233

MAE 33 10.1 14.9 8.4 19 3.7
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used, a consistent choice is the ground state functional from
which the kernel was derived.2 In the present case of ALDA
and rALDA we thus only consider calculations on top of the
LDA ground state. For these molecules the rALDA kernel
is seen to underbind by a few kcal/mol (F2 excepted) but is
superior to the RPA and ALDA results.

The additional computational cost of calculating the kernel
is insignificant compared to evaluating the noninteracting
response function and inverting the Dyson equation. For a
pure exchange kernel, it is possible to perform the coupling
constant integration analytically, however, it involves an
inversion of the noninteracting response function, which may
become near singular at particular frequencies. The numerical
coupling constant integration thus represents an additional
computational cost compared to RPA calculations.

In summary, we have presented a parameter-free ex-
change kernel for total correlation energy calculations within
the ACDF formalism. The kernel largely cancels the self-
correlation energy of RPA and seems to perform better than

both RPA and ALDA for molecular atomization energies as
well as for simple metals. Although more benchmarking is
needed, these preliminary results indicate that the rALDA
functional is clearly superior to RPA. In contrast to RPA,
the functional has the very good feature that it provides
a consistent choice of input orbitals beyond the Hartree
approximation. Finally, it will be straightforward to extend the
kernel to include ALDA correlation, which might be expected
to improve results further, but we will leave this to future work.
In fact, the renormalization method naturally generalizes to all
semilocal adiabatic approximations, which all suffer from the
same pathological behavior in their pair-distribution functions,
and the present work just represents a single example of an
entire class of renormalized adiabatic exchange-correlation
kernels.
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16A. Grüneis, M. Marsman, J. Harl, L. Schimka, and G. Kresse, J.
Chem. Phys. 131, 154115 (2009).

17X. Ren, A. Tkatchenko, P. Rinke, and M. Scheffler, Phys. Rev. Lett.
106, 153003 (2011).

18M. Fuchs and X. Gonze, Phys. Rev. B 65, 235109 (2002).
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