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Abstract. Applications of ecosystem flux models on large geographical scales are often limited by 15 

model complexity and data availability. Here, we calibrated and evaluated a semi-empirical 16 

ecosystem flux model, PRELES, for various forest types and climate conditions, based on eddy 17 

covariance data from 55 sites. A Bayesian approach was adopted for model calibration and 18 

uncertainty quantification. We applied the site-specific calibrations and multisite calibrations to nine 19 

plant functional types (PFTs) to obtain the site-specific and PFT specific parameter vectors for 20 

PRELES. A systematically designed cross-validation was implemented to evaluate calibration 21 

strategies and the risks in extrapolation. The combination of plant physiological traits and climate 22 

patterns generated significant variation in vegetation responses and model parameters across but not 23 

within PFTs, implying that applying the model without PFT-specific parameters is risky. But within 24 

PFT, the multisite calibrations performed as accurately as the site-specific calibrations in predicting 25 

gross primary production (GPP) and evapotranspiration (ET). Moreover, the variations among sites 26 

within one PFT could be effectively simulated by simply adjusting the parameter of potential light-27 

use efficiency (LUE), implying significant convergence of simulated vegetation processes within 28 

PFT. The hierarchical modelling of PRELES provides a compromise between satellite-driven LUE 29 

and physiologically oriented approaches for extrapolating the geographical variation of ecosystem 30 

productivity. Although measurement errors of eddy covariance and remotely sensed data propagated 31 

a substantial proportion of uncertainty or potential biases, the results illustrated that PRELES could 32 

reliably capture daily variations of GPP and ET for contrasting forest types on large geographical 33 

scales if PFT-specific parameterizations were applied. 34 

1 Introduction 35 

One of the major problems in the applications of ecosystem models and physiological models is the 36 

level of complexity (Landsberg & Sands, 2011). Models concerning detailed physiological 37 

mechanisms or ecosystem processes can theoretically be extrapolated to new sites or to future 38 

climates, but appropriate input data and parameters are often difficult to obtain (Landsberg, 2003; 39 
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Mäkelä et al., 2000), despite the profound development of physiological measurement equipment 40 

during last decades. Simplified models are less data-demanding with fewer parameters, but usually 41 

extrapolate poorly and may overlook crucial interactions of the ecosystems (Monserud, 2003; 42 

Weiskittel, Hann, Kershaw Jr, & Vanclay, 2011). Therefore, in applying models on a larger 43 

geographical scale or under changing environmental conditions, it is always necessary to recalibrate 44 

the models or test their applicability. Due to improved measurement techniques and automated data-45 

recording systems, numerous databases such as eddy flux, soil property and species distribution are 46 

becoming available to fulfil the need for detailed information on stand characteristics or dynamics. 47 

For instance, remotely sensed estimates such as canopy light interception, measured as the fraction 48 

of absorbed photosynthetically active radiation (fAPAR), could determine the spatial variation of input 49 

for ecosystem models (Waring, Coops, & Landsberg, 2010). Meanwhile, inverse modelling 50 

approaches, such as Bayesian calibration (BC), adjust model parameters and processes according to 51 

their ability to reproduce stand-level field observations, which bridges the gap between complex 52 

models and various databases (e.g. Hartig et al., 2012; Van Oijen, Rougier, & Smith, 2005). By 53 

combining these data and modelling approaches, it is possible to test or extend the applicable ranges 54 

of ecosystem models that were originally developed for small-scale regions. 55 

 Gross primary production (GPP), the sum of the net photosynthesis by all photosynthetic 56 

tissue measured at the ecosystem scale, is a key factor in the ecosystem carbon balance. It is the 57 

original carbon source for all the forest ecosystem carbon fluxes. Measurements and simulations of 58 

GPP help us to understand the development of forest ecosystem and its interactions with climate. 59 

Benefited from the rapid development of the eddy covariance network during recent decades 60 

(Aubinet, Vesala, & Papale, 2012), both empirical and semi-empirical canopy GPP models can be 61 

calibrated and validated sufficiently. Empirical ecosystem flux models have been applied to explain 62 

distinctions in productivity between sites or vegetation types (e.g. Falge et al., 2002). Furthermore, 63 

satellite-driven LUE approaches have been frequently used for monitoring geographical variation of 64 
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ecosystem productivity (e.g. Potter et al., 1993; Sims et al., 2008; Yuan et al., 2007). The trade-off of 65 

model simplicity is that much of the ecosystem variation remains unexplained (Yuan et al. 2014; 66 

Zheng et al., 2018), although the data requirement of those models can be globally fulfilled.  Semi-67 

empirical canopy GPP models have commonly been used as a sub-module of process-based models, 68 

such as the photosynthesis modules of 3-PG (Landsberg & Waring, 1997), PnET-II (Aber & Federer, 69 

1992), and FOREST-BGC (Running & Coughlan 1988). Instead of reducing the data requirement, 70 

those models rely on the adequacy of the underlying physiological assumptions, extending the 71 

applicability of the model to all stands where the physiological parameters can be evaluated. 72 

 PRELES (PREdict Light-use efficiency, Evapotranspiration and Soil water) is a semi-73 

empiriacl ecosystem flux model that predicts daily gross primary production, evapotranspiration (ET) 74 

and soil water (Peltoniemi et al., 2015a). The model requires soil characteristics, daily fAPAR and 75 

meteorological observations as inputs. The GPP predictions are based on a reformulation of the light-76 

use efficiency (LUE) model of Mäkelä et al. (2008). PRELES has been calibrated and validated in 77 

the boreal region mainly for coniferous forests (Minunno et al., 2016; Peltoniemi et al., 2012; 78 

Peltoniemi et al., 2015a). When national inventory and map data were available, PRELES predicted 79 

GPP estimates in Finland similar to those of the model JSBACH and MODIS GPP product (MOD17), 80 

although the input data sources differed (Peltoniemi et al., 2015b). Linked with downscaled global 81 

circulation model projections, PRELES has been used to predicted boreal forest productivity under 82 

climate change scenarios, and its parametric uncertainty is marginal when compared with other 83 

sources of uncertainty (Kalliokoski, Mäkelä, Fronzek, Minunno, & Peltoniemi, 2018). Furthermore, 84 

PRELES has been linked with a process-based carbon allocation model CROBAS (Mäkelä, 1997; 85 

Valentine & Mäkelä 2005) in simulating forest variables with a country-generic calibration in Finland 86 

(Minunno et al., 2019). Mäkelä et al. (2008) showed that daily temperature, vapour-pressure deficit 87 

(VPD) and absorbed PPFD (photosynthetic photon flux density) accounted for most of the daily 88 

variation in GPP in the model, but unexplained variation remained in the site-specific maximum LUE, 89 
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which correlated linearly with canopy nitrogen (Peltoniemi et al. 2012). When the model was fitted 90 

to data, differences between sites could be explained by potential LUE, leaf area and environmental 91 

conditions. For wider applications, the ability of the model to extrapolate to conditions outside the 92 

original modelling sites must be evaluated. Minunno et al. (2016) tested the applicability of PRELES 93 

for 10 boreal coniferous forests in Fennoscandia and obtained a generic vector of model parameters 94 

by multisite calibration. Based on a comparison between site-specific and multisite calibration, the 95 

generic parameter vector from multisite calibration can be reliably used at the regional scale for boreal 96 

coniferous forests. However, in this multisite calibration, all the sites were coniferous forests and 97 

shared the same parameters, thus omitting the differences in potential LUE by site fertility or species 98 

range. Incorporating the processes of light saturation, temperature acclimation, VPD stress, and soil 99 

water dynamics, PRELES is theoretically qualified for monitoring and predicting ecosystem 100 

productivity of various forest-climate types, but this wide range of applicability has not been tested 101 

in warmer climate types, broad-leaved forests or very fertile soils.  102 

 The objectives of the study were: 1) to test, with additional modules of seasonality and water 103 

dynamics incorporated, whether the LUE approach could sufficiently explain geographical variations 104 

of GPP and ET, with respect to contrasting environmental conditions and distinctive forest 105 

ecosystems; 2) to propose a generic parameter vector for each plant functional type (PFT) and to 106 

hierarchically quantify the differences among sites while fitting the model with pooled data and 3) to 107 

quantify the uncertainty in extrapolating to conditions outside the original sites.  108 

2 Material and methods 109 

2.1 Framework of PRELES  110 

PRELES is a semi-empirical ecosystem flux model that predicts daily GPP (P, g C m⁻² d-1), ET (E, 111 

mm d-1) and soil water (mm). The requirements of site-specific inputs include the soil depth exploited 112 

by the roots (mm), field capacity (mm) and wilting point (mm) of the soil, 𝑓𝐴𝑃𝐴𝑅 , and daily 113 

meteorological observations that include the PPFD (mol m-2 d-1) above the canopy, air temperature 114 
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(°C), VPD (kPa) and precipitation (mm d-1). A detailed description of PRELES can be found in 115 

Peltoniemi et al. (2015a), and the code applied in this study is provided in the GitHub repository 116 

(https://github.com/checcomi/Rprebas). Here, we introduce a brief framework of the P and E 117 

submodels. Daily photosynthetic production during day k, 𝑃𝑘, is predicted as follows: 118 𝑃𝑘 = 𝛽 ∙ 𝜙𝑘 ∙ 𝑓𝐴𝑃𝐴𝑅,𝑘 ∙ 𝑓𝐿,𝑘 ∙ 𝑓𝑆,𝑘 ∙ 𝑚𝑖𝑛(𝑓𝐷,𝑘 , 𝑓𝑊,𝑃,𝑘) ∙ 𝑓𝐶𝑂2,𝑃,𝑘      (1) 119 

where 𝛽 is the potential LUE (g C mol-1), 𝜙𝑘  the PPFD (mol m-2 d-1) and 𝑓𝐴𝑃𝐴𝑅,𝑘  the fraction of 𝜙𝑘  120 

absorbed by the canopy during day k. The 𝑓𝐿,𝑘 , 𝑓𝑆,𝑘, 𝑓𝐷,𝑘  and 𝑓𝑊,𝑃,𝑘, constrained between 0 and 1, are 121 

respectively the modifiers that account for the suboptimal conditions in light L, temperature 122 

acclimation S, VPD (𝑓𝐷,𝑘), and soil-water stress W (𝑓𝑊,𝑃,𝑘). The explanations of these modifiers can 123 

be found in Mäkelä et al. (2008). The modifier 𝑓𝐶𝑂2,𝑃,𝑘  accounts for the impact of ambient CO2 124 

concentration on photosynthesis (for details see Kalliokoski et al. 2018). The daily ET during day k, 125 𝐸𝑘 , is simulated as follows: 126 𝐸𝑘 = 𝛼 ∙ 𝑃𝑘 ∙ 𝑓𝑊,𝑃,𝑘𝑣 ∙ 𝐷𝑘1−𝜆 + 𝜒 ∙ (1 − 𝑓𝐴𝑃𝐴𝑅,𝑘) ∙ 𝜙𝑘 ∙ 𝑓𝑊,𝐸,𝑘 ∙ 𝑠𝐷𝑆,𝑘𝑠𝐷𝑆,𝑘+𝑝𝑝𝑠𝑦𝑐ℎ𝑟𝑜𝑚  (2) 127 

where 𝛼 is a transpiration parameter, 𝜒 an evaporation parameter and 𝜆 an adjustment parameter for 128 

the effect of D on transpiration during day k. The 𝑓𝑊,𝑃,𝑘 is raised to the power 𝜈, since the response 129 

of 𝐸𝑘  to soil-water stress may differ from that of 𝑃𝑘 . Another modifier, 𝑓𝐶𝑂2 ,𝐸,𝑘 , was adopted to 130 

replace 𝑓𝐶𝑂2 ,𝑃,𝑘  in Eq. (1) when calculating the impact of the CO2 concentration on transpiration 131 

(Kalliokoski et al. 2018). The modifier 𝑓𝑊,𝐸,𝑘  accounts for the suboptimal condition of evaporation 132 

due to soil water, while 𝑠𝐷𝑆,𝑘 is the slope of the relationship between the saturation vapour pressure 133 

(kPa) and air temperature (°C), and 𝑝𝑝𝑠𝑦𝑐ℎ𝑟𝑜𝑚is the psychrometric constant (Campbell, 1977) that 134 

relates the partial pressure of water in air to the air temperature (kPa °C−1).  135 

 PRELES has 20 parameters (Table 1) and only two state variables (Peltoniemi et al., 2015a). 136 

One state variable is soil water content, and the other is the state of temperature acclimation. The soil 137 

water balance module simulates the ecosystem as a bucket being filled by precipitation and emptied 138 
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by drainage and evapotranspiration. The state of temperature acclimation considers adaptive 139 

strategies of plants by simulating the slow response of photosynthesis to changes in ambient 140 

temperature. A table listing the symbols with their units and meanings is given in Table S2, including 141 

model input, output, estimated variables, parameters, and mathematical symbols. 142 

2.2 Data 143 

2.2.1 Eddy covariance data 144 

The meteorological and eddy covariance data were maintained and shared by the FLUXNET 145 

community. Daily meteorological and flux records of 399 site-years from 55 sites (Fig. 1) were 146 

selected and downloaded from the ‘FLUXNET2015 dataset’, in which half-hourly observations were 147 

gap-filled, aggregated and transformed to daily records by a standard methodology (Papale et al., 148 

2006; Reichstein et al., 2005). Records of GPP were not directly measured but inferred from the net 149 

ecosystem exchange (NEE) of CO2 using nighttime data-based partitioning method. The portioning 150 

methodology has been validated for various climate and plant functional types (Reichstein et al., 151 

2005) and implemented in FLUXNET following a standard protocol. Further detailed information on 152 

the FLUXNET sites used in model calibration is given in Table S1. Various forest and climate types 153 

were considered in our study, ranging from tropical broad-leaved forests to cold continental 154 

coniferous forests.  155 
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 156 

F 1: Study sites. DBF = deciduous broad-leaved forest, EBF = evergreen broad-leaved forest, ENF = 157 

evergreen needle-leaved forest, MF = mixed forest. 158 

 The daily meteorological observations of the dataset constituted the input variables for 159 

PRELES. In addition, the daily eddy covariance records of GPP and ET were used for comparing 160 

with the model outputs. The daily records were originally generated uniformly from half-hourly 161 

observations. A quality flag, constrained between 0 and 1, was assigned to each day to indicate the 162 

proportion of measured (nongapfilled) and good quality gap-filled half-hourly data used to calculate 163 

the daily value. For the calibration and analysis conducted in this study, we used only data with a 164 

quality flag higher than 0.7.  165 

2.2.2 MODIS fAPAR data 166 

The daily time series of 𝑓𝐴𝑃𝐴𝑅  throughout the growing season were collected from remotely sensed 167 

data products from the Moderate Resolution Imaging Spectroradiometer (MODIS) collections 168 

(ORNL DAAC 2008, ORNL DAAC 2017). The product MOD15A2 is an 8-day 1-km-resolution 169 

product on a sinusoidal grid (Myneni, Knyazikhin, & Park, 2015a), and the product MOD15A2H is 170 

an 8-day composite dataset with 500-m pixel size (Myneni, Knyazikhin, & Park, 2015b). We chose 171 

data from Terra (MOD) instead of Aqua (MYD) or the combined product (MCD), since the time of 172 
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the Terra overpass (about 10:30 A.M.) is a better approximation of the daily integrated black sky (i.e. 173 

assuming only direct radiation from the sun) 𝑓𝐴𝑃𝐴𝑅  (Martínez, Camacho, Verger, García-Haro, & 174 

Gilabert, 2013). A simple harmonic model was constructed to simulate the temporal dynamics of 175 𝑓𝐴𝑃𝐴𝑅  (Kozlov, Kozlova, & Skorik, 2016). 176 𝑓(𝑡) = 𝑎0 + ∑ 𝑏𝑗𝑛𝑗=1 𝑐𝑜𝑠 2𝜋𝑗𝑡 + ∑ 𝑐𝑗(𝑠𝑖𝑛 2𝜋𝑗𝑡 − 𝑗 𝑠𝑖𝑛 2𝜋𝑡)𝑛𝑗=2     (3) 177 

where 𝑓(𝑡) is the 𝑓𝐴𝑃𝐴𝑅  at time 𝑡, 𝑡 is the time in percentage normalized within the growing season, 178 𝑎0, 𝑏1, ⋯ , 𝑏𝑛 , 𝑐2, ⋯ 𝑐𝑛 are coefficients, 𝑛 represents a particular number of harmonics and j is the 179 

index of summation. 180 

2.2.3 Soil information and climate classification 181 

For each site, water-holding capacity information, including soil field capacity and soil wilting point, 182 

was collected from the Global Gridded Surfaces of Selected Soil Characteristics dataset (within a 183 

global 5-arcminute grid), which was developed by the Global Soil Data Task Group (2000) of the 184 

International Geosphere-Biosphere Programme (IGBP) Data and Information System (DIS). For soil 185 

depth, we gathered information combined from two datasets, one being the Global 1-km Gridded 186 

Thickness of Soil, Regolith and Sedimentary Deposit Layers dataset (Pelletier et al., 2016), which 187 

provides high-resolution estimates of the thickness of the permeable layers above the bedrock within 188 

a global 30-arcsecond grid. Another dataset is the International Satellite Land-Surface Climatology 189 

Project Initiative Ⅱ (ISLSCP Ⅱ) Ecosystem Rooting Depths (Schenk & Jackson, 2009), which 190 

provides mean ecosystem rooting depths for 1-degree by 1-degree grid cells. Climate classification 191 

for all 55 sites was based on an updated world map of Köppen-Geiger climate classification within a 192 

global 0.1-degree grid (Peel, Finlayson, & McMahon, 2007). The climate classification was a crucial 193 

criterion for grouping of the sites in multisite calibration as explained in the following section.  194 
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2.3 Methods 195 

2.3.1 Site-specific calibration and multisite calibration 196 

 Statistical calibration of the PRELES model parameters was accomplished in a Bayesian framework 197 

by inferring the joint posterior probability density distribution of parameters conditioned on 198 

observations (Van Oijen et al., 2005). We implemented two types of calibration: site-specific 199 

calibration and multisite calibration. The site-specific calibration included 17 parameters and was 200 

applied to each site independently (Table 1). The five parameters concerning local soil, canopy or 201 

terrain information were included in site-specific calibration but excluded in multisite calibration 202 

(Table 1). For instance, the soil depth parameter was calibrated within a ±15% range, because the soil 203 

information came from a dataset with low resolution (Section 2.2.3), and soil depth varies largely 204 

with terrain attributes in reality. The records of ecosystem rooting depths were set as medians in prior 205 

settings. A higher range, e.g. ± 30%, was set when the record of the rooting depths largely differed 206 

from the soil depth data. The updated soil depth information from site-specific calibrations, the MAP 207 

(maximum a posteriori probability estimate), was directly used as inputs in the multisite calibrations 208 

and simulations. 209 

Table 1: Parameters in PRELES. Note: The 12 parameters in multisite calibration are ordered by 210 

their sensitivity to the model outputs (Peltoniemi et al., 2015a). The minimum and maximum values 211 

of X0 and Smax are adjusted, based on the seasonal temperature ranges at each site or of each plant 212 

functional type. The ranges of prior for soil-related parameters were set separately for each site based 213 

on information from global datasets. The reasons for exclusion of  214 𝒑𝑮𝑷𝑷 and 𝒑𝑬𝑻 from calibration are given in Section S3. Coefficient m was set as a constant according 215 

to Kuusisto (1984). VPD = vapour-pressure deficit, GPP = gross primary production, PPFD = 216 

photosynthetic photon flux density.  217 

Symbol Meaning Units 
Prior 

minimum 
Prior 

maximum 

Included in 
site-specific 
calibration? 

Included in 
multisite 

calibration? 

χ Evaporation parameter dm3 mol-1 0 2.5 Yes Yes 

γ Light modifier parameter for 
saturation with irradiance 

mol-1 m-2 1.03e-4 0.503 Yes Yes 

α Transpiration parameter mm 1e-6 10 Yes Yes 
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(g C m-2kPa1-λ)-1 

X0 
Threshold for state of acclimation 

change 
°C - - Yes Yes 

β Potential light-use efficiency gC mol-1 0.2 2.5 Yes Yes 

Smax 
Threshold above which the 

acclimation modifier reaches its 
maximum 

°C - - Yes Yes 

λ 
Parameter adjusting water-use 

efficiency with vapour-pressure 
deficit 

- 1e-4 0.999 Yes Yes 

𝜌𝑃 
Threshold for the effect of soil-
water stress on photosynthesis 

- 0 0.999 Yes Yes 

ν 
Parameter adjusting water-use 
efficiency whether soil water 

limits gross primary production 
- 1e-4 2.5 Yes Yes 

κ 
Sensitivity parameter for vapour-

pressure deficit response 
kPa-1 -1 -1e-3 Yes Yes 

𝜌𝐸 
Threshold for the effect of soil-

water stress on evaporation 
- 0 0.999 Yes Yes 

τ Delay parameter for ambient 
temperature response 

- 1 25 Yes Yes 

Dsoil 

Effective depth of soil that 
excludes stones and can be 

explored by plant roots 
mm - - Yes No 

θFC Effective field capacity mm - - Yes No 

θWP Effective wilting point mm - - Yes No 

θsurf,max 
Maximum of the water storage on 

canopy surface 
mm 0.5 10 Yes No τF Delay parameter of drainage - 1 5 Yes No 

𝑝𝐺𝑃𝑃 
Parameter adjusting the effect of 
ambient CO2 concentration on 

photosynthesis 
- - - No No 

𝑝𝐸𝑇 
Parameter adjusting the effect of 
ambient CO2 concentration on 

transpiration 
- - - No No 

m 
Coefficient for temperature 

dependence of snowmelt rate 
°C-1d-1 - - No No 

  218 

 For multisite calibration, we selected 50 from 55 sites and divided them into nine PFTs, based 219 

on the forest types and Köppen-Geiger climate classification (Table 2). The division excluded five 220 

sites because they belong to either mixed forests or unique climate types (Table S1) and thus could 221 
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not be classified into any group in Table 2. A generic parameter vector for each cluster was calibrated, 222 

using the Bayesian hierarchical modelling method.  223 

Table 2: Plant functional types for multisite calibration. Note: Detailed meanings of the letters in 224 

forest-climate classification are explained in Table S1. 225 

Forest-
climate 
cluster 

Description 
No. of 
sites 

FLUXNET ID 

DBF_Cf 
Temperate deciduous broad-leaved forests (without dry 

season) 2 FR-Fon, IT-PT1 

DBF_Cs Mediterranean deciduous broad-leaved forests 3 IT-CA1, IT-Col, IT-Ro2 

DBF_Df 
Boreal deciduous broad-leaved forests (without dry 

season) 
7 DE-Hai, JP-MBF, US-Ha1, etc. 

EBF_Am Tropical monsoon evergreen broad-leaved forests 3 AU-Rob, BR-Sa3, GF-Guy, etc. 

EBF_Cf 
Temperate evergreen broad-leaved forests (without dry 

season) 
6 

AU-Cum, AU-Whr, CN-Din, 
etc. 

EBF_Cs Mediterranean evergreen broad-leaved forests 3 FR-Pue, IT-Cp2, IT-Cpz 

ENF_Cf 
Temperate evergreen needle-leaved forests (without dry 

season) 
4 AR-Vir, CN-Qia, NL-Loo, etc 

ENF_Cs Mediterranean evergreen needle-leaved forests 5 IT-SR2, US-Blo, US-Me2, etc. 

ENF_Df 
Boreal evergreen needle-leaved forests (without dry 

season) 
17 CA-NS1, CH-Dav, FI-Hyy, etc. 

 226 

2.3.2 Likelihood based on assumption of measurement uncertainty 227 

Using eddy covariance measurements, three main characteristics were included in our likelihood 228 

function. Firstly, the measurement error followed a double-exponential (or Laplace) distribution 229 

instead of Gaussian (Hollinger & Richardson, 2005). Although daily records were aggregated from 230 

half-hourly measurements, the processes of gap-filling and aggregating could cause the Lindeberg’s 231 

condition of the central limit theorem not to be satisfied. In our experiment, the distributions of the 232 

residuals from most sites also more closely followed the double-exponential distributions instead of 233 

a normal distribution. Secondly, the standard deviation of the random measurement uncertainty 234 

increased with the magnitude of the measurements (Richardson et al., 2008). This relationship can be 235 

approximated linearly, and the intercept has a wider range of variation compared with the slope 236 

(Aubinet, Vesala, & Papale, 2012). Thirdly, both GPP and ET measurements were considered 237 
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simultaneously during the calibration, but each followed its own error distribution separately. 238 

Eventually, the likelihood was written as the probability of the observation, conditional on the model 239 

output being the true value, which means that the residuals include both measurement error and model 240 

structure error (Van Oijen, 2017). The likelihood of the site-specific calibration was as follows: 241 𝑝(𝒀|𝜽) = 𝑝(𝜺 = 𝒀 − 𝑴(𝜽)) 242 

             = ∏ ∏ 12 𝐸𝑥𝑝 (|𝜀𝑗,𝑖|; 1𝑎𝑗+𝑏𝑗𝑀(𝜽)𝑗,𝑖)𝑁𝑗𝑖=12𝑗=1  243 

             = ∏ ∏ 12(𝑎𝑗+𝑏𝑗𝑀(𝜽)𝑗,𝑖)𝑁𝑗𝑖=12𝑗=1 𝑒𝑥𝑝 ( −|𝜀𝑗,𝑖|𝑎𝑗+𝑏𝑗𝑀(𝜽)𝑗,𝑖)        (4) 244 

where Y represents the observations, 𝜽 the parameters of the PRELES model, 𝑀(𝜃) the outputs of 245 

model, 𝜀 the measurement error and an unknown model structural error. 𝐸𝑥𝑝(. ; . ) is the probability 246 

density function of the exponential distribution, and 
1𝑎𝑗+𝑏𝑗𝑀(𝜃)𝑗,𝑖 is its rate parameter. The j-subscripts 247 

index the two types of output variable, which are GPP and ET; the i-subscripts index the data and 𝑁𝑗 248 

is the total number of valid observations for variable j. Parameters 𝑎  and b were calibrated 249 

simultaneously with 𝜃  to approximate the relationship between rate parameter and measurement 250 

uncertainty. 251 

 For each forest-climate cluster, we proposed a generic vector of parameters by multisite 252 

calibration within a Bayesian hierarchical modelling approach (Fig. S8, Section S5). For each PFT 253 

(Table 2), data from different sites were combined in BC. The sites within one PFT shared the same 254 

generic parameters, which means eventually nine vectors of generic parameters were obtained 255 

respectively for the nine PFTs. To explain the variation within one PFT, two parameters, potential 256 

LUE (𝛽) and measurement uncertainty intercept (𝑎), were considered ‘site-specific’ and generated 257 

from distributions that represented random effects. Then the joint posterior distribution of parameters 258 𝑝(𝜽|𝒀) is written as 259 𝑝(𝜽, 𝒄, 𝒅, 𝑔, ℎ|𝒀) ∝ ∏ ∏ ∏ 𝐸𝑥𝑝(|𝜀𝑗,𝑠,𝑖|; 1𝑎𝑗+𝑏𝑗,𝑠𝑀(𝜽)𝑗,𝑠,𝑖) ∏ ∏ 𝛤(𝑎𝑗,𝑠; 𝑐𝑗 , 𝑑𝑗)𝑆𝑠=12𝑗=1𝑁𝑗,𝑠𝑖=1𝑆𝑠=12𝑗=1 ∏ 𝛤(𝛽𝑠; 𝑔, ℎ)𝑆𝑠=1            260 

(5) 261 
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where the s-subscripts index the site and S is the total number of sites in one cluster, 𝛤(. ; . ) represents 262 

the probability density function of the gamma distribution that describes the heterogeneity of potential 263 

LUE and measurement uncertainty, c and 𝑔 are the shape parameters of the gamma distributions, and 264 𝑑 and h are the rate parameters. The gamma distribution was chosen because we assumed that 𝛽 and 265 𝑎 were nonnegative and followed right-skewed distributions, based on the results of site-specific 266 

calibrations. The priors and hyperpriors were ignored in Eq. (5) because they were assumed as 267 

independent uniform distributions. The ranges of uniform distributions for parameters in PRELES 268 

were given in Table 1. Detailed explanations for the structural distinctions of site-specific calibration 269 

and multisite calibration are given in Section S5. 270 

2.3.3 MCMC sampler and convergence diagnostic 271 

Markov chain Monte Carlo (MCMC) sampling techniques were used (Hastings, 1970; Metropolis, 272 

Rosenbluth, Rosenbluth, Teller, & Teller, 1953) since the posterior distribution was nonanalytical.  273 

The MCMC was simulated, using differential evolution adaptive Metropolis with snooker updating 274 

(DREAMzs), which runs a few chains in parallel and explores the parameter space in an efficient way 275 

(Laloy & Vrugt, 2012; Vrugt et al., 2009). We used the DREAMzs algorithm implemented in the R 276 

package BayesianTools (Hartig, Minunno, & Paul, 2017). 277 

 The MCMC convergence diagnostic (Brooks & Gelman, 1998; Gelman & Rubin, 1992) was 278 

used to monitor the convergence in the MCMC output. The multivariate potential scale reduction 279 

factor (MPSRF) was calculated, based on two MCMC runs, each of which has three internal chains. 280 

A large MPSRF means that the output from all chains is distinguishable and a notable difference 281 

exists between variance and intrachain variance. In our study, convergence was diagnosed when the 282 

MPSRF was below 1.05, which is a relatively strict criterion (Brooks & Gelman, 1998).  283 
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2.3.4 Model evaluation 284 

Model performance was evaluated using a systematically designed cross validation procedure. 285 

Calibration strategies were designed separately for six different cases of applying PRELES at a given 286 

site: 287 

(1) S-S: Data from a site are available for model calibration. This leads to site-specific calibration. 288 

(2) M-S:  Data from the subject site and from other sites in the same PFT are available for calibration. 289 

This yields multisite calibration. 290 

(3) S.in: No data are available for the subject site. Predictions are made with and S-S calibration of 291 

another site in the same PFT.  292 

(4) M.in: No data are available for the subject site. Predictions are made with and M-S calibration of 293 

other sites in the same PFT. 294 

(5) S.out: No data are available for the subject site. Predictions are made with and S-S calibration of 295 

a site in a different PFT.  296 

(6) M.out: No data are available for the subject site. Predictions are made with and M-S calibration 297 

of other sites in a different PFT. 298 

 A two-fold validation strategy was applied to calculate the model-data mismatches. For each 299 

time, half of the GPP and ET observations from the site were randomly selected for the model 300 

calibration, and the remaining observations were used for the validation. In cases (3) to (6) the data 301 

from the subject site was excluded in calibration but was used for validation. Eventually, the 302 

reliability and stability of both the PRELES model and calibration strategies were evaluated for 303 

each site independently. A comparison of cases (1) and (2) informed us about the applicability of a 304 

generic parameter vector of the PFT. Case (3) to (6) were designed to find out what calibration 305 

strategy to adopt when applying PRELES to new sites without any flux data or LUE related 306 

information. Additionally, the model reliability in the extrapolation during the drought event in 307 

2018 was assessed using another eddy covariance dataset ‘Drought 2018’ (Drought 2018 Team & 308 
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ICOS Ecosystem Thematic Centre, 2019) and MODIS GPP product MOD17A2H (Running & 309 

Zhao, 2015; ORNL DAAC, 2018) in Section S6. 310 

 Besides the root mean squared error (RMSE), we also used the partitioning of the mean 311 

squared error (MSE) that provides both statistical and graphical analysis for model performance 312 

(Theil, 1966). Kobayashi and Salam (2000) demonstrated that the MSE could be divided into three 313 

components by comparing the measurements and predictions: squared bias, squared difference 314 

between standard deviations and lack of correlation weighted by the standard deviation. Gauch, 315 

Hwang, & Fick (2003) suggested a slightly different partitioning of MSE: squared bias (SB), nonunity 316 

(NU) slope and lack of correlation (LC). These three MSE components are distinct and additive and 317 

relate transparently to correlation and linear regression parameters. The quality and difference of 318 

these approaches were commented on in an exchange of letters by the authors (Gauch Jr, Hwang, & 319 

Fick, 2004; Kobayashi, 2004). Here, we adopted Gauch’s method, and the statistics were calculated 320 

as follows: 321 

MSE =
∑ (𝑋𝑛−𝑌𝑛)2𝑛𝑖=1 𝑁  = SB + NU + LC        (6) 322 

SB = (�̅� − �̅�)2          (7) 323 

NU = (1 − 𝑠𝑙)2 (∑ (𝑋𝑛−�̅�)2𝑁 )         (8) 324 

LC = (1 − 𝑟2) (∑ (𝑌𝑛−�̅�)2𝑁 )          (9) 325 

where �̅� and �̅�are, respectively, the means of the model predictions (X) and observations (Y); 𝑠𝑙 is 326 

the slope of the least-squares regression of Y on X; 𝑟2 the square of the correlation coefficient and N 327 

the number of observations. SB represents the translation, which is the mean squared distance 328 

between the simulations and measurements. NU represents the rotation away from the 1:1 line of 329 

equality and LC the scatter that practically represents the random errors. In other words, SB represents 330 

the annual overestimation or underestimation of PRELES; NU shows whether the model is equally 331 
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reliable in both low and high predictions; and LC is the random error that was not considered or 332 

explained in PRELES.  333 

3 Results 334 

3.1 PFT differences in the posteriori parameters 335 

The posterior of the parameters differed with the sites or PFTs (Fig. 2). Distinctions between the PFTs 336 

were revealed by comparisons of the multisite calibrations. The tropical EBFs (EBF-Am) showed the 337 

highest evaporation parameter χ and transpiration parameter α. Except for the tropical cluster, DBFs 338 

needed higher temperatures to start the temperature acclimation (higher X0) than evergreen forests. 339 

The delay parameters for the ambient temperature response (τ) in deciduous forests were longer than 340 

in evergreen forests. The EBFs were more strongly affected by light saturation (higher γ) than DBFs. 341 

 342 

Figure 2: Marginal posterior distribution of parameters for multisite calibrations of nine plant 343 

functional types (Table 2) and the summary of maximum a posteriori parameter vectors of the site-344 

specific calibrations (S-MAP). DBF = deciduous broad-leaved forest, EBF = evergreen broad-345 

leaved forest, ENF = evergreen needle-leaved forest.  346 
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 Distinctions of parameters between the PFTs could also be shown in site-specific calibrations 347 

once the parameter correlations were considered (Fig. 3). The correlations resulted from the mutual 348 

effects of the parameters and partially compensated for the distinctions between sites. Although the 349 

correlations differed among the sites, a general pattern was found in the 55 site-specific calibrations 350 

(Fig. S7). The highest parameter correlation was between the potential LUE (β) and the light 351 

saturation parameter (γ). The second highest correlation occurred between two parameters in the 352 

temperature modifier, which were the beginning (X0) and the maximum (Smax) of the acclimation 353 

state. Moreover, the third pair comprised the transpiration coefficient (α) and evaporation coefficient 354 

(χ). The correlations of the parameters occurred not only in the posterior distributions for each site-355 

specific calibration, but also on a global scale. A strongly negative correlation (rPearson = -0.6) was 356 

found between two threshold parameters, X0 and Smax, by summarizing the calibrations of various 357 

sites (Fig. 3a). The DBFs acquired higher X0 than did the ENFs. The uncertainty in the parameters 358 

greatly differed among the sites. Another distinction between forest types was revealed by parameters 359 

β and γ (Fig. 3b). The EBFs acquired higher γ than did the DBFs. The sites with larger β also contained 360 

higher levels of uncertainty, e.g. AU-Rob and AU-Wac. The distinctions of temperature acclimation 361 

between forest types were not only revealed by the parameters, but also by the temperature modifier 362 

(Fig. 4). The mean values of fS for boreal ENF sites were about 0.4, whereas for the EBFs of tropical 363 

sites the values were around 0.9. DBFs showed lower fS than evergreen forests, even with the same 364 

mean annual temperature. 365 

 366 
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Figure 3: (a) Thresholds of start (X0) and maximum (Smax) of the temperature acclimation modifier. 367 

(b) Potential light-use efficiency (β) and light saturation parameter (γ) of the light modifier. Note: 368 

The range bars represent the uncertainty in the parameters, which is a 95% Bayesian Credible Interval. 369 

The dashed lines are from linear regressions. DBF = deciduous broad-leaved forest, ENF = evergreen 370 

needle-leaved forest, EBF = evergreen broad-leaved forest, fAPAR = fraction of absorbed 371 

photosynthetically active radiation. 372 

 373 
Figure 4: Mean annual value of temperature acclimation modifier for various forest types. DBF = 374 

deciduous broad-leaved forest, EBF = evergreen broad-leaved forest, ENF = evergreen needle-leaved 375 

forest, MF = mixed forest. The fS is a modifier that accounts for temperature acclimation (in Eq. 1). 376 

3.2 Site-specific calibration vs. multisite calibration 377 

The ranges of the parameters varied widely between sites in the site-specific calibration (S-MAP in 378 

Fig. 2), whereas the multisite calibration strictly constrained the ranges of the parameters. In 379 

comparison to the observations, the calibrated PRELES model effectively simulated the seasonal 380 

variations within sites for most PFTs (Fig. 5). This means that different parameter vectors can lead to 381 

the similar model performance. By adding measurement errors that consider residual distributions, 382 

the predictive uncertainty describes the ranges of eddy covariance observations that could possibly 383 

occur. For the two Mediterranean climate clusters, the declines in GPP and ET during the dry summer 384 

were captured in model simulations. The prediction uncertainty also covered the variation in daily 385 

measurements. It was difficult to judge the tropical sites, since there was no seasonal pattern, and the 386 

main environmental driver for the daily variation was unclear. Even though precipitation seems to 387 
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relate with the daily GPP, the Pearson correlation was always lower than 0.2 on both weekly and 388 

monthly step. Models based on multisite calibration and site-specific calibration performed similarly 389 

in the simulations of both GPP (Fig. 5a) and ET (Fig. 5b). Distinctions only occurred occasionally in 390 

a few site-year cases, and it was difficult to judge which calibration was better based on observations, 391 

because one fitted the higher observations and the other the lower observations (e.g. IT-Col in Fig. 392 

5a, CN-Qia in Fig. 5b). 393 
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394 

 395 
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Figure 5: (a) Daily gross primary production (GPP) and (b) daily evapotranspiration (ET) for nine 396 

plant functional types (PFTs). Note: One site and one year were randomly selected from each PFT. 397 

The circles represent observations of eddy covariance measurements. The orange areas represent the 398 

uncertainty in the multisite calibrated model in the case M-S (Section 3.3.4). The dark orange area is 399 

the parametric uncertainty. The light orange area represents the predictive uncertainty given by the 400 

parametric uncertainty and measurement error. The dark blue solid line is generated by site-specific 401 

calibrations with MAP (maximum a posteriori parameter vector) in the case S-S. The dashed lines 402 

represent the ranges of predictive uncertainty based on the site-specific calibration. DBF = deciduous 403 

broad-leaved forest, EBF = evergreen broad-leaved forest, ENF = evergreen needle-leaved forest, 404 

DoY = day of year. 405 

 The accuracy of the predictions varied markedly among the sites (Fig. 6). For the average 406 

data-model mismatches in multisite calibration, the proportion of random error (LC) in the MSE of 407 

GPP was 93%. For the mismatch in seasonal variation (NU) and mean bias of annual prediction (SB), 408 

the proportions were respectively 3% and 4%. The accuracy of the ET predictions was lower, since 409 

17% of the MSE was SB, and for most sites the ET biases were due to underestimation. The main 410 

component of the deviation was LC for both site-specific and multisite calibrations. In comparison to 411 

MSE with site-specific calibrations, multisite calibrations showed 12% higher MSE for GPP and 14% 412 

higher for ET on average. The accuracy differences between site-specific and multisite calibrations 413 

were generally negligible, but noticeable for a few sites (Fig. 6). 414 
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 415 

Figure 6: Decomposed mean squared error (MSE) for prediction of gross primary production (GPP, 416 

g C m-2 d-1) and evapotranspiration (ET, mm d-1) based on site-specific calibrations (S) in the case S-417 

S (Section 2.3.4) and multisite calibrations (M) in the case M-S. SB = squared bias, NU = nonunity, 418 

LC = lack of correlation.  419 

 Although the multisite calibrations showed higher model-data mismatches, they could be 420 

more reliable in certain cases, especially for site-years with inadequate data (Fig. 7). The MSE of 421 

multisite calibration for site-year IT-Cpz_2001 was 13% higher than that of the site-specific 422 

calibration. Only 20% of daily flux observations was deleted based on the data quality during six 423 

years. However, for the data gap during the dry season in 2001, the site-specific calibration described 424 

the daily GPP as oscillating unrealistically, whereas the multisite calibration showed a reasonable 425 

pattern of decreasing productivity. 426 
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 427 
Figure 7: Comparison of site-specific calibration and multisite calibration for the site with inadequate 428 

data (IT-Cpz, 2001). The orange areas represent the uncertainty in the multisite calibrated model in 429 

the case M-S (Section 3.3.4). The dark orange area is the parametric uncertainty. The light orange 430 

area represents the predictive uncertainty given by the parametric uncertainty and measurement error. 431 

The blue solid line is generated by site-specific calibrations with MAP (maximum a posteriori 432 

parameter vector) in the case S-S. The dashed lines represent the ranges of predictive uncertainty 433 

based on the site-specific calibration. GPP = gross primary production, DOY = day of year. 434 

3.3 Extrapolations and site random effects 435 

PRELES integrates simplified ecosystem processes associated with GPP and evapotranspiration. 436 

However, the reliability of extrapolation beyond the ranges of calibration datasets depends on how 437 

different the plant traits and environment conditions have been changed. To evaluate our estimates 438 

of GPP and ET, four kinds of parameter vectors representing cases (3) – (6) were calculated (Fig. 8). 439 

The S-S calibration provided a baseline for this. In the out-of-sample testing, S.out shows the highest 440 

risks in the extrapolations, while the M.out calibrations were more reliable. For the EBF_Cs and 441 

EBF_Am forests, using data from the same PFT in calibration could distinctly reduce the errors in 442 

extrapolation. 443 
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 444 

 445 

Figure 8: Root-mean-squared error (RMSE) of daily (a) gross primary production (GPP, g c m-2 d-446 
1) and (b) evapotranspiration (ET) in the out-of-sample testing. The RMSE values were grouped 447 

based on the PFT of validation sites. S.out = site-specific calibration of sites from other PFTs, 448 

M.out = multisite calibration of other PFTs, S.in = site-specific calibration of other sites in same 449 

PFT, M.in = multisite calibration of the same PFT but excluding data from the validation site, S-S = 450 

interpolations while using half of data for calibration and other half for validation.  451 

 The mean of a gamma distribution 𝛤(𝛽𝑠; 𝑔, ℎ) in Eq.5 was adopted as the value of β in the 452 

evaluation when multisite calibration was used because the tree species and site fertility were 453 

assumed unknown for the new sites. For each PFT, this value was calculated as g/h in Eq.5. The 454 

performance of PRELES in the case M.in can be largely improved by only adjusting the parameter 455 
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β (Fig. 9). The performance of cluster EBF_Cs was distinctively better than the others in the 456 

validation, because all three sites represented the same tree species (Quercus ilex, Table S1). 457 

 458 
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 459 

Figure 9: (a) Daily gross primary production (GPP) and (b) daily evapotranspiration (ET) for nine 460 

plant functional types (PFTs). Note: One site and one year were randomly selected from each PFT. 461 

The circles represent observations of eddy covariance measurements. The orange areas represent the 462 

uncertainty in the multisite calibrated model (case M.in). The dark orange area is the parametric 463 

uncertainty. The light orange area represents the predictive uncertainty given by the parametric 464 

uncertainty and measurement error. The red solid line is generated by the MAP (maximum a 465 

posteriori parameter vector) in the case M.in while using the mean of the parameter β in the cluster 466 

(calculated as g/h in Eq.5). The purple solid line is generated by the MAP in the case M.in while 467 

adjusting the parameter β using fluxes data in the validation site. DBF = deciduous broad-leaved 468 

forest, EBF = evergreen broad-leaved forest, ENF = evergreen needle-leaved forest, DoY = day of 469 

year. 470 

 Compared with the extrapolation within one PFT, the extrapolation beyond the PFT might 471 

lead to a higher risk. The site CN-Cha, which is a mixed forest (MF) with dry springs, was not 472 

included in any cluster of the multisite calibrations. The composition of tree species makes this site 473 

neither ENF nor DBF, and the climate of this site could be classified as either Df or Dw (Table A1). 474 

We simulated the GPP and ET of this site, using parameters respectively calibrated from the two 475 
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spatially closest sites (CN-Qia and JP-MBF, Fig. 1) and two climate-similar PFTs (ENF-Df and DBF-476 

Df). The simulation from the CN-Cha site-specific calibration accurately matched the observations, 477 

because it was originally calibrated with data from this site, while the simulations from the other four 478 

calibrations showed biases and a large degree of uncertainty (Fig. 10). The CN-Qia version of the 479 

calibration failed to simulate the spring GPP of the colder site CN-Cha, because their temperature 480 

acclimation processes were very different (Table S1). Meanwhile, the evaporation was highly 481 

overestimated in spring. The JP-MBF site was similar to the CN-Cha site for coldness, but was more 482 

humid with higher precipitation, which made the JP-MBF version fail in the simulation of the late 483 

spring drought at the CN-Cha site. In comparison to the site-specific versions, the two multisite 484 

calibrations performed better in both GPP and ET simulations. The higher prediction uncertainty 485 

covered the variations more thoroughly in the GPP simulations and more efficiently in the ET 486 

simulations. Nevertheless, the random effect of β introduced a large degree of parametric uncertainty 487 

into the simulations. For the DBF-Df in Fig. 10, on average 16% of the predictive uncertainty of GPP 488 

and 13% of the uncertainty in ET were due to parametric uncertainty. For site-specific calibrations, 489 

the average proportions of parametric uncertainty were only about 5% (Fig. S1). 490 

 491 
Figure 10: Validation of different calibrations of PRELES with observations at the dry spring site 492 

CN-Cha. The circles represent observations of eddy covariance measurements at site CN-Cha. The 493 

orange areas are model simulations based on calibrations from different sites. The dark orange area 494 
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is the parametric uncertainty. The light orange area represents the predictive uncertainty given by the 495 

parametric uncertainty and measurement error. GPP = gross primary production, ET = 496 

evapotranspiration, DoY = day of year. 497 

4 Discussion 498 

The model calibrations and validations demonstrated that PRELES could accurately simulate GPP 499 

and ET on a large geographical scale. The simulations were reliable even for extremely contrasting 500 

environmental conditions and distinctive forest ecosystems when given sufficient data. The multisite 501 

calibrations were as accurate as the site-specific calibrations in the interpolations, but were more 502 

reliable in the extrapolations. Based on the hierarchical quantification of the random effects among 503 

sites, the predictive uncertainty was extensive for extrapolations to new sites with unknown tree 504 

species and site fertility. 505 

4.1 A generic parameter vector 506 

Minunno et al. (2016) examined a generic calibration of PRELES for the boreal coniferous forests in 507 

Fennoscandia and showed that the multisite calibration and the site-specific calibration performed 508 

similarly. In this study, we extended the applications of PRELES to a larger regional/global scale, 509 

using a Bayesian hierarchical modelling approach. PRELES assumes that the actual LUE changes 510 

with weather conditions, including the intensity of light, temperature, VPD and soil water. The 511 

generality of parameters in LUE models depends on the complexity of model structures and the 512 

accuracy of input data. On the one hand, a universal set of parameters can be sufficient enough for 513 

satellite driven LUE models across biomes and geographic regions (Yuan et al. 2014). On the other 514 

hand, various studies have illustrated that many other external factors also affect the LUE, including 515 

age of trees (Saldarriaga & Luxmoore, 1991), fertilization treatment (Leuning, Cromer, & Rance, 516 

1991), specific leaf nitrogen (Hammer & Wright, 1994; Kergoat, Lafont, Arneth, Le Dantec, & 517 

Saugier, 2008; Peltoniemi et al., 2012), and tree species (Ahl et al., 2004). Since these factors were 518 

not considered in the calibrations when combining the data, we assumed that the potential LUE β was 519 

different among sites (Fig. S8). Thus, the crucial assumption became that the differences among sites 520 
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within a single cluster could be simulated by simply adjusting the potential LUE, which was 521 

confirmed and illustrated in Fig. 9 and Fig. S10. The performance of the site-specific and multisite 522 

calibrations was similar (Fig. 5), and the differences between them in the Decomposed MSE tests 523 

(Fig. 6) were almost negligible, which also corroborated this assumption.  524 

 The site-specific calibration assumes that the sites are completely unrelated. The boreal-region 525 

generic calibration in the study of Minunno et al. (2016) ignored all site-to-site variability. The 526 

challenge in our global data analysis and forecasting is to correctly partition different sources of 527 

variability.  Our multisite calibration represents the continuum between treating data sets independent 528 

versus treating them identical. As a result, we partitioned process variability between the different 529 

levels of the hierarchy (Section 5). Using a Bayesian hierarchical modelling approach, the random 530 

effect among sites was quantified not only for the potential LUE β but also for the measurement 531 

uncertainty parameter a (Eq. 5, Fig. S8). The intercept a was chosen, due to its wider range of 532 

variation compared with the slope (Richardson et al., 2008). This pattern was blurred with the results 533 

of the 55 site-specific calibrations. The intercept a varied among the sites, with values from 0.10 to 534 

2.42 g C m-2 d-1 for GPP and 0.004 to 0.99 mm d-1 for ET. By comparison, the slope b was confined 535 

from 0.0007 to 0.36 for GPP and 0.0001 to 0.70 for ET. 536 

 The main motivations for applying the hierarchical Bayesian framework in this study include 537 

combining datasets with different measurement errors, integrating the random effects for each site 538 

and quantifying the uncertainty. The Bayesian framework consistently provided natural structures for 539 

achieving these purposes by treating all terms in the model calibrations and predictions as probability 540 

distributions (Clark, 2007; Dietze, 2017). Nevertheless, it is also possible to achieve a generic 541 

parameter vector by other mathematical methods. Combinations of multisource data could be 542 

considered as having multiple likelihoods or weighted objectives (Marler & Arora, 2010). Random 543 

effects could be characterized by multilevel mixed models (Bijleveld & van der Kamp, 1998; Ware 544 

& Liang, 1996). Uncertainty quantification could be achieved by the bootstrap method (Efron, 1979).  545 
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4.2 Interpolation vs. extrapolation 546 

Based on the site-specific and multisite calibrations, three different vectors of PRELES parameters 547 

were optional for applications: the site-specific calibrated version, the multisite calibrated version 548 

with a ‘site-specific’ LUE parameter β and ‘site-specific’ measurement uncertainty a, and the 549 

multisite calibrated version with unknown values (random effects) of β and a. The latter two 550 

parameter vectors were only two different strategies for using the multisite calibration. This is not to 551 

say that one of them is generally better or always more reliable than the other; instead, the choice of 552 

method is dependent on the objectives of the model used. When the analysis is based on a local scale 553 

or a region of the same site condition and a comprehensive and complete dataset is available 554 

(Minunno et al., 2016), site-specific calibration would be the best option. In forestry practice, 555 

however, it is common that a dataset with various possible local weather conditions is unavailable or 556 

difficult to access. Moreover, the model applications often involve a wider variability in terms of 557 

climate and forest structure. In that case, the multisite calibration with site-specific β and a would be 558 

more reliable than the site-specific calibration (e.g. IT-Cpz in Fig. 7 and Fig. S1c). When the model 559 

is extrapolated to new situations with unknown tree species and site fertility, multisite calibration of 560 

the same PFT should be the best option, and site-specific calibration of other sites in same PFT should 561 

be the next-best option (Fig. 8). The choices of parameter vectors should depend on the similarity of 562 

PFTs instead of geographical distances. For instance, when we validated several calibrations for the 563 

site CN-Cha, which was not included in the multisite calibration (Fig. 10), the site-specific potential 564 

LUE parameter β and measurement uncertainty parameter a were not available from the original 565 

calibration. Thus, we generated these two parameters from the gamma distributions calibrated in the 566 

hierarchical Bayesian modelling approach (Eq. 5). The random effects in multisite calibration reflect 567 

the actual predictive uncertainty when extrapolating entirely outside the original sites. If more 568 

information were available about β, possibly based on tree species and site fertility (canopy nitrogen 569 
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concentration), we could also have decreased the uncertainty by constraining the value of β (the 570 

purple lines in Fig. 9 and Fig. S10). 571 

4.3 The role of data quality 572 

The input of soil information is crucial for simulations of the soil-water content. We collected the 573 

information from three global gridded datasets, which were inaccurate and may have affected the 574 

simulations of drought events. The field water capacity and wilting point are determined by the 575 

physical properties of the soil (Kirkham, 2014). Both soil texture and soil depth might vary widely 576 

with the terrain. The strong correlations between soil parameters allowed only one parameter to be 577 

adjusted. When calibrating all soil-related parameters simultaneously, the marginal posterior 578 

distribution simply converged to the prior distribution, which means that the uncertainty in this 579 

parameter was entirely dependent on the prior information (similar with the case of CO2 module, 580 

Section S3). When comparing those soil datasets with field measurements (literature in Table S1), 581 

larger mismatches were found in soil depth than in soil texture. We chose to calibrate only the soil 582 

depth for each site in the site-specific calibration by using the information from global datasets as the 583 

prior. Eventually, the adjustments improved the simulations of those sites with drought events or dry 584 

seasons. 585 

 The fAPAR is another important input for PRELES, and it interfered with the estimation of β in 586 

the calibrations. We exercised particular care in interpreting the fAPAR data. We filtered the fAPAR data 587 

and fitted the harmonic model, using only the observations during the growing seasons. Even so, 588 

large random errors and biases could still be contained in the simulated curves of fAPAR (Fig. S2). 589 

Although it was theoretically possible to compare the maximum LUEs of all the different tree species 590 

after calibration, the error propagated from fAPAR obscured any relevant interpretations. 591 

 The global scale evaluation of the model is dependent not only on the applicability of the 592 

model itself but also on the quantity and quality of the data. We filtered the eddy covariance data, 593 

based on the quality flag, but outliers still occurred, which widened the mismatches. For sites with 594 
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few quality-acceptable observations, the outliers resulted in higher NU or SB (e.g. ET performance 595 

of site CA-SF2). The outliers were one of the main reasons that residuals followed double-exponential 596 

distributions instead of normal distributions. The heavy-tailed distributions likely weakened the 597 

impact of erratic observations and outliers (Sivia & Skilling, 2006). The differences between the S-S 598 

and M-S calibrations in data-model mismatch were imperceptible (Fig. 6), but the real performance 599 

could differ noticeably between the calibrations for certain gap periods (e.g. the dry season of IT-Cpz 600 

and the spring of US-Wi3 in Fig. S1c). This suggests that the information lost in gaps could have 601 

been useful for the calibrations.  602 

 Considering that most sites in our study were from boreal and temperate forests in Europe and 603 

North America, extrapolation to forests of Asia, South America and Africa could be problematic, 604 

especially for the tropical forests. No seasonal or monsoon pattern was revealed by PRELES for the 605 

tropical sites (Fig. S1a). Gebremichael and Barros (2006) found that the MODIS GPP products 606 

showed large degrees of uncertainty and were biased in the tropical monsoon regions when validated 607 

with flux tower observations. Yuan et al. (2014) compared seven LUE models on a global scale and 608 

illustrated that most models performed better in capturing the temporal changes and magnitude of 609 

GPP in DBFs and MFs than in the EBFs. Although the model-data mismatch increased with mean 610 

annual temperature (Fig. S5), it is still difficult to interpret which PFT was not suitable for PRELES. 611 

For example, the site GF-Guy showed the highest model-data mismatch for predicting GPP (Fig. 6), 612 

which was actually caused by its extremely high tree species richness and productivity (Bonal et al., 613 

2008). The measurement errors, stand structure and silviculture treatments varied immensely within 614 

single PFTs, which obscured the distinctions among PFTs.  615 

4.4 Biological interpretation of parameters 616 

Instead of using direct physiological measurements of the parameters, this study applied BC and eddy 617 

covariance data to adjusting parameter values at the level of the whole system. One common concern 618 

about this approach is whether the parameters still have a biological meaning. An inadequate dataset 619 
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may lead to overfitting (e.g. outliers of MAPs in site-specific calibrations in Fig. 2). Since the inverse 620 

modelling approach to model calibration is based on statistical analysis instead of detailed 621 

physiological measurements, the MAPs may easily have deviated from physiologically meaningful 622 

parameter values if the uncertainty ranges were not efficiently constrained by the data. Similarly, the 623 

correlations between parameters may have led to wide uncertainty ranges (e.g. IT-SR2 in Fig. 3a). In 624 

these cases, different combinations of parameters could have led to the same predictions, implying 625 

that the data used in the calibration were not sufficient to reduce the parametric uncertainty. A dataset 626 

from tropical or subtropical sites may not effectively constrain the parameters of the temperature 627 

modifier, which was the reason for setting the priors of Smax and X0 respectively for each site or PFT 628 

based on the local temperature ranges (Table 1). The multisite calibration resulted in more accurate 629 

estimations of parameters with a lower probability of overfitting by assimilating information from a 630 

wider range of weather conditions (Fig. 2). With almost the same performance, the multisite 631 

calibration contained less parametric uncertainty with more reasonable MAPs. However, the risk in 632 

multisite calibrations lies in assuming that forests from different sites respond to environmental 633 

factors in exactly the same pattern. Thus, instead of one global calibration, we adopted nine multisite 634 

calibrations respectively designed for nine PFTs.  635 

 The parameters in the temperature acclimation modifier were closely associated with the 636 

phenology of the growing season, and plausible parameters were obtained for each PFT. In 637 

comparison to evergreen coniferous forests, deciduous forests need higher temperature for 638 

acclimation (X0) and longer delays for ambient temperature response, which shows that deciduous 639 

trees recover more slowly with the rising temperatures. The delay parameter for ambient temperature 640 

response τ in the DBFs was also larger than those of other clusters (Fig. 2). This distinction in spring 641 

phenology was closely linked with the adaptive strategies of DBFs and ENFs. To maximize the 642 

carbon fixation, it would benefit the DBFs to leaf-out as early as possible in spring. However, the 643 

potential risk is damage to the leaves and conducting tissues when a late frost occurs (Bennie, Kubin, 644 
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Wiltshire, Huntley, & Baxter, 2010). ENFs adopt a resource-conserving strategy to produce well-645 

defended needles that have a long lifespan, while DBFs adopt a resource-demanding strategy to 646 

produce less costly and poorly defended broad leaves (Rahman & Tsukamoto, 2013). Although the 647 

leaf-out day in spring was delayed, the DBFs actually had a longer effective growing season lengths, 648 

due to the higher recovery speed and delayed recession day of the growing season (Niu, Fu, Gu, & 649 

Luo, 2013). 650 

 The distinctions of the parameters among the PFTs were affected by both the physiological 651 

characteristics of the plants and the climate patterns. The higher value of light saturation parameter γ 652 

in the EBFs (Fig. 3b) indicates that larger proportions of intercepted light were not utilized, due to 653 

light saturation in comparison to DBFs. This was probably due to EBFs occurring in tropical or 654 

subtropical regions, where the light intensity is much higher than that of temperate or boreal regions. 655 

Photosynthesis keeps the light saturated for longer durations in low-latitude regions, due to high 656 

irradiance, even though low-latitude plants attain photosynthetic light saturation at higher light 657 

intensity (Mooney & Billings, 1961). Extremely high light intensity may result in a decline in 658 

photosynthesis, due to photo-oxidation of photosynthetic enzymes and pigments (Lambers, Chapin, 659 

& Pons, 2008). High levels of light also lead to an increase in leaf temperature or even heat stress. 660 

Since the temperature modifier in PRELES only focuses on seasonal acclimation, the negative 661 

impacts of unfavourably high temperature are actually explained by the light saturation modifier and 662 

VPD modifier. PRELES assumes a homogeneous environment of PPFD and canopy structure to 663 

obtain the photosynthesis of the entire ecosystem, which avoids complex structures for modelling the 664 

effect of canopy positions (Campbell, Marini, & Birch, 1992) or optimal canopy nitrogen allocation 665 

(Field, 1983; Badeck, 1995). 666 

  The ET model (Eq. 2) partitions the water fluxes of ecosystems into transpiration and 667 

evaporation. These two components were not sharply distinguished in the calibrations, since only 668 

total water fluxes were given in the eddy covariance measurements. Thus, higher uncertainty occurred 669 
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for the ET parameters ν and ρE (Fig. 2). Meanwhile, high correlations occurred between transpiration 670 

parameter α and evaporation parameter χ (Fig. S7). The threshold for the effect of soil-water stress 671 

on evaporation, ρE, was distinctively low for the cluster DBF-Df (Fig. 2). This may have resulted 672 

from high precipitation but low potential evaporation of its climate. In addition, the increased fAPAR 673 

greatly reduced the evaporation, which made the impact of soil water on evaporation negligible at the 674 

beginning of the growing season. Most parameters in PRELES are difficult to obtain in physiological 675 

measurements. Parameter λ indicates the sensitivity of water use efficiency, so the range was defined 676 

as 0 to 1 (Table 1). However, some of the lumped-parameters are even difficult to define the prior. 677 

The parameter ν is related to the sensitivity of water use efficiency to the rooting pattern, and its 678 

possible range was set based on pre-tests of the likelihood and convergence during calibration instead 679 

of the measurements in physiological studies.  680 

 Beer et al. (2018) found that inherent water use efficiency is higher for deciduous broad-681 

leaved forests than evergreen needle-leaved forests based on data from 43 flux tower sites across 682 

biomes. Using MODIS and flux data at 28 sites across United States, Lu and Zhuang (2010) found 683 

that evergreen broad-leaf forest has the highest WUE, intermediate at evergreen needle-leaf forest 684 

and lowest at the deciduous needle/broad leaf forest. The parameter α in PRELES was designed with 685 

a similar interpretation with the inverse of intrinsic water use efficiency (Eq. 2). The posterior 686 

distribution of parameter α illustrated that intrinsic water use efficiency is lowest in evergreen broad-687 

leaved forests, especially in the tropical broad-leaved forests, but no clear distinction was found 688 

between deciduous broad-leaved forests and evergreen needle-leaved forests (Fig.2). This mismatch 689 

between PRELES parameter and previous studies might be due to incorrect partitioning among the 690 

transpiration, bare soil evaporation and water storage on canopy surface after rainy days (Grelle, 691 

Lundberg, Lindroth, Morén, & Cienciala, 1997). The parameters of the evapotranspiration model 692 

might deviate from its physiologically meaningful value in order to match the observations of 693 

ecosystem total water fluxes. 694 
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4.5 Uncertainty quantification 695 

Although many LUE models have previously been calibrated and tested against eddy covariance data 696 

(e.g. Heinsch et al., 2006; Yuan et al., 2007), the uncertainty has seldom been quantified. Zheng et 697 

al. (2018) separately analysed the uncertainty of model structure, parameters, input data and spatial 698 

resolution for remote-sensing data-based LUE models, but the contributions of various sources to the 699 

final forecasting were not qualified. Bayesian frameworks allow us to treat all terms in the forecast 700 

as probability distributions, thus making it easier to quantify uncertainty and partition uncertainties 701 

into different sources (Dietze, 2017). 702 

 The uncertainty analysis divided the predictive uncertainty into three components: parametric, 703 

measurement, and model structural uncertainty. Since only one model, PRELES, was considered in 704 

the study, the model structural uncertainty was mixed with the other two components. Measurement 705 

uncertainty, which often comprised more than 90% of the predictive uncertainty (Fig. 5), represented 706 

the measurement error of GPP and ET. However, the records of GPP were not directly measured but 707 

inferred from the NEE of CO2, using partitioning algorithms (Aubinet, Vesala, & Papale, 2012). A 708 

certain amount of ‘measurement uncertainty’ of GPP was actually caused by the partitioning methods 709 

(Fig. S4). 710 

 For predictions of GPP in climate change projections, the parametric and structural 711 

uncertainty of PRELES was almost marginal in comparison to the uncertainty propagated from 712 

emission scenarios and the global circulation model (Kalliokoski et al., 2018). However, the 713 

precondition of the low uncertainty was that a sufficient dataset was obtained for the model calibration 714 

and validation in the application area that was relatively homogeneous under climate and stand 715 

conditions (Minunno et al., 2016). In the case of various forest types, the prediction uncertainty 716 

differed greatly from site to site (Fig. S1). When simulations are based on extrapolation instead of 717 

interpolation, the uncertainty will be even higher (Fig. 10), resulting from the assumptions of random 718 

site effects and the choice of parameters. The uncertainty for forecasting the impact of ambient CO2 719 
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concentration on photosynthesis and transpirations could hardly be assessed from model calibrations 720 

(Fig. S6). 721 

4.6 Model simplifications for spatial applications 722 

The LUE approach has been applied at various spatial and temporal scales for simulations of GPP. 723 

The spatial-scale application of process-based models is feasible, but requires spatially derived 724 

climate data, soil survey, and remotely sensed estimates of fAPAR (Waring et al., 2010). Model 725 

simplifications can largely reduce the data requirements and allow for simulations on a global scale. 726 

The satellite driven LUE approach has been widely used in monitoring spatial and temporal dynamics 727 

of global terrestrial GPP, relying on extensive remote-sensing data and simplified model structure. 728 

For instance, the EC-LUE model proposed by Yuan et al. (2007) was driven by four variables only: 729 

normalized difference vegetation index (NDVI), photosynthetically active radiation (PAR), air 730 

temperature and the Bowen ratio. These variables can be directly derived from remote-sensing data. 731 

Furthermore, Sims et al. (2008) developed a GPP model based solely on the enhanced vegetation 732 

index (EVI) and land-surface temperature (LST) from MODIS. Methods of simplification include 733 

setting a constant biome-independent potential LUE value (e.g. Potter et al., 1993; Yuan et al., 2007), 734 

and ignoring or indirectly describing the soil-water stress (e.g. VPD accounts for drought stress in 735 

MODIS-GPP products (Running, Glassy, & Thornton, 1999; Running et al., 2004)). Zheng et al. 736 

(2018) quantified the model structure uncertainty in the LUE approach by comparing 36 737 

combinations of optional simplified modifiers, then found the most suitable model structure for the 738 

study region. The choice of a suitable model depends on both the accuracy requirement and data 739 

availability. For instance, both MODIS GPP product MOD17A2H and PRELES captured the changes 740 

of GPP during drought events in the 2018 summer (Fig. S10). The cost of accurate predictions from 741 

PRELES is the data or knowledge for unbiased estimation of parameter β. Otherwise, the predictions 742 

will contain large ranges of uncertainty. These satellite-based LUE models can be conveniently 743 

applied on a global scale (Yuan et al., 2014), but the interpretations of future productivity would be 744 
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problematic, especially under a changing climate. The hierarchical modelling approach maintained 745 

the complexity of PRELES, thus avoiding the errors propagated from model oversimplification. 746 

Precipitation and soil information will be the most difficult inputs to acquire for the global simulations 747 

in PRELES, whereas other meteorological variables and fAPAR could be directly derived from remote-748 

sensing products. For evergreen forests, another practical approach of estimating fAPAR is to use 749 

Lambert-Beer law when annual leaf area index and extinction coefficient can be obtained. 750 

 PRELES aims at a compromise between predictive accuracy and model complexity. The 751 

generalization of ecosystem processes on the one hand makes the model convincing in extrapolating 752 

to changing environments, and on the other hand makes it convenient to parameterize and apply on 753 

large geographical scales. The model accurately simulated and explained the seasonal and daily GPP 754 

variations for most forest-climate types. Thus, PRELES can be a good candidate for mapping forest 755 

production and quantifying uncertainty on regional to global scales under the background of climate 756 

change. The potential risk in global applications is that we only calibrated parameters, while the 757 

optimal model structure should vary as plant traits and environments change. For instance, the 758 

modifier of temperature acclimation was crucial for boreal and temperate PFTs, but was impractical 759 

for tropical forests. A key development need of PRELES for global application is to generalize and 760 

quantify the ecophysiological distinctions of varying biomes. A more reliable global calibration of 761 

PRELES should focus on not only adjusting parameters, but also optimizing the PFT-specific model 762 

structures. 763 
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