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EXTENDING THE RANK LIKELIHOOD FOR SEMIPARAMETRIC
COPULA ESTIMATION

BY PETER D. HOFF

University of Washington

Quantitative studies in many fields involve the analysis of multivariate
data of diverse types, including measurements that we may consider binary,
ordinal and continuous. One approach to the analysis of such mixed data is
to use a copula model, in which the associations among the variables are pa-
rameterized separately from their univariate marginal distributions. The pur-
pose of this article is to provide a simple, general method of semiparametric
inference for copula models via a type of rank likelihood function for the
association parameters. The proposed method of inference can be viewed as
a generalization of marginal likelihood estimation, in which inference for a
parameter of interest is based on a summary statistic whose sampling distri-
bution is not a function of any nuisance parameters. In the context of cop-
ula estimation, the extended rank likelihood is a function of the association
parameters only and its applicability does not depend on any assumptions
about the marginal distributions of the data, thus making it appropriate for
the analysis of mixed continuous and discrete data with arbitrary marginal
distributions. Estimation and inference for parameters of the Gaussian cop-
ula are available via a straightforward Markov chain Monte Carlo algorithm
based on Gibbs sampling. Specification of prior distributions or a parametric
form for the univariate marginal distributions of the data is not necessary.

1. Introduction. Studies involving multivariate data often include measure-
ments of diverse types. For example, a survey or observational study may record
the sex, education level and income of its participants, thus including measure-
ments that we may consider binary, ordinal and continuous. Such studies are gen-
erally concerned with statistical associations among the variables, but not neces-
sarily the scale on which the variables are measured. One approach to data analysis
in these situations is to obtain rank-based measures of bivariate association, such
as the rank correlation or “Spearman’s rho.” Such procedures are scale-free, but in-
volve ad-hoc methods for dealing with ties and provide inference that is generally
limited to hypothesis tests of bivariate association. These issues make such proce-
dures problematic for the analysis of much of social science survey data, in which
the variables are often discrete and the hypotheses of interest generally concern
multivariate and conditional associations. For example, Figure 1 shows histograms
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FIG. 1. Univariate histograms of the GSS data.

of six demographic variables of male respondents to the 1994 General Social Sur-
vey. The variables INC, DEG and CHILD refer to the income, highest degree and
number of children of a survey respondent, and PINC, PDEG and PCHILD re-
fer to similar variables of the respondent’s parents (further details on the variables
are given in Section 4). All of these variables are ordered categorical variables,
even though some of them have many levels. Additionally, our interests in these
variables involve measures of conditional association: An assessment of the rela-
tionship between income and number of children would generally be considered
incomplete if it failed to account for heterogeneity of the survey respondents in
terms of their age, parental income and other variables.

The standard approach to making statistical assessments of conditional asso-
ciation is the use of regression models. For example, to describe the conditional
association between income and number of children, we could estimate the para-
meters in a regression model of the following form:

INCi = β0 + β1CHILDi + β2DEGi + β3AGEi

(1)
+ β4PCHILDi + β5PINCi + β6PDEGi + εi.

Least-squares parameter estimates for this model, along with normal-theory
p-values appear in the first row of Table 1. Standard practice is to interpret the
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TABLE 1
Estimation linear and Poisson regression coefficients in the conditional models for INC and CHILD,

with p-values in parentheses

Predictor

Response INC CHILD DEG AGE PCHILD PINC PDEG

INC NA 1.10 (0.11) 7.03 (<0.01) 0.34 (<0.01) 4.07 (<0.01) 0.28 (0.41) 1.40 (0.12)
CHILD 0.01 (0.01) NA −0.07 (0.06) 0.04 (<0.01) −0.06 (0.20) 0.02 (0.08) −0.05 (0.20)

p-value of 0.11 for CHILD as suggesting that there is not substantial evidence
against β1 = 0, in which case the model implies that INC and CHILD are condi-
tionally independent given the other variables. Alternatively, we could have eval-
uated the same conditional independence hypothesis with a regression model for
CHILD. As this is a count variable, we might use a Poisson regression model:

CHILDi ∼ Pois(exp{β0 + β1INCi + β2DEGi + β3AGEi
(2)

+ β4PCHILDi + β5PINCi + β6PDEGi}).
Maximum likelihood estimates and p-values for this model appear in the second
row of Table 1. In contrast to the results of model (1), these results indicate rea-
sonably strong evidence (p = 0.01) that CHILD and INC are not conditionally
independent, given the other variables.

The contradiction between the above two analyses is partly due to the inadequa-
cies of the simple univariate parametric Gaussian and Poisson models. However,
in general, there is no reason to expect that two separately estimated conditional
models will give compatible results: Given two conditional models f1(y1|y2,x)

and f2(y2|y1,x), only under very specific conditions does there exist a joint prob-
ability distribution p(y1, y2|x) having f1 and f2 as its full conditional distributions
[Arnold and Press (1989)]. This presents a problem for the analysis of multivariate
data of diverse types: in the absence of an appropriate multivariate model, com-
mon practice is to analyze the data via one or more univariate regression models,
choosing the “response” from the variables which might best fit an ordinary or gen-
eralized linear regression model. However, as the above example shows, different
choices about which variables to treat as the response can lead to incompatible
models with different conclusions.

Part of the above problem can be resolved by jointly modeling the variables
of interest. A number of latent-variable methods have been recently developed to
accommodate non-Gaussian multivariate data. These methods generally proceed
by modeling each component of a vector of observations with a parametric ex-
ponential family model, in which the parameters for each component involve an
unobserved latent variable. For example, Chib and Winkelmann (2001) present a
model for a vector of correlated count data in which each component is a Poisson
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random variable with a mean depending on a component-specific latent variable.
Dependence among the count variables is induced by modeling the vector of latent
variables with a multivariate normal distribution. Similar approaches are proposed
by Dunson (2000) and described in Chapter 8 of Congdon (2003). The model of
Chib and Winkelmann can be viewed as a copula model, in which the association
parameters are modeled separately from the marginal distributions of the observed
data. Such a modeling approach can be applied to a wide variety of multivari-
ate analysis problems: An old mathematical result known as Sklar’s theorem says
that every multivariate probability distribution can be represented by its univariate
marginal distributions and a copula, which is a type of joint distribution with fixed
marginals.

Pitt, Chan and Kohn (2006) develop an estimation procedure for multivariate
normal copula models in which the marginal distributions belong to specified para-
metric families. Unfortunately, the marginal distributions of survey data such as
age, number of children, income and education level generally do not belong to
standard families. For such data, a semiparametric estimation strategy may be ap-
propriate, in which the associations among the variables are represented with a
simple parametric model but the marginal distributions are estimated nonparamet-
rically. In the case where all the variables are continuous, Genest, Ghoudi and
Rivest (1995) suggest a “pseudo-likelihood” approach to estimation, in which the
observed data is transformed via the empirical marginal distributions to obtain
pseudo-data that can be used to estimate the association parameters. Klaassen and
Wellner (1997) study a similar type of estimation in the case of the Gaussian cop-
ula. Such estimators are well-behaved for continuous data but can fail for discrete
data, making them somewhat inappropriate for the analysis of mixed continuous
and discrete data. For ordinal discrete data with a known number of categories, the
dependence induced by the Gaussian copula model is called polychoric correla-
tion. Olsson (1979) describes a two-stage estimation procedure for the parameters
in the copula, and this and other estimation strategies appear in a number of soft-
ware packages including SAS PROC FREQ and the LISREL module PRELIS.
Kottas, Müller and Quintana (2005) describe a nonparametric estimation proce-
dure in which the copula is based on a mixture of normal distributions. However,
such procedures do not accommodate continuous data, and may even be problem-
atic for discrete data with a large number of categories, as inference in this case
requires the simultaneous estimation of the large number of parameters specifying
the marginal distributions.

As an alternative to these procedures, this article presents an approach to cop-
ula estimation in which the marginal distributions are arbitrary and of unspecified
types, thus accommodating both discrete and continuous data. This is achieved by
the use of a likelihood function that depends on the association parameters only,
and does not make assumptions about the form of the univariate marginal distrib-
utions. Inference based on such a likelihood is therefore appropriate for the joint
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analysis of continuous and ordinal discrete data. For continuous data, the likeli-
hood function we propose is derived from the marginal probability of the ranks,
and can be seen as a multivariate version of a “rank likelihood” [Pettitt (1982),
Heller and Qin (2001)] which does not depend on the univariate marginal distrib-
utions. Unfortunately, for discrete data the probability of the observed ranks is not
free of these nuisance parameters. To solve this problem, we derive a likelihood
that is equivalent to the distribution of the ranks for continuous data but is also
free of the nuisance parameters for discrete data. This likelihood function is de-
rived from the probability that the latent variables of the copula model satisfy the
partial ordering induced by the observed data. We call this function an extended
rank likelihood, as it generalizes the concept of rank likelihood. This likelihood
can also be seen as a generalization of a marginal likelihood, which is based on
a statistic whose sampling distribution depends only on the parameter of interest
and not on any nuisance parameters.

In what follows we work with the Gaussian copula model, although the basic
ideas can be extended to other parametric families of copulas. In the next section
we review the general Gaussian copula model, and discuss how inference for dis-
crete data using existing semiparametric methods is problematic. Section 3 derives
the extended rank likelihood as a general approach to semiparametric copula es-
timation and discusses parameter estimation in the context of Bayesian inference
using a relatively simple Gibbs sampling scheme.

The primary goal of this paper is to provide a simple method of inference for the
multivariate relationships between variables, such as INC, CHILD, DEG described
above, whose univariate marginal distributions cannot be well approximated with
simple parametric models. In Section 4 we present an analysis of these and other
demographic characteristics of males in the 1994 U.S. workforce and their par-
ents. In particular, we are interested in the statistical associations among income,
education and number of children of the survey respondents, and how they relate
to similar characteristics of the parents of the survey respondents. The data come
from the 1994 General Social Survey, and include a number of discrete and non-
Gaussian random variables. In addition to estimating a Gaussian copula model
for these data, we estimate and describe the conditional dependencies among the
variables on the Gaussian scale, as well as provide predictive and conditional dis-
tributions on the original scale of the data.

Section 5 considers notions of statistical sufficiency relevant to the rank likeli-
hood, and a discussion follows in Section 6.

2. Semiparametric copula estimation. Let y1 and y2 be two random vari-
ables with continuous CDFs F1 and F2. The transformed variables u1 = F1(y1)

and u2 = F2(y2) both have uniform marginal distributions. The term “copula mod-
eling” generally refers to a model that parametrizes the joint distribution of u1 and
u2 separately from the marginal distributions F1 and F2. A semiparametric copula
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model includes a parametric model for the joint distribution of u1 and u2, but lacks
any parametric restrictions on F1 or F2.

Any continuous multivariate distribution can be used to form a copula model via
an inverse-CDF transformation. For example, the bivariate normal distribution can
be used to generate dependent data with arbitrary marginals F1 and F2 as follows:

1. sample
(z1
z2

) ∼ bivariate normal
[(0

0

) · (1 ρ
ρ 1

)]
;

2. set y1 = F−1
1 [�(z1)], y2 = F−1

2 [�(z2)],
where F−1(u) = inf{y :F(y) ≥ u} denotes the pseudo-inverse of a CDF F .
The correspondence to the usual copula formulation can be seen by noting that
�(z) = u is uniformly distributed.

Suppose (y1,1, y1,2), . . . , (yn,1, yn,2) are samples from a population that we
wish to model with a Gaussian copula. If the marginal distributions F1 and F2
were continuous and known, then the values zi,j = �−1[Fj (yi,j )] could be treated
as observed data and ρ could be estimated directly from the z’s, perhaps using the
unbiased estimator ρ̂ = 1

n

∑n
i=1 zi,1zi,2. Of course, the marginal CDFs are not typi-

cally known. One semiparametric estimation strategy is to plug-in the the empirical
CDFs F̂1 and F̂2 to obtain pseudo-data z̃i,j = �−1[ n

n+1 F̂j (yi,j )] ≡ �−1[F̃j (yi,j )],
where the rescaling is to avoid infinities. For continuous data, the estimator
ρ̃ = 1

n

∑n
i=1 z̃i,1z̃i,2 is asymptotically equivalent to the asymptotically efficient Van

der Waerden normal-scores rank correlation coefficient [Hájek and Šidák (1967),
Klaassen and Wellner (1997)]. This estimator is similar to one obtained from a
more general pseudo-likelihood estimation procedure described and studied by
Genest, Ghoudi and Rivest (1995). In the context of the Gaussian copula model,
the maximum pseudo-likelihood procedure is the following:

1. set z̃i,j = �−1[F̃j (yi,j )];
2. maximize in ρ the pseudo-log-likelihood

∑n
i=1 log bvn(z̃i,1, z̃i,2|ρ),

where bvn(·|ρ) denotes the bivariate normal density with standard normal mar-
ginals. Genest, Ghoudi and Rivest show that the resulting pseudo-likelihood es-
timator is consistent and asymptotically normal under the condition that F1 and
F2 are continuous. However, this condition calls into question the appropriateness
of the pseudo-likelihood approach for noncontinuous data such as sex, education
level, age or any other type of data where there are likely to be ties.

What could go wrong with such an estimator in situations involving dis-
crete data? In general, these pseudo-data estimators of copula parameters will
be problematic for discrete data because transformations of such data do not re-
ally change the data distribution, they just change the sample space. Consider
the simple case of a continuous variable y1 and a binary variable y2 such that
Pr(y2 = 0) = Pr(y2 = 1) = 1/2. Letting z̃i,j = �−1[F̃j (yi,j )], the distribution of
z̃1,1, . . . , z̃n,1 will have an approximately standard normal distribution, but z̃i,2 will
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be approximately equal to either �−1(1
2

n
n+1) or �−1( n

n+1) with probability one-
half each. If the Gaussian copula model is correct, then one can show that the
expectation of ρ̃ is roughly ρ√

2π
�−1( n

n+1). As n increases, so does the expecta-

tion of ρ̃, and it is not a consistent estimator. One problem here is that all of the
z̃i,2’s such that yi,2 = 1 are being pushed to the extreme standard normal quantile
�−1( n

n+1), which in the case of continuous data would happen just to a single
datapoint. The situation is only partly improved by using the sample correlation
of the pseudo-data as an estimator: The variance of z̃1 is approximately 1 and
the variance of z̃2 is approximately [1

2�−1( n
n+1)]2, giving an approximate sample

correlation of Cor(z̃i,1, z̃i,2) ≈ ρ
√

2/π .

3. Estimation using the extended rank likelihood. In this section we derive
a likelihood function that depends on the association parameters and not on the
unknown marginal distributions. For continuous data, this function is equivalent
to the distribution of the multivariate ranks. This is not the case of discrete data,
for which the distribution of the ranks depends on the univariate marginal distrib-
utions. In this case the derived likelihood function contains less total information
than one based on the ranks, but it is free of any parameters describing the marginal
distributions.

3.1. Extended rank likelihood. Generalizing from the previous section, the
Gaussian copula sampling model can be expressed as follows:

z1, . . . , zn|C ∼ i.i.d. multivariate normal(0,C),
(3)

yi,j = F−1
j [�(zi,j )],

where C is a p × p correlation matrix and each F−1
j denotes the (pseudo) inverse

of an unknown univariate CDF, not necessarily continuous.
Our goal is to make inference on C, and not on the potentially high-dimensional

parameters F1, . . . ,Fp . If the z’s were observed, we could use them to directly
estimate C. The z’s are not observed of course, but the y’s do provide a limited
amount of information about them, even absent any knowledge of the F ’s: Since
the F ’s are nondecreasing, observing yi1,j < yi2,j implies that zi1,j < zi2,j . More
generally, observing Y = (y1, . . . ,yn)

T tells us that Z = (z1, . . . , zn)
T must lie in

the set
{
Z ∈ R

n×p : max{zk,j :yk,j < yi,j } < zi,j < min{zk,j :yi,j < yk,j }}.
We can take the occurrence of this event as our data. Letting D be the fixed subset
of R

n×p generated by the observed value of Y, we can calculate the following
“likelihood”:

Pr(Z ∈ D|C,F1, . . . ,Fp) =
∫
D

p(Z|C) dZ = Pr(Z ∈ D|C).(4)
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As a function of the parameters, this likelihood depends only on the parameter
of interest C and not the nuisance parameters F1, . . . ,Fp . Estimation of C can
proceed by maximizing Pr(Z ∈ D|C) as a function of C, or by obtaining a posterior
distribution Pr(C|Z ∈ D) ∝ p(C) × Pr(Z ∈ D|C).

The likelihood function (4) can be seen as a type of marginal likelihood func-
tion for estimation in the presence of a nuisance parameter: Consider a generic
statistical problem in which the density for data y depends on a parameter of inter-
est θ and a nuisance parameter ψ . If there exists a statistic t (y) whose distribution
depends on θ only, then the density of y may be decomposed as

p(y|θ,ψ) = p(t (y), y|θ,ψ)

= p(t (y)|θ) × p(y|t (y), θ,ψ).

In this situation, estimation of θ can be based on the marginal likelihood p(t (y)|θ),
eliminating the need to estimate the nuisance parameter ψ [see, e.g., Section 8.3
of Severini (2000)]. The likelihood function Pr(Z ∈ D|C) in our copula estima-
tion problem can be derived analogously, by decomposing the probability of the
observed data as

p(Y|C,F1, . . . ,Fp) = p(Z ∈ D,Y|C,F1, . . . ,Fp)(5)

= Pr(Z ∈ D|C) × p(Y|Z ∈ D,C,F1, . . . ,Fp).(6)

Equation (5) holds because the event Z ∈ D occurs whenever Y is observed. This
derivation can be made rigorous by deriving the density p(Y|C,F1, . . . ,Fp) from
the limit of Pr(

⋂
i,j (yi,j − ε, yi,j ]|C,F1, . . . ,Fp) as ε → 0. As in the case of mar-

ginal likelihood, our approach is to estimate C using only Pr(Z ∈ D|C), the part
of the observed data likelihood (6) that depends on the parameter of interest C and
not on the nuisance parameters F1, . . . ,Fp . Since our likelihood function is based
on the marginal probability of an event that is a superset of observing the ranks,
we refer to it as an extended rank likelihood.

3.2. Estimation of the copula parameters. Bayesian inference for C can be
achieved via construction of a Markov chain having a stationary distribution equal
to p(C|Z ∈ D) ∝ p(C) × p(Z ∈ D|C). In the case of the Gaussian copula with
a semi-conjugate prior distribution, the Markov chain can be constructed quite
easily using Gibbs sampling. This prior distribution for C is defined as follows:
Let V have an inverse-Wishart(ν0, ν0V0) prior distribution, parameterized so that
E[V−1] = V−1

0 , and let C be equal in distribution to the correlation matrix with en-

tries V[i,j ]/
√

V[i,i]V[j,j ]. Using this prior distribution, approximate samples from
p(C|Z ∈ D) can be obtained by iterating the following Gibbs sampling scheme:

Resample Z. Iteratively over (i, j), sample zi,j from p(zi,j |V,Z[−i,−j ],Z ∈ D)

as follows:

For each j ∈ {1, . . . , p}:
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For each y ∈ unique{y1,j , . . . , yn,j }:
1. Compute zl = max{zi,j :yi,j < y} and zu = min{zi,j :y < yi,j }.
2. For each i such that yi,j = y,

(a) compute σ 2
j = V[j,j ] − V[j,−j ]V−1

[−j,−j ]V[−j,j ];
(b) compute µi,j = Z[i,−j ](V[j,−j ]V−1

[−j,−j ])T ;

(c) sample ui,j uniformly from (�[ zl−µi,j

σj
],�[ zu−µi,j

σj
]);

(d) Set zi,j = µi,j + σj × �−1(ui,j ).

Resample V. Sample V from an inverse-Wishart(ν0 + n, ν0V0 + ZT Z) distribu-
tion.

Compute C. Let C[i,j ] = V[i,j ]/
√

V[i,i]V[j,j ].

Iteration of this algorithm generates a Markov chain in C whose stationary dis-
tribution is p(C|Z ∈ D). This algorithm is easily modified to accommodate data
that are missing-at-random: If yi,j is missing, the full conditional distribution of
zi,j is the unconstrained normal distribution with mean µi,j and variance σ 2

j given
above.

The reader may have noticed that the samples of Z are based on the covariance
matrix V and not the correlation matrix C. To see why this does not matter for
estimation of C, compare our original model,

V ∼ inverse-Wishart(ν0, ν0V0),

{
C[i,j ]

} = {
V[i,j ]/

√
V[i,i]V[j,j ]

}
,

z1, . . . , zn ∼ i.i.d. multivariate normal(0,C),

yi,j = Gj(zi,j ),

to the equivalent model

V ∼ inverse-Wishart(ν0, ν0V0),

z1, . . . , zn ∼ i.i.d. multivariate normal(0,V),

z̃i,j = zi,j /
√

V[j,j ] and let C = Cov(z̃),

yi,j = Gj(z̃i,j ).

The z’s in the first formulation are equal in distribution to the z̃’s in the second, and
so posterior inference for C is equivalent under either model. The Gibbs sampling
scheme outlined above is based on a Markov chain in V and z1, . . . , zn based on
the second formulation. Note that in this formulation the observed data implies the
same ordering D on both the z̃’s and the z’s. Additionally, posterior estimation of
C is invariant to changes in the prior distribution on V that do not alter the in-
duced prior on C. For example, if V0 and V′

0 are two different covariance matrices
with the same correlations, then the posterior distribution of C under V ∼ inverse-
Wishart(ν0, ν0V0) will be equal to that under V ∼ inverse-Wishart(ν0, ν0V′

0).
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4. Income, education and intergenerational mobility. The U.S. census re-
ports a strong positive relationship between income and educational attainment
[Day and Newburger (2002)]. However, in many studies both of these variables
have been shown to be associated with a number of family background variables
such as parental income, parental educational attainment and number of siblings
[Ermisch and Francesconi (2001), Blake (1985)]. Additionally, some researchers
have suggested that having children reduces opportunities for educational attain-
ment [Moore and Waite (1977)], while others have found evidence that economic
status of males is positively associated with their fertility [Hopcroft (2006)]. Re-
sults such as these are generally based on univariate regression models in which
one variable from a sample survey is selected as a “response” or “dependent” vari-
able and the others as “control” or “independent” variables. However, all of the
variables in these studies are randomly sampled and all are potentially dependent
on one another.

In this section we describe the multivariate dependencies among income, ed-
ucation and number of children using the Gaussian copula model and the semi-
parametric estimation procedure described in Section 3. Specifically, we analyze
survey data on 1002 males in the U.S. labor force (meaning not retired, in school or
in an institution), obtained from the 1994 General Social Survey. Data and details
for the survey are available at http://webapp.icpsr.umich.edu/GSS/.

The relevant variables for this analysis include the income, education and num-
ber of children of the survey respondent, as well as similar variables for the re-
spondent’s parents. Age of the survey respondent is additionally included, as it
is typically strongly related to income and number of children. The measurement
scales for these variables are as follows:

INC: income of the respondent in 1000s of dollars, binned into 21
ordered categories.

DEG: highest degree ever obtained (None, HS, Associates, Bachelors,
Graduate).

CHILD: number of children ever had.
PINC: financial status of respondent’s parents when respondent was 16

(on a 5-point scale).
PDEG: maximum of mother’s and father’s highest degree.
PCHILD: number of siblings of the respondent plus one.
AGE: age of the respondent in years.
Missing data rates among each of the nonincome variables was less than 4%.

The missing data rates for INC and PINC were 10% and 48% respectively. How-
ever, the question PINC was asked on only half of the surveys, and so missing
values for this variable can reasonably be considered as missing at random.

4.1. Estimation of C. Using an inverse-Wishart (p + 2, (p + 2) × I) prior
distribution for V, the Gibbs sampling scheme outlined in Section 3 was iterated

 http://webapp.icpsr.umich.edu/GSS/


RANK LIKELIHOOD FOR COPULA ESTIMATION 275

FIG. 2. MCMC samples of 11 of the correlation coefficients, plotted every 50th scan.

25,000 times with parameter values saved every 10 scans, resulting in 2500 sam-
ples of C for posterior analysis. Mixing of the Markov chain was quite good: Fig-
ure 2 shows MCMC samples of 11 elements of C, corresponding to the odd order
statistics of E[C|Z ∈ D]. Convergence to stationarity appears to occur quickly,
almost certainly within the first 5000 scans. Dropping these scans to allow for
burn-in, we are left with 2000 saved scans for posterior analysis. The autocorre-
lation across these saved scans was low, with the lag-10 autocorrelation less than
0.05 in absolute value for all elements of C, and much closer to zero for most.
Based on the autocorrelation in the Markov chain, the effective sample sizes for
estimating the posterior means of the elements of C were at least 1500.

4.2. Posterior inference. Posterior distributions of the correlation parameters
are summarized in the first and second rows of Figure 3. The first row gives 2.5%,
50% and 97.5% posterior quantiles of the correlation coefficients, representing
scale-invariant bivariate associations among the six variables of interest. The fact
that most of these 95% credible intervals do not contain zero indicates that most
variables are associated with most of the other variables. For example, the re-
sults suggest that INC has nonzero positive correlations with DEG, CHILD, PINC,
PDEG and AGE, and a weak negative correlation with PCHILD. DEG shows pos-
itive correlations with INC, PINC, PDEG, and negative correlation with PCHILD
[in accordance with the conclusion of Blake (1985)].

Perhaps of more interest are conditional associations. The second column of
Figure 3 gives the 2.5%, 50% and 97.5% quantiles for the “regression coefficients”
C[j,−j ]C−1

[−j,−j ] for each variable. These coefficients represent conditional depen-
dencies among the underlying processes that give rise to the observed data. On this
scale, the full conditional distribution of INC depends most strongly on DEG, and
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FIG. 3. Dependence parameters for the GSS data. The first row gives 2.5%, 50%, 97.5% posterior
quantiles of the correlation coefficients E[zj zk]. The second row gives the regression coefficients
∇E[zj |z−j ].

to a lesser extent on CHILD and AGE. Interestingly, the conditional relationship
between INC and PINC has a nonnegligible (>5%) probability of being less than
or equal to zero. Figure 4 summarizes these results with a graph indicating the con-
ditional dependencies among the z-variables corresponding to the six variables of
interest (implicitly conditioning on AGE). An edge is present between two nodes if
the 95% credible interval for the associated regression parameter does not contain
zero. This graph suggests that although INC and PINC are positively associated,
this association is mediated by the intergenerational relationships of DEG, PDEG,
CHILD and PCHILD.

FIG. 4. Reduced conditional dependence graph for the GSS data.
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4.3. Conditional distributions for the INC, DEG, PINC relationship. The re-
sults in Figure 3 suggest that, although INC and PINC are positively correlated,
PINC is a relatively weak predictor of INC compared to DEG. However, PINC is
a strong predictor of PDEG, and PDEG is a strong predictor of DEG, suggesting
an indirect effect of PINC on INC.

These conclusions about INC, DEG and PINC are made in terms of asso-
ciations among the z-variables, although it is often desirable to report results
on the scale of the original data. With this in mind, we now describe the rela-
tionship between INC, DEG and PINC on the original data scale, using an es-
timated predictive distribution Pr(INC, DEG, PINC), which we decompose as
Pr(INC|DEG,PINC) × Pr(DEG|PINC) × Pr(PINC).

A predictive distribution for y can be obtained in a few different ways. Perhaps
the simplest method is to combine the posterior distribution of C with the empirical
univariate marginal distributions F̂1, . . . , F̂p of the observed data (an alternative
method is presented in the Discussion). Using this method, a predictive sample of
y can be obtained as follows:

1. sample C ∼ p(C|Z ∈ D);
2. sample z ∼ multivariate normal(0,C);
3. set yj = F̂−1

j (zj ).

Although this somewhat ad-hoc approach disregards uncertainty in the estimation
of F1, . . . ,Fp (for prediction of y, not for estimation of C), it provides a predictive
joint distribution that matches the observed data in terms of the univariate marginal
distributions but has a simple, smooth Gaussian copula representing multivariate
dependence. From these predictive samples we can obtain Monte Carlo estimates
of various quantities of interest, including a consistent set of conditional distribu-
tions on the original scale of the data.

The first column of Figure 5 plots the predictive distribution of DEG con-
ditional on PINC = x for x ∈ {1,2,3,4,5}. As on the z-scale, large values of
PINC correspond to large values of DEG. The estimated conditional probability of
someone not finishing high-school given PINC = 5 is 5%, whereas for PINC = 1
it is 22%, giving an odds ratio of odds(DEG = None|PINC = 1)/odds(DEG =
None|PINC = 5) = 5.35. Similarly, the corresponding odds ratio for having
a graduate degree is odds(DEG = Grad|PINC = 5)/odds(DEG = Grad|PINC =
1) = 6.5. For comparison, the empirical conditional distributions are provided on
the same plot. In general the fit is good, with most of the discrepancies occurring
in categories of PINC with small sample sizes (n = 28 for PINC = 1 and n = 8 for
PINC = 5). Note that if we were to estimate the above odds ratios using the empir-
ical conditional distributions, we would obtain ratios equal to infinity. In situations
such as these, where the sample size is low, we may prefer to estimate conditional
distributions with a model that can share information across the categories of a
variable, rather than use an empirical estimator having a high sampling variability.
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The second column of Figure 5 displays estimated quantiles of Pr(INC|DEG,
PINC) for each combination of DEG and PINC. Specifically, each row corre-
sponds to a single value of DEG, and each boxplot within a row corresponds to
a single value of PINC. The boxplot provides 5, 25, 50, 75 and 95% quantiles of
Pr(INC|DEG,PINC). Note that the boxplots within a row indicate very small in-
creases in INCOME with increasing values of PINC, while differences across rows
indicate much larger increases with DEG (changes in the quantiles do not happen
continuously due to the binned nature of the raw data). For high-school graduates
(DEG = 1), the estimated conditional mean incomes across levels of PINC are
{23,25,26,28,29} in thousands of dollars. For college graduates (DEG = 2), the
estimated means are {41,41,43,44,47}. For these mean calculations, the income
in a binned income category was taken as the average of the endpoints of the bin.

For comparison, the actual values of INC for each combination of DEG and
PINC are plotted on the corresponding boxplots (data are jittered to allow ties to be
distinguished). As before, the main discrepancies occur for combinations of DEG
and PINC for which there are few data. Also, the predictive distributions based
on the copula model are much smoother than the empirical versions: The empir-
ical conditional means of INC for DEG = 1 and DEG = 3 are {23,27,24,27,8}
and {41,44,35,58,75} respectively, across increasing levels of PINC. However,
several of these empirical means are calculated from as few as 3 or 4 samples.

5. Notions of sufficiency. The extended rank likelihood described above can
be viewed as a generalization of marginal likelihood, a standard technique for deal-
ing with nuisance parameters [see Section 8.3 of Severini (2000) for a review]. One
benefit of using such a likelihood is a gain in robustness, as inference no longer de-
pends on assumptions about the relationship of the data to the nuisance parameters.
Another benefit is a general simplification of the estimation problem, as the need
to estimate a potentially high-dimensional set of parameters is eliminated. These
benefits come at the cost of potentially losing information about the parameters of
interest by only using part of the available data. Ideally, the statistic that generates
the marginal likelihood is “partially sufficient” in the sense that it contains all rel-
evant information in the data about the parameter of interest. Various definitions
of partial sufficiency have been developed: Fraser (1956) defined S-sufficiency via
properties of the marginal and conditional distributions of the statistic and the data.
The concept of G-sufficiency was introduced in Barnard (1963) as a general princi-
ple for making inference about a parameter of interest when the inference problem
remains invariant under a group of transformations. Rémon (1984) developed a
generalization of these notions based on profile likelihoods called L-sufficiency,
which has been refined and studied by Barndorff-Nielsen (1988, 1999). The gen-
eral recommendation of these authors is to base inference for a parameter of inter-
est on the sampling distribution of a statistic that is sufficient in some sense.

If F1, . . . ,Fp are all continuous, then there are no ties among the data, and
knowledge of Z ∈ D provides a complete ordering of {y1,j , . . . , yn,j } for each j .
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FIG. 5. Empirical and predictive conditional distributions for INC, DEG and PINC.

This information is equivalent to the information contained in the ranks, and so
Pr(Z ∈ D|C) is equivalent to the sampling distribution of the multivariate ranks.
Following the notation of Rémon (1984), we now show that the ranks r(Y) are
a G-sufficient statistic in the sense of Barnard (1963): Let C ∈ C describe the
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copula and F = {F1, . . . ,Fp} ∈ F the marginal distributions, and so the parame-
ter space is 
 = C × F and the model space is P = {Pr(·|ω) :ω ∈ 
}, where
Pr(·|ω) is a probability measure on R

p for each ω ∈ 
. Furthermore, let G be
the group of collections of p continuous strictly increasing functions, so that
G = {G = (G1, . . . ,Gp) :Gj is a continuous and strictly increasing function on
R}. To each G ∈ G there corresponds a one-to-one function on P mapping P(·|ω)

to P(G−1(·)|ω) and the model space is closed under the action of G. As a result,
G induces a group Ḡ = {fG : G ∈ G} on 
 defined by P(·|fGω) = P(G−1(·)|ω).

If the marginals are continuous, the orbits of 
 under Ḡ can be put into 1-1
correspondence with C, and C is therefore a maximal invariant parameter. Barnard
defined a statistic t (Y) to be G-sufficient if it can be put into 1-1 correspondence
with the orbits of R

p under G. This is the case for the ranks r(Y) of Y, and so r(Y)

is said to be G-sufficient for estimation of C. For continuous data, the marginal
distribution of the ranks is equal to the extended rank likelihood, and so basing
inference on this likelihood function can been seen as using all available, relevant
information in the G-sufficient sense.

A notion of sufficiency that is more directly related to maximum likelihood
estimation is L-sufficiency: In the context of copula modeling, a statistic t (Y) is
said to be L-sufficient for C if

A1. t (Y0) = t (Y1) ⇒ sup{F1,...,Fp}∈F p(Y0|C,F1, . . . ,Fp) = sup{F1,...,Fp}∈F
p(Y1|C,F1, . . . ,Fp);

A2. p(t (Y)|C,F1, . . . ,Fp) = p(t (Y)|C).

Note that the maximum likelihood estimate of C and its distribution will be a func-
tion only of an L-sufficient statistic, if one exists. If F contains only continuous
marginals, then one can show directly that the ranks r(Y) satisfy A1 and A2 [al-
ternatively, Rémon (1984) shows that a G-sufficient statistic is also L-sufficient].
Thus, in the continuous case, the ranks are G- and L-sufficient, the MLE of C is
a function of the ranks alone, and inference for C can be based on the distribution
of the multivariate ranks, or equivalently, the extended rank likelihood.

If the marginals are allowed to be discontinuous, then the orbits of 
 under
Ḡ cannot be put into 1-1 correspondence with C and so C is not a maximal in-
variant. The problem is basically that if Fj (·) is a discrete CDF, then Fj [G−1

j (·)]
does not range over the space of all CDFs as G ranges over G. The ranks are no
longer L-sufficient either: Condition A1 holds but A2 is violated because in the
discrete case the distribution of the ranks depends on the marginal distributions.
This means that estimation based on Pr(r(Y)|C,F1, . . . ,Fp) requires estimation
of the nuisance parameters F1, . . . ,Fp . This may not be much of an issue if the
number of levels of each variable is low, but for moderate numbers of levels we
may wonder about the variability of the estimates due to the large number of pa-
rameters, or the need to specify a prior distribution for the marginals F1, . . . ,Fp

in the context of Bayesian estimation. In contrast, the extended rank likelihood
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based on Pr(Z ∈ D|C) does not depend on F1, . . . ,Fp , thereby reducing the num-
ber of parameters to estimate and eliminating any need for a prior distribution on
F1, . . . ,Fp . Furthermore, the extended rank likelihood is “sufficient” for continu-
ous data but can be used with mixed continuous and discrete data. However, the
concern remains that this likelihood may not be making full use of the information
in discrete data about the copula parameters of interest. It would be desirable to
describe precisely any potential information loss that results from using the rank
likelihood as opposed to a full likelihood approach. Such a description could be ob-
tained by comparing the curvatures of the extended rank likelihood and full likeli-
hood surfaces, although the complicated parameter space and likelihood functions
make description difficult except for the simplest of cases. A general description
of the information properties of the rank likelihood in the context of copula esti-
mation is a current research interest of the author.

6. Discussion. This article has presented an inferential procedure for copula
parameters that can be applied to mixed continuous and discrete data. The proce-
dure is based on a type of marginal likelihood, called an extended rank likelihood,
which does not depend on the univariate marginal distributions of the data. The
procedure therefore allows for the estimation of dependence parameters without
the burden of having to estimate the marginal distributions.

The data analyzed in this paper are categorical, although some of the variables
have very large numbers of categories. An alternative approach to the analysis of
categorical data is log-linear modeling. For categorical data, a log-linear model
can potentially provide a more detailed representation of complex dependencies
and interactions than can a Gaussian copula model. However, if the number of cat-
egories is large and the data are ordinal, a copula model might be more appropriate.
The variables AGE, INC and PCHILD in this article have 60, 21 and 19 categories
respectively. Stable log-linear analysis of these data would require a coarsening of
these and perhaps some of the other variables into many fewer categories, result-
ing in information loss. In contrast, the semiparametric Gaussian copula approach
taken here provides a simple dependence model for data having arbitrary marginal
distributions, discrete or continuous.

The Gibbs sampling algorithm described in Section 3.2 is quite simple and per-
forms well for the data analysis in Section 4. However, the fact that each zi,j

is being sampled one at a time, and from a distribution that is constrained by
the values of {zk,j :k �= i}, might raise concerns that the simple Gibbs sampler
might mix poorly in some situations. If poor mixing occurs, one remedy is to
add Metropolis–Hastings updates that propose simultaneous changes to multiple
zi,j ’s. One such procedure that I have implemented is to propose changes to the
set {zi,j : i = 1, . . . , n} by shuffling the distances between the order statistics. In
the examples I have tried, this type of procedure has given reasonable acceptance
rates and has reduced autocorrelation.
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Inference on the scale of the original data can be obtained with a posterior pre-
dictive distribution based on plugging in the empirical univariate marginal distri-
butions as described in Section 3. Alternatively, a predictive distribution which
accounts for uncertainty in the univariate marginal distributions can be derived as
follows: The Gibbs sampling scheme of Section 3 can be used to generate a joint
posterior distribution for z1, . . . , zn in addition to a new sample zn+1, for which
we do not observe y-values. However, if zn+1,j is between two other zj ’s having
the same yj value, then yn+1,j must equal yj as well since the gj ’s are nonde-
creasing. Technically, this produces a type of interval probability distribution for y
[Weichselberger (1995)], and for continuous data gives univariate marginal pre-
dictive probabilities equivalent to the An procedure of Hill (1968). For large n,
however, this procedure is essentially equivalent to using the the empirical mar-
ginal distributions.

Although this article has focused on semiparametric estimation of a Gaussian
copula, the notion of rank likelihood is equally applicable to other copula mod-
els: Letting {p(u|θ) : θ ∈ �} denote a parametric family of copula densities and
{yi,j = Gj(ui,j ), i = 1, . . . , n, j = 1, . . . , p} be the observed data, the extended
rank likelihood for θ is given by Pr(max{uk,j :yk,j < yi,j } < ui,j < min{uk,j :
yi,j < yk,j }, i = 1, . . . , n, j = 1, . . . , p|θ). Given a prior distribution on θ , poste-
rior inference can be obtained via a Markov chain Monte Carlo algorithm which
iteratively resamples values of θ and the ui,j ’s. However, full conditional distrib-
utions for these unknown quantities are generally hard to come by, and an MCMC
sampler based on the Metropolis–Hastings algorithm is required for most models.

Code to implement the estimation strategy outlined in Section 3, written in the
R statistical computing environment, is provided on-line as supplemental mate-
rial to this article. A more detailed open-source software package is download-
able from R-archive at the following website: http://cran.r-project.org/src/contrib/
Descriptions/sbgcop.html
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