Extending the Recognition-Primed Decision Model to
Support Human-Agent Collaboration

Xiaocong Fan, Shuang Sun, Michale McNeese, and John Yen
School of Information Sciences and Technology
The Pennsylvania State University
University Park, PA 16802

{zfan, ssun, mmcneese, jyen}@ist.psu.edu

ABSTRACT

There has been much research investigating team cogni-
tion, naturalistic decision making, and collaborative tech-
nology as it relates to real world, complex domains of prac-
tice. However, there has been limited work in incorporat-
ing naturalistic decision making models for supporting dis-
tributed team decision making. The aim of this research
is to support human decision making teams using cognitive
agents empowered by a collaborative Recognition-Primed
Decision model. In this paper, we first describe an RPD-
enabled agent architecture (R-CAST), in which we have im-
plemented an internal mechanism of decision-making adap-
tation based on collaborative expectancy monitoring, and
an information exchange mechanism driven by relevant cue
analysis. We have evaluated R-CAST agents in a real-time
simulation environment, feeding teams with frequent decision-
making tasks under different tempo situations. While the
result conforms to psychological findings that human team
members are extremely sensitive to their workload in high-
tempo situations, it clearly indicates that human teams,
when supported by R-CAST agents, can perform better in
the sense that they can maintain team performance at ac-
ceptable levels in high time pressure situations.

Categories and Subject Descriptors

1.2 [Artificial Intelligence]: General—Cognitive simula-
tion; 1.2.11 [Artificial Intelligence]: Distributed Artificial
Intelligence—Intelligent agents, Multiagent systems

General Terms

Design, Experimentation, Human Factors

Keywords

Human-centered teamwork, Human-agent collaboration, Nat-
uralistic decision making, Recognition refinement, Shared
situation awareness

1. INTRODUCTION

Human teamwork in dynamic, uncertain environments is
often threatened by the tension between information over-
load and distributed cognition. On the one hand, to balance
the cognitive demands on team members, the data, informa-
tion, and knowledge are distributed across people, objects,
tools, and environments [3]. But on the other hand, the
team needs to develop a shared understanding of the current
situation in order to make better and faster decisions. For
example, to enable early detection and successful processing
of potential terrorist threats, team members must effectively
work together to quickly process and fuse information from
multiple sources. This necessitates information exchange,
which has to be done cautiously to avoid the information
overload problem [17].

There has been much theory and research presented that
investigates team cognition, naturalistic decision making,
and collaborative technology [10] as it relates to real world,
complex domains of practice. For instance, one theory that
attempts to understand the dynamics of team cognition in-
troduces the concept of a “shared mental model” [1], which
refers to an overlapping understanding among members of
the team regarding their objectives, structure, process, etc.
However, there has been very little work in looking at cog-
nitive agent architectures as a means to support distributed
team cognition and decision making. This is particularly
true as applied to naturalistic decision making theories, one
of which is Klein’s Recognition-Primed Decision framework
(RPD) [4, 5], which starts to capture how human experts
make decisions based on the recognition of past experiences
that are similar to the current situation.

This research supports human teams to make faster and
better decisions using cognitive agents that encourage both
agent-agent collaboration and human-agent collaboration.
In this investigation, the RPD model is chosen for two rea-
sons. First, RPD offers a well-structured process for bet-
ter solving ill-structured problems where there is no time
for extensive reasoning. Teamwide collaboration opportuni-
ties can be naturally embedded into the RPD process; this
enables us to further investigate dynamic information shar-
ing problems and distributed team cognition problems [3].
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adjustable autonomy); this advocates the view of human-
centered teamwork [15], where from a human’s perspective,
agents are not just black-boxes providing decision making
supports, but rather active peers that humans can directly
interact with.

While Norling, Sonenberg, and Ronnquist [12] and Nor-
ling [11] have examined the integration of RPD model into
BDI agent framework, they mainly focused on using rein-
forcement learning to enable agents to recognize the sub-
tle cues that distinguish one situation from another. Many
of other issues have been ignored, such as agent-agent col-
laboration and human-agent collaboration in the decision
making process, adaptation of decision strategies and coor-
dination strategies under time pressure, and effective team
cognition in complex, distributed environments. Psycholog-
ical studies (e.g., [8]) have shown that team members are ex-
tremely sensitive to their workload in high-tempo situations.
In this paper, we focus on understanding how RPD-enabled
agents may influence the performance of human teams in
high-tempo situations.

The remainder of this paper is organized as follows. In
Section 2 we give some backgrounds about the RPD model,
the adaptive team model, and DDD- a simulation tool for
distributed dynamic decision making. In Section 3, we intro-
duce R-CAST—an agent architecture implementing a col-
laborative RPD model, focusing on experience organization
and the iterative, collaborative RPD process. In Section 4,
we report the evaluation results of the adaptive decision-
making strategy implemented in R-CAST, and report the
experimental results of the performance of pure human teams
and human teams supported by R-CAST agents. Section 5
concludes the paper.

2. BACKGROUND

The RPD Model The RPD model [4] includes a recog-
nition phase and an evaluation phase. In the recognition
phase, a strategy called “feature-matching” is firstly used
to develop situation awareness. Typically, a decision maker
synthesizes the observed features about the current decision
situation into appropriate cues or pattern of cues, then tries
to recall similar cases by matching the synthesized cues with
previous experience. In the case that feature-matching can-
not provide an acceptable solution due to lack of information
or experience, “story-building” is used to develop a poten-
tial explanation of how the current situation might have
been emerging, and a workable solution can be suggested
afterward. The recognition phase has four products: rele-
vant cues (what to pay attention to), plausible goals (which
goals make sense), expectancy (what will happen next), and
courses of action (what actions worked before in this type
of situation). Due to the dynamic and uncertain nature of
the environment, it is very important to monitor the status
of expectancy because a decision maker may have misinter-
preted the current situation but he/she cannot recognize it
until some expectancy is invalidated as the situation evolves
further. In such cases, the decision maker may need to fur-
ther diagnose the current situation (e.g., to gather more in-
formation).

In the evaluation phase, a decision maker evaluates a
course of action by imaging how it will evolve. In case that a
course of action does not work for the current situation, the
decision maker can either adjust it, or reject it and examine
another option until a workable solution is obtained.
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Figure 1: The Adaptive Team Model [12]

Adaptive Team Model Successful teams are able to use
their knowledge of the situation being investigated to adapt
their behaviors to dynamic demands. Figure 1 illustrates
the Adaptive Team Model proposed by Serfaty, Entin, and
Johnston [14]. At the input level, stress is modeled as the
effects of operational conditions on team members and the
team structure. At the output level, stress is produced as
a function of the type of taskwork and teamwork strategies
used by the teams. The central premise of the Adaptive
Team Model is that high-performing teams are able to cope
with stress through decision strategy adaptation, coordina-
tion strategy adaptation, and structural adaptation, in an
effort to maintain acceptable team performance while keep-
ing the perceived stress at tolerable levels. Drawing upon
this theory, the R-CAST agent architecture to be introduced
in Section 3 supports dynamic adaptation in making deci-
sions under time stress situations.

DDD DDD (Distributed Dynamic Decisionmaking) is a
proven real-time simulation environment for measuring team
performance [6, 9]. It is rooted in the Integrated Team
Model [13] and the Adaptive Team Model [14]. DDD was
designed to capture the essential elements of different com-
mand and control team tasks. It allows researchers to gener-
ate various scenarios by manipulating task structures (vary-
ing the number, type, uncertainty, and timing of tasks to be
processed) and team organizational structures (changing au-
thority, team size, the ownership and control of assets, the
availability of information, types of communication, etc.).
By controlling the assets owned by them, experiment par-
ticipants can coordinate to accomplish tasks, plan actions
to gather information, and share information and resources.
DDD has been successfully used in understanding decision
making under stress [14], and in studying the performance
of AWACS Weapons Directors teams, Search and Rescue
teams, and Joint Task Force teams. In our experiments,
DDD was used as the test bed for comparing the perfor-
mance of human teams and agent-supported human teams
under varying time stress situations.

3. R-CAST:RPD-ENABLED COLLABORA-
TIVE AGENTS

RPD is a human-like decision-making model. We extend
the RPD framework to build a computational model for sup-
porting team decision making, providing the capabilities of
capturing human experiences, supporting both human-agent
and agent-agent collaboration, and making decisions adap-
tive to the situation changes. In this section, we describe
the R-CAST agent architecture, the representation of expe-
rience, and the collaborative decision making process.
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Figure 2: (a) R-CAST agent architecture, (b) Experience organization, (¢) A sample experience.

3.1 The R-CAST agent Architecture

The R-CAST agent architecture—an extention of the CAST

architecture [19, 18]-is composed of a communication man-
ager, a knowledge base, a process manager, and a collabo-
rative RPD module (see Figure 2(a)).

e The communication manager governs inter-agent com-
munication. An agent may either initiate a new con-
versation context or simply follow existing ones. The
manager organizes related messages into task-indexed
conversation sessions, and monitors the development
of on-going conversation protocols.

The knowledge base is a forward-chaining rule-based
system. Each R-CAST agent has an internal knowl-
edge base (KB) to maintain what it believes regarding
the external world and the other agents. The knowl-
edge base engine is active, proof-preserving, and time-
sensitive. It is active in the sense that it is able to rea-
son about missing information relative to the current
tasks, and proactively find ways to satisfy the inferred
information requirements. It is proof-preserving in the
sense that the proof-trace (i.e., supporting facts) of a
query is preserved; this is important when informa-
tion link-analysis is needed, and can be very useful in
planning for information gathering in subsequent ac-
tivities. It is time-sensitive in the sense that it can
“forget” certain information as time proceeds. Differ-
ent types of information may vary in their persistence
durations, which can be pre-specified according to the
nature of an information type.

The process manager manages the templates of prede-
fined plans, each of which contains preconditions, ter-
mination conditions, effects, and a process body. Upon
being requested by the decision-making module, the
process manager can instantiate plan instances from
appropriate templates. An agent may run multiple
plan instances simultaneously, each of which can be in
an active, suspended, or terminated state. The process
manager is responsible for scheduling the execution of
plan instances based on the constraints associated with
the instances and the KB’s current state.

The collaborative RPD module implements the RPD
process and allows team members (both humans and
other R-CAST agents) to take opportunities to collab-
orate with each other during the RPD process.

3.2 Experience Organization

Decision making in the RPD model is based on expe-
riences. Therefore, it is a critical design question to find
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appropriate ways to represent and organize experiences ac-
quired through cognitive task analysis from domain experts.

Typically, human decision makers are organized in au-
thority hierarchies, and a higher-level decision-making task
usually depends on the results of lower-level decision-making
tasks. It is thus natural to enable R-CAST agents to sup-
port hierarchical multiple-level decision makings. This is
powerful in two ways: (1) decision making and informa-
tion processing can be tightly coupled at multiple levels, if
we view decision making as a process of fusing input infor-
mation into decision results; (2) decision-making knowledge
and expertise are often distributed among team members.
The hierarchical approach encourages team-level collabora-
tion at multiple levels within the same decision context.

Each decision-making task has certain knowledge (exper-
tise) requirements on the decision maker. Two decision-
making tasks belong to the same type if they place the same
knowledge requirements (e.g., the same collection of cues
to consider). We thus use the concept “decision space” to
organize experiences for complex domain problems in a hier-
archical way (see Figure 2(b)), where experiences related to
one decision type are maintained in one experience knowl-
edge base (EKB). Upon getting (or identifying) a decision-
making task, an agent will make it mutually known among
the team. Those agents who have the required decision-
making knowledge can proactively help on the task or de-
cision tasks at lower levels. Those agents who do not have
the required knowledge (they thus cannot easily anticipate
the decision maker’s needs by themselves) can also provide
help if they receive information requests from the decision
maker or other teammates.

Each experience has four parts: cues, goals, course of ac-
tions, and expectancies. In our system, cues, goals, and
expectancies of an experience are all represented as predi-
cates. To facilitate the agent kernel to do feature match-
ing, dynamic situations are also internally represented as a
collection of predicates in KB. Formally, an experience is
denoted as e; = (C;, G, F;, A;), where C;, G, and E; are
collections of predicates, and A; is a set of plan names, refer-
ring to pre-defined courses of actions. Figure 2(c) gives an
example experience for dealing with enemies moving paral-
lely toward an airport. This experience can be used to pro-
tect the airport and ensure faster supply delivery. To choose
this experience, the agent has to gather enough information
to determine whether a task is an enemy unit, whether its
moving pattern is parallel, and whether the task is mov-
ing toward the airport. If the current situation matches
this experience, the agent has to monitor the associated ex-
pectancies. In case that the enemies disappear or the moving
pattern is changed, the agent has to make a new decision,
adapting to the situation changes.



start

(Investigation })(Feature matching )47

1 unfamiliar

familiar

Proactive

()

needs

( Expectancy monitor)( Evaluation )

workable not workhble

end

@

(b)

Information

Team HA

(d)

Figure 3: (a) The computational RPD process, (b) three communication modes driven by information needs,
(c) the structure of human teams, (d) the structure of agent-supported human teams.

3.3 The Collaborative RPD Process

R-CAST has realized a set of functions corresponding to
the main steps of the RPD model: situation analysis, recog-
nition, evaluation, implementation, and expectancy moni-
toring. Figure 3(a) shows the implemented RPD process.

3.3.1 Situation Analysis

In responding to a decision task, an R-CAST agent first
explores the decision space hierarchy to choose one that is
most applicable to the decision task by comparing the cur-
rent situation with the cues considered by a decision space.
In case that this R-CAST agent cannot handle the task due
to lack of expertise, it will try to find a competent R-CAST
agent and transfer the task to that teammate. The agent
whoever makes a commitment to a decision task will also let
others know so that they can help in the rest of the decision
making process.

3.3.2 Recognition

The recognition phase involves two sub-processes: inves-
tigation and feature matching.

Investigation is the process for collecting missing infor-
mation; it is the key to evolving recognitions. Given a task,
if an agent has the capacity and capability to gather in-
formation, it can activate an information-seeking plan. For
example, an agent can launch a helicopter to scout enemy
information. If the agent is incapable or has insufficient
resources to do so, it can send an information request to
others. In addition, other agents who have anticipated the
decision maker’s information needs may also proactively pro-
vide relevant information to the decision maker.

Feature matching While an R-CAST agent is gathering
information, it also triggers the feature matching function
to check whether there are past experiences similar to the
current situation. Because the information regarding the
current situation is recorded in the agent’s KB, the feature
matching process simply iterates over the experiences in the
active EKB and casts queries to the agent’s KB with the cues
to be evaluated. The experiences with the most number of
cues satisfied with respect to the KB are the recognition
results.

3.3.3 Evaluation and Execution

Evaluation is a process for selecting a workable course of
action. For human decision makers, evaluation is a mental
simulation process: people imagine how the course of ac-
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tion may evolve and judge whether the relevant goals can
be achieved. For an R-CAST agent, we simplify the pro-
cess by simulating the effects of the selected plan (i.e., the
chosen course of action) in the knowledge base (KB). First,
the RPD-agent checks whether the preconditions of the se-
lected plan is satisfiable with respect to its KB. If so, the
agent asserts the effects of the plan into its KB and uses
the KB engine to check whether the relevant goals become
true. If a plan can pass such a two-phase KB evaluation, it is
deemed as a workable solution for the current situation and
the agent will coordinate with other teammates to execute
the plan. Otherwise, the agent has to make another round
of recognition, going through the RPD process again.

3.3.4 Expectancy Monitoring

After an R-CAST agent makes a recognition, it will con-
tinuously monitor the associated expectancies until the com-
pletion of the selected course of action. Expectancy mon-
itoring is one of the key features implemented in R-CAST
to support adaptive decision making [14]. First, expectan-
cies can be used to initiate a complete new decision. An ex-
pectancy states what will happen, serving as a gate-condition
for keeping following the current recognition. Some ex-
pectancies may be so crucial that whenever they conflict
with the new observed facts, it indicates the decision maker
has heavily misinterpreted the current situation. In such
cases, the R-CAST agent has to diagnose the current recog-
nition, re-considering the whole space of the active EKB for
another round.

Second, R-CAST agents can use expectancies to refine a
decision, leveraging some structures within the active EKB.
The invalidation of some expectancies may indicate that
the once workable recognition is no longer applicable to the
changing situation. The already executed part of the se-
lected course of actions may still make sense, but the rest
has to be adjusted. In such cases, the R-CAST agent can
start another round of recognition, but it is sufficient to only
consider the additional cues that have certain relations with
the expectancies being invalidated. Let the experiences se-
lected in iteration ¢ and ¢ + 1 be e; = (Cy, G4, E;, A;) and
eit1 = (Cit1,Git1, Eit1, Aig1), respectively, and let C be
the recognition (experience) refinement relation. Then, if
ei C ei+1, what exactly are the relations that exist between
the corresponding components of e; and e;+17 After review-
ing the experiences used in our experiments, we did find that
C; C Ciy1, Gi = Giy1, and A; < A1 (< is a sequence pre-



fix relation) hold for most cases. Moreover, it is the invali-
dated part of E; that contributes to the difference between
C; and Cjiy1. From such a perspective, experiences in an
EKB can be viewed as being partitioned by some experience
refinement relation. The elicitation of experience refinement
relations and how to classify crucial/non-crucial expectan-
cies are important for better understanding the structure in-
side a decision space. However, detailed discussion of these
issues is out of the scope of this paper.

Therefore, we have implemented an iterative, computa-
tional RPD model in R-CAST, which explicitly incorporates
the idea of “recognition refinement”, and supports situation
reconsideration during action execution phase. The compu-
tational model is also much more flexible for us to investigate
the time pressure issue. Since R-CAST agents can make a
sequence of decisions (the length of the sequence is restricted
by the external time pressure), with one decision refining the
preceding ones, it can always return an acceptable decision
relative to the timing constraints. This virtually guarantees
no critical decision is missed under stress situations. Figure
4 is the pseudo-code of the iterative algorithm for RPD.

IterativeRPD(KB,EKB)
/* ey is of form (Cy, Gp, En, An). EC/EN stores
crucial/non-crucial expectancies being invalidated. */

1. SituationAnalysis();

2. CS = GetCurrentSituation(KB);

3. eo = Recognition(CS,EKB);

4. InformRecognition(eop);

5. For (i=0; ; i++)

6. [EC,EN] = validating(FE;);

7. If (timeout is true)

8. goto 1; /*prepare for the next task*/
9. CS = GetCurrentSituation(KB);

10.  If (EC is not null)

11. ei+1 = Recognition(CS,EKB);

12. InformRecognition(e;+1);

13.  Else If (EN is not null)

14. ei+1 = RefiningRecognition(CS,EKB);
15. InformRecognition(e;41)

Figure 4: The iterative algorithm for RPD.

3.3.5 Collaboration Opportunities

The computational RPD model implemented in R-CAST
is also a collaborative model. As shown in Figure 3(d), each
R-CAST agent (e.g., S3 agent) may have a human partner,
who can override the decisions suggested by the R-CAST
agent. An R-CAST agent can also team up with other R-
CAST agents and interact with them. As far as a specific
decision task is concerned, if one RPD-agent who has the re-
quired expertise is designated as the final decision maker, all
the other R-CAST agents will be supporters (of course, the
supporters may be the final decision makers for other tasks).
In the current implementation, a decision maker agent can
collaborate with its human partner and the other support-
ing agents along the RPD process. Here we mainly focus
on exchanging information relevant to establishing situation
awareness for decision makings.

A decision maker agent can derive its information needs
regarding the current decision task from the cues considered
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in the active experience base (EKB) and the expectancies of
the experiences that are found similar to the current situa-
tion. Asshown in Figure 3(b), the derived information needs
can be satisfied in three ways. First, teammates can proac-
tively provide the decision maker agent (DMA) with infor-
mation relevant to the cues that the DMA is considering.
As we mentioned earlier, this happens when a teammate
has been informed of the decision task, and the teammate
has the required expertise (e.g., its experiences overlap with
the DMA’s). Second, in cases where agents do not have
overlapped experiences, the decision maker may explicitly
request information from teammates. Here, ‘ask-reply’ be-
comes a handy way to compensate the limitations of proac-
tive communication. Third, the DMA can subscribe infor-
mation relevant to the expectancies that need to be continu-
ously monitored. When the DMA informs other teammates
about the recognition, it is also implicitly requesting them
to monitor the expectancies. Such collaborative expectancy
monitoring takes full advantage of the team’s distributed
cognition, so that the DMA can terminate the activity re-
sulted from a wrong recognition at the earliest opportunity.

4. EXPERIMENTS

We describe the design of the scenarios used in the ex-
periments, evaluate the adaptive decision making feature of
R-CAST, and then report the result of the experiments for
understanding R-CAST agents co-working with humans un-
der time stress.

4.1 Scenario Design

The basic scenario involves a blue (friendly) force consist-
ing of three battle functional areas (BFAs): the intelligence
cell (S2), the operations cell (S3), and the logistics cell (S4).
In the battlefield, there is a supply route connecting an air-
port A (the bold square in Figure 5(a)) and a target area
T (the bold ring in Figure 5(a)) in the frontier. The overall
goal of the blue force is to protect the airport A and the
target area T , and to ensure as many rounds of supplies
as possible are delivered by S4 from A to T . For the pur-
poses of our study the capabilities of the BFAs have been
simplified and defined as follows:

e 52, who has an unmanned aerial vehicle (UAV) under
its control, is able to collect information regarding the
approaching objects (tasks), and identify whether a
task is a neutral force or enemy unit.

S3, who has a tank under its control, is able to destroy
enemies and protect the supply route. The tank will
be heavily penalized if it attacks an unidentified task.

S4, who has one truck under its control, is able to
deliver supplies from A to T along the supply route. If
within the attack range of an approaching enemy, the
truck will be destroyed.

Clearly, the BFAs have to collaborate with each other to
have a better team performance. Both S3 and S4 rely on
S2 to share information regarding the approaching tasks.
Otherwise, the airport or the target area might get attacked,
and the truck has to move away to avoid being attacked
(in such a case, it wastes time unnecessarily if the task is
actually a neutral force). S4 also relies on S3 to protect the
truck to ensure faster delivery.
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Figure 5: (a) A screen shot of S2 cell, (b) The interface of R-CAST agent: a human uses the left panel to

input the attack patterns.

We used DDD as the test bed. DDD allows us to design
scenarios with different classes of tasks with different char-
acteristics. We defined 4 task classes (2 classes of neutral
force and 2 classes of enemy units) with different strength
values (the minimum resources required to attack a task)
and different maximum moving speeds. Each task class can
generate many instances. Two task instances of any type
combination form one joint-task to the blue force. There
is a 2-second interval in between two joint-tasks. We also
designed 6 moving patterns for the task instances:

H: one task moves toward A , the other toward T ;

V: both tasks move toward A ;

K: move like V initially, then one moves away;

IL: move like H initially, then the one toward A moves away;
JI: move like H initially, then the one toward T moves away;
JL: move like H initially, then both move away.

When a task moves away, even if it is an enemy unit, it
has no threat to the blue force, which can therefore save
resources for the next round of attack. Since the H pattern
may change to an IL, JI, or JL pattern, and the V pattern
may change to a K pattern, the decision makers have to
be alert to adapt their decisions in a timely manner. By
varying the moving patterns of attack, together with task
type combinations, we were able to control task complexity
in our experiments.

We did some testing experiments first. The participants
were asked to play the roles of BFAs using some testing
scenarios. Useful experiences were elicited from the testing
experiments (see Figure 2(c) for an example). These expe-
riences were used by the R-CAST agents in the following
experiments.

4.2 Evaluating The Adaptive Decision Making

In the first experiment, two human participants need to
play the role of S2 and S4, respectively. An R-CAST agent,
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together with a human partner, plays the role of S3. The
human partner of S3 only informs the R-CAST agent of the
task moving patterns by clicking the corresponding buttons
in the human-agent interface (Figure 5(b)). We designed
a scenario with 48 joint-tasks, one pops up after the pre-
ceding one has been handled. Most of the joint-tasks in
the scenario are K, IL, JL, and JI patterns. We observe
whether the tank controlled by the R-CAST agent can adapt
to pattern changes. The result shows that, for all the joint-
attacks with pattern changes, if the human can inform the
changes in time, the R-CAST agent can terminate the cur-
rent course of action and make another decision according
to the changed situation. Take one case as an example:

: A joint-task of pattern V appeared;

: S3 partner informed S3 agent by clicking the V-pattern
button on the interface;

: S2 identified one enemy unit and informed this to S3;

: The S3 agent moved the tank to an attack point;

: In the course of tank’s moving, the enemy unit was
moving away (the attack pattern changed to K);

: S3 partner informed S3 agent by clicking the K-pattern
button on the interface;

: S3 agent terminated the tank’s attacking plan.

4.3 Understanding R-CAST Under Stress

The following set of experiments is to understand how R-
CAST agents can act as cognitive aids to human partners
under stress situations. According to the Adaptive Team
Model [14], we modeled time pressure as the effects of oper-
ational conditions. As we explained, the maximum moving
speed can be specified for a task class. DDD also allows
scenario designers to set the actual task moving speeds rel-
ative to the maximum speed. We thus designed 9 scenarios
(each has a fixed task moving speed), with the speed ranging
from 0.2 to 1, relative to the maximum speed. The faster the
tasks move, the more stress on the experiment participants.
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Figure 6: As stress increases, (a) enemies destroyed, (b) supplies delivered, (c) the performance of S4 played

by humans, (d) the performance of S4 played by agents.

Each scenario contains 48 joint-tasks, with the attack pat-
terns randomly configured. Depending on the task speeds,
it takes 4 to 23 minutes to run a scenario.

To conduct our study, we designed two teams. Fig. 3(c)
shows the structure of the human team (H), where each
experiment participant has a DDD screen like Fig. 5(a).
S2 is responsible for identifying enemy units for the whole
team. S2 can (1) move the UAV to an approaching task; (2)
identify a task by opening the Identify-Task window; and
(3) transfer the enemy information to S3 and S4 through a
Transfer-Info popup window. On S3 and S4’s screens, the
icon of a task is changed to either ‘neutral’ or ‘enemy’ only
after S2 has transferred the task identification to them. S3
is responsible for attacking enemy units. S3 can (1) move
the tank to an attacking point; (2) attack an enemy unit;
and (3) move the tank to an optimal waiting point. S4 is
responsible for delivering supplies. S4 can (1) move the truck
to a target; and (2) move the truck away from a threat and
wait until the threat disappears.

Fig. 3(d) shows the structure of human-agent team (HA),
where two R-CAST agents play the roles of S2 and S4,
respectively. One R-CAST agent, together with a human
partner, plays the role of S3. While practically the hu-
man partner can override the S3-agent’s decisions, in the
experiments we only allow him/her to inform S3-agent of
the attack patterns (because generally, humans are superior
in spatial reasoning than agents). Similar to Team H, the
S2-agent needs to transfer enemy information to the other
agents. Clearly, Team HA requires both human-agent and
agent-agent collaborations.

Our experiments involved six H teams and six HA teams,
where human participants were selected from graduate stu-
dents at PSU. Each team was tested with the 9 scenarios in
a random sequence. The result is given in Fig.6.

Fig. 6(a) plots the average performance of the six HA
teams and the six H teams in terms of what percent of en-
emy units were destroyed, and Fig. 6(b) plots their average
performance in terms of how many rounds of supplies were
successfully delivered. This clearly indicates that human-
agent teams performed much better than pure human teams
(p <0.001 in terms of S3’s performance, p = 0.211 in terms
of S4’s performance). When time pressure is low, both the
HA and H teams could identify and destroy all the enemies.
As time pressure increased, the performance difference of the
HA teams and H teams also increased: the performance of
H teams decreased dramatically when enemies attacked at
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higher speeds, while the performance of HA teams were rel-
atively stable. Even in the extreme case where tasks moved
at the maximum speed (the last point in Fig. 6(a)), the mis-
sion was almost impossible for H teams, while the HA teams
could still destroy 36% of the enemy units. While this result
reinforces the findings that people are extremely sensitive to
time pressure [8], it also indicates that as a cognitive aid,
RPD-agents can enhance humans’ performance under time
pressure.

Fig. 6(a) also shows the deviation interval of each data
point. It reveals that the performances of the six HA teams
are mutually supportable, while the performances of the six
H teams vary from each other dramatically. To have a better
insight on how human personalities may affect the perfor-
mance, Fig. 6(c) plots the performances of the S4s in the
six H teams, and Fig. 6(d) plots the performances of the
S4-agents in the six HA teams. It reveals clearly that S4-
agents’ performances are rather stable, independent of who
plays the human partner of S3. We also discovered that
the performances of S4s in the H teams do have some re-
lations with human personalities: as time pressure changes,
overcautious persons may perform smoothly while impulsive
persons may perform inconstantly. However, the last three
points in Fig. 6(c) suggests that such difference in person-
ality would not affect the performance much when the time
pressure is extremely high.

5. COMPARISON

Other researchers have been investigating (a) computa-
tional approaches to RPD to represent human decision mak-
ing for concept exploration, analysis, or evaluation (e.g.,
[16]); (b) the use of agents as aids to information gather-
ing in a decision environment (e.g., [7]); and (c) cognitive
models of situation awareness (e.g., [2]). The collaborative-
RPD model implemented in R-CAST is linked to but also
distinguished from the existing work in important ways.
First, R-CAST is the first RPD-enabled agent architecture
designed for supporting teamwide collaborations (including
human-agent and agent-agent collaborations). With collab-
oration in mind, we take an intensive view of the recognition
phase of the RPD process and focus on the investigation
of how proactive information exchange among teammates
might affect the performance of a decision making team.
Second, R-CAST agents can proactively reason across deci-
sion spaces, seek missing information from external intelli-
gence sources, exchange relevant information among team-



mates, and monitor an on-going decision against potential
expectancy. Third, the “cognitively-aware” agents, as team-
mates or decision aids, each assigned to a specific functional
area, can be used to assist human teams (e.g., military staff)
in developing shared situation awareness while balancing in-
formation requirements against the dynamic and time sen-
sitive decision making process.

6. CONCLUSION

There has been very little work in incorporating natural-
istic decision making models for supporting mixed human-
agent teams in making team decisions. In this paper, we
described the architecture of R-CAST, the organization of
experiences, and how the R-CAST agents make adaptive de-
cisions based on collaborative expectancy monitoring. We
evaluated R-CAST in a real-time simulation environment
using scenarios with frequent decision-making tasks under
different tempo situations. The experiment results conform
to psychological findings that human team members are ex-
tremely sensitive to their workload in high-tempo situations.
More importantly, it suggests that human teams, when sup-
ported by R-CAST agents, can perform better in the sense
that they can help maintain team performance at acceptable
levels in high time pressure situations. While this may not
be conclusive yet, it does excite us to further investigate dis-
tributed team cognition problems using the R-CAST agents.
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