
Extending the REpresentational State Transfer (REST)

Architectural Style for Decentralized Systems

Rohit Khare and Richard N. Taylor
University of California, Irvine

{rohit,taylor}@ics.uci.edu

Abstract

Because it takes time and trust to establish agreement,

traditional consensus-based architectural styles cannot

safely accommodate resources that change faster than it

takes to transmit notification of that change, nor re-

sources that must be shared across independent agencies.

The alternative is decentralization: permitting inde-

pendent agencies to make their own decisions. Our

definition contrasts with that of distribution, in which

several agents share control of a single decision.

Ultimately, the physical limits of network latency and the

social limits of independent agency call for solutions that

can accommodate multiple values for the same variable.

Our approach to this challenge is architectural: pro-

posing constraints on the configuration of components

and connectors to induce particular desired properties of

the whole application. Specifically, we present, imple-

ment, and evaluate variations of the World Wide Web’s

REpresentational State Transfer (REST) architectural

style that support distributed and decentralized systems.

1. Introduction

We are interested in designing decentralized software

for a decentralized society — systems that will permit

independent citizens, communities, and corporations to

maintain their own models of the world. Portions of such

applications must operate under the control of multiple,

independent administrative authorities (agencies); and

may be physically separated to the extent that communi-

cation latency between those parts becomes a significant

factor in their design.

The state of the art in software engineering has long

focused on designing solutions for distributed systems,

where multiple agents share control of a single model.

Unfortunately, this presumes it is always possible to

establish consensus over the current value of a variable.

Physics abandoned simultaneity with relativity in 1905;

formal models of computing disproved consensus over

faulty, asynchronous networks in 1985 [12]. Regardless

of how dominant centralized client/server architectures

may appear to be today, the physical limits of latency and

the social limits of free agency will make decentralization

inevitable for software as well.

Our approach to coping with uncertainty and dis-

agreement is based on software architecture: constraints

on configurations of components and connectors that

induce desired properties of an overall system. This paper

introduces several new architectural styles that are

expressly designed to accommodate decentralization.

First, we sketch a formal model of the problem that

allows us to analyze the limitations of consensus-based

architectural styles. Second, we address those limitations

by identifying new architectural elements and constraints

that could be added to an existing network-based archi-

tectural style to induce each of those properties. Third, we

evaluated the feasibility of those newly derived styles by

implementing infrastructure for, and applications of, each.

2. Problem Analysis

Like any other design discipline, software develop-

ment is subject to the vagaries of fads and fashion. In

recent years, there has been a surge in the popularity of

the term ‘decentralization’: we hear of ‘decentralized file-

sharing,’ ‘decentralized supercomputers,’ ‘decentralized

namespaces,’ and a slew of ‘peer-to-peer,’ ‘Internet-

scale,’ and ‘service-oriented’ architectures [8, 32, 33].

To date, the software engineering and software archi-

tecture literature has not embraced a formal definition of

‘decentralization.’ Indeed, in a full-text search of the

ACM Digital Library, we found that it was often consid-

ered a synonym for ‘distribution’ until only recently.

Even as of 1998, it only occurs once in the official ACM

subject classification [1], and then only with respect to the

organizational behavior of MIS departments [24].

Thus, our first goal is to provide precise, testable defi-

nitions. In this section, we will discuss the factors leading

to decentralization (latency and agency); provide a formal

definition of simultaneity in terms of the consensus

problem; and use that to define the properties of central-

ized, distributed, estimated, and decentralized resources.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

2.1 Latency

Latency makes simultaneous agreement impossible in

many real-world situations. Consider how it affects a

stock traded on the (distributed) NASDAQ market. A

stockbroker in London interested in knowing the current

price of the stock consults a server that broadcasts its

current price. Realistically, Internet delays could range up

to two seconds, or worse. If the actual price in New York

were changing at up to 1 Hz, it would become impossible

for the London stockbroker to know its current price.

The concentric circles in Figure 1 represent latencies

(on a logarithmic scale). Their radii are correlated with

distance, but more intriguingly, also determine the

maximum update rate of an event source. We call this the

‘now horizon’, since it demarcates which components can

reliably refer to the value of a variable ‘right now.’

Latency is an absolute constraint for software archi-

tects because it takes time and energy to transmit

information across a channel. It can be factored into three

separate limits: propagation delay, bandwidth, and

disconnection (longest tolerable interruption).

2.2 Agency

While latency is a physical limit, the concept of an

agency is a socially constructed one. We are referring to

the divergent interests of the organizations that ultimately

own and operate the computers that software runs on [39].

An agency boundary denotes the set of components

operating on behalf of a common (human) authority, with

the power to establish agreement within that set and the

right to disagree beyond it it.

Consider a database package. Run a ‘local’ copy for

yourself, and then if you store X=5, then 5 is the one and

only true value of X. Accessing the same application over

a network, though, raises the possibility that the data may

have been tampered with or biased. That is a profound

difference between the output of the local database

component (“I believe X is 5 now”) and that of a remote

database service (“Someone else claimed X was 5 then”).

2.3 Simultaneous Agreement

The impossibility of consensus is considered to be one

of the most fundamental results of the theory of dis-

tributed computing [30].

In 1985, Fisher, Lynch, and Paterson proved that on a

completely asynchronous network (one with maximum

message latency d=), if even one process can fail, then it

is impossible for the remaining processes to come to

agreement [12]. Lynch’s textbook also includes a proof

that even with a partially synchronous network (one with

only a finite d), but with message loss or reordering,

consensus still requires at least d seconds [30]. In general,

tolerating f processes failing requires at least (f + 1)

additional rounds.

Even so, this model of consensus still does not ensure

simultaneity. Some processes may decide sooner than

others (e.g. because of varying network latency). Fur-

thermore, if the shared value were modified, some

processes may still be using the older value, even though

others have moved on.

To formalize this condition, we borrowed the term

“simultaneous agreement” from contract law. Stated as a

condition on two separate variables, a leader and a

follower, we define it as the interval satisfying this

conjunction:

t0 , ti , t j : (t i tj) (t i t0 + d) :

v : ti v tj : P leader(v) = P follower(v)

u : t0 u tj : P leader(u) = P leader(t0)

That is, the follower’s value must become equal to the

leader’s before it changes. In Figure 2, where world-lines

are drawn vertically for the state of the leader and

follower processes, this only holds in the shaded region.

Note that the second message’s lease expires before it

even arrives. In general, it is impossible to guarantee

simultaneous agreement for any centralized resource that

changes more frequently than 1⁄d times per second.

Stock Trader in Stock Trader in
London

IBM = $50.25 IBM = $50.15 IBM = $50.00

10 msec 500 msec 1000 msec 2000 msec

Stock Price Server in
New York

Stock Trader in
Chicago

Stock Trader in
London

Figure 1: Latency induces uncertainty for traders “further”
away from a centralized resource.

message: '3'

FollowerLeader

message: '5'

Simultaneous Agreement

pleader = 5

pleader = 3

pfollower = ∅

pfollower = 5

 pfollower = ∅

d

pleader = 7

message: '7'pleader = 3

t0

ti

tj

Figure 2: The shaded region illustrates an interval of
simultaneous agreement.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

2.4 Definitions

Using our formal model of simultaneous agreement,

we derived precise, declarative definitions of the proper-

ties of centralized, distributed, estimated, and decentral-

ized variables in an expanded work [21]. For this paper,

we opt for more concise, if less formal, definitions:

A centralized variable requires simultaneous agree-

ment between a leader and all of its followers.

A distributed variable is determined by applying a

shared decision function over all participants’ inputs.

An estimated variable is in simultaneous agreement

only a fraction of the time.

A decentralized variable is determined by applying a

private assessment function over other trusted partici-

pants’ variables (or estimates of those variables)

Another way of distinguishing these terms is by the

degree of indirection required to implement each. The

basic element of information storage is the value:

centralization requires every agent to use the same value.

This can be accomplished as simply as by connecting

several devices to the same wire or other shared medium.1

The next level of indirection is a private namespace for

storing values over time: the variable. In a distributed

system, a closed group of agents uses a single logical

name to refer to a shared variable — even though its

actual value is not stored in one place, but rather in a set

of ‘shadow’ variables held by each participant. Later, for

an estimated system, there will still be one putative shared

variable, but the local proxy may become less precise.

Decentralization depends on a third, additional dis-

tinction: a public namespace of concepts that may differ

across agencies. An intuitive illustration is the difference

between typing the address HTTP://WEATHER.ORG/LAX

into a Web browser, and typing the concept " L A

WEATHER REPORT" into a Web search engine’s query box.

The latter will return links to many different organiza-

tions’ opinions of the weather in Los Angeles — but also

to forecasts for Louisiana (which is also abbreviated LA).

3. New Consensus-Based Architectural Styles

Before we proceed to extend it, it behooves us to un-

derstand the properties that REST can induce on its own.

We will then describe four different capabilities that can

be added to REST: Asynchronous event notification;

Routing messages through active proxies; Decision

functions that select the current value of a shared

resource; and Estimating current representations based

upon past ones. Later, we will combine all of these basic

facilities to derive a new style for decentralized systems.

1 “A wire is just a renaming device for variables.”

— Alain J. Martin, asynchronous VLSI designer [31]

3.1 Modern Web Architecture

There are many different network-based architectural

styles, such as client-server and remote-data-access [9].

The style popularly known as “3-tier client/server” is a

combination of both of those styles: presentation interface

at a client, business logic on a server, and storage in a

database. It was arguably the dominant style of applica-

tion development until the mid-1990s, when it was

eclipsed by architecture of the modern Web, as descibed

by REpresentational State Transfer (REST, [11]).

In this style, software components are recast as

network services. Clients request resources from servers

(or proxy servers) using the resource’s name and location,

specified as a Uniform Resource Locator (URL, [3]). All

interactions for obtaining a resource’s representation are

performed by synchronous request-response messages

over an open, standard network protocol (HTTP/1.1,

[10]). Requests can also be relayed via a series of proxies,

filters, and caches, all without changing its semantics.

REST’s essential distinction, though, is not found in

such details. Rather, its layer of indirection2 between

abstract resources and concrete representations captured

the Web’s key insight for decentralizing hypertext —

permitting broken links between independent sites [20].

Nevertheless, REST (and the Web, its archetypal

application) still has significant limitations:

One-shot: Every request can only generate a single

response; and if that response is an error message (or

lost), there are no normative rules for proceeding.

One-to-one: Every request proceeds from one client to

one server. Without a way to transfer information to a

group of components, this leads to nested “proxy chains.”

One-way: Every request must be initiated by a client,

and every response must be generated immediately,

precluding servers from sending asynchronous notifica-

tions. REST cannot model peer-to-peer relationships well.

3.2 REST: REpresentational State Transfer

To ground our exploration of these new issues, we

began by restating REST to verify that it could induce the

property of consensus. Our more-rigorous correctness

argument elucidated that REST depends on synchronized

global clocks to ensure leases expire simultaneously.

Synchronization still presumes that every response

message specifies its lease interval. Many real-world

ORIGINSERVERs do not specify when the next permissible

resource update is scheduled. The external environment

could update resources at random (e.g. editing a file “by

hand”). One solution is a heartbeat: defining a default

lease duration and delaying updates until the next cycle.

2 “Any problem in computer science can be solved by another

level of indirection”— David Wheeler, chief prog., EDSAC [19]

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

As an aside, we have also developed a variation, REST

with Polling (REST+P) that can induce a weak form of

simultaneous agreement. With it, clients can follow leader

values as long as the minimum lease interval is 3d.

3.3 A+REST: Asynchronous REST

To achieve simultaneous agreement as quickly as

theoretically possible (within d of any change), we

propose an event-based approach that permits the central

resource to broadcast notifications of its state changes.

Our insight is to recast the concept of a resource in REST

as an event source that emits event notifications corre-

sponding to each change in its representation(s).

Rosenblum and Wolf [37] propose that “An event is

the effect of the termination of an invocation of an

operation on some object of interest…Events occur

regardless of whether or not they’re observed.” Our

stance is perhaps the opposite, insofar we consider that

the very act of ‘observation’ to be what distinguishes

events from messages. Specifically, our concern stems

from the realization that ‘on the wire,’ there is little

discernable difference between a messaging protocol and

an event-notification protocol. However, there is a

dramatic difference between the programming model for

a batch message queue and an event handler. Thus, our

view might be summarized as “event notifications are

messages that cause actions.”

In either case, though, there is a clear distinction be-

tween the occurrence of an abstract event and the

concrete notification of an observation of one, as defined

by the event lifecycle model of [36].

As illustrated in Table 2, a NOTIFYINGORIGINSERVER

will transfer representations of every change to a resource

as long as a client stays connected — a long-running

WATCH request rather than a one-shot GET, with multiple

NOTIFY replies. In practice, this is a significant imple-

mentation challenge across the public Internet [6].

3.4 R+REST: Routed REST

While A+REST tackled the essential challenge of

latency, message routing will focus on improving REST’s

support for multiple agencies.

The specific property we intend to induce is multilat-

eral extensibility: the ability to add functionality to an

application using components owned by several different

agencies. The complication is that new 3rd and 4th parties

may be trusted by the original client or server, yet distrust

each other.

The reason this becomes a problem for REST is that,

while it offers exemplary support for “active proxies” to

add functionality without modifying deployed applica-

tions, it can only arrange them in linear proxy chains [22].

This permits intermediaries to tamper with messages.

With redirection of replies depicted in Table 3, serv-

ices can be composed while eliminating unjustified trust

relationships — and minimizing total latency as well.

Composing multiple proxies, as in the simple chained

evaluation of two functions owned by agencies A and B

using data from a third, C . Figure 3 illustrates how the

combination of Asynchrony and Routing leads to the

highest performance: triangulation. It depicts five

Table 1: Summary of the REST architectural style.

Origin
Server

 Client C S

REST

GET

GlobalClock

Goal Refer to a centralized resource.

New
Elements

GLOBALCLOCK makes explicit how clients, servers, and
caches are synchronized.

New
Constraints

ORIGINSERVER must always specify a consistent expiry
deadline if the resource is ever to be updated.

Induced
Property

Consensus: Ensures that local resource proxies could

agree with leader. [REST+Polling would guarantee it.]

Table 2: Summary of the A+REST architectural style.

Notifying
Origin
Server

 Client C S

A+REST GlobalClock

WATCH

NOTIFY

Goal Refer to a changing centralized resource.

New
Elements

NOTIFYINGORIGINSERVER that can send multiple
responses to a WATCH request.

New
Constraints

Every resource update must lead to transmission of a
new representation to all watchers.

Induced
Property

Simultaneous Agreement: Ensures that local resource
proxies will agree with leader’s value, even if it is
being updated at 1⁄

d
Hz.

3d3d

REST R+REST ARREST

4d

2d

5d

A+REST / REST+P

F
A

X
C

G
B

F
A

X
C

G
B

F
A

X
C

G
B

F
A

X
C

G
B

t=0
WATCH WATCH

NOTIFYGET

POST

POST

ROUTE

(double arrows
mean ‘transmit
repeatedly.’)

(dashed lines
indicate the
update rate)

Figure 3: Latency of evaluating F(G(X)) in several styles.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

approaches to the problem of computing FA(GB(XC))): two

using read(), which could fail; and three using some form

of subscribe(). In the case of REST+P, the dash-dot line

shows the worst case. In order to compare characteristic

update frequencies, we did not count the initial sub-

scribe() requests, by assuming they occurred beforehand.

3.5 REST+D: REST with Delegation

The earliest efforts to extend the Web to support

authoring immediately ran afoul of the “lost update”

problem. Two editors using local, cached copies could

easily overwrite each other’s work using a simple PUT.

The typical criteria for judging a distributed database are

the ‘ACID properties,’ standing for Atomicity, Consis-

tency, Isolation, and Durability [16]. Most practical

systems have to make tradeoffs in the degree of ‘ACID-

ity’ to avoid tight coupling, though.

There is little an architectural style can do to enforce

Durability (an implementation choice), or Consistency (an

application-specific semantic). What REST+D can do is

ensure total serialization of all updates to a resource.

The MUTEXLOCK Component is a proxy that wraps

around an ORIGINSERVER to ensure mutually exclusive

access. It contains an atomic test-and-set register identi-

fying the only client whose request messages it will

forward on to the ORIGINSERVER until instructed other-

wise (or until the lock’s lease expires). All other requests

are simply discarded until the register is reset.

The general form of the styles we derived that share

control of a resource among several peers is to add a

Decision function. Delegation is one such, akin to

transaction processing monitors that temporarily central-

ized control at one location for a commit protocol.

ARREST+D, a more distributed solution, eliminates the

need for a single event router by adding a Distributed lock

protocol, such as Lamport’s Bakery algorithm [28].

4. New Consensus-Free Architectural Styles

Beyond the ‘now horizon’ or beyond an ‘agency

boundary’ there is uncertainty referring to any remote

resource. Latency and agency induce different sorts of

uncertainty, though: loss of precision vs. loss of accuracy.

Communication between components is subject to

network loss, delay, and congestion, all three of which

increase message latency. Depending on the degree of

auto-correlation a resource exhibits, relying on older

information can reduce the precision of local estimates.

Furthermore, once resources are decentralized into an

ensemble of independently controlled, local resources,

such estimates also become less accurate. That is because

there is no single ‘true’ value any more, since facts will be

replaced by a host of agency-specific opinions.

Our insight for managing the risk of computing with-

out consensus is a counterpoint to the ACID properties for

centralized and distributed systems. Our so-called

‘BASE’ properties require decentralized systems to rely

solely on Best-effort network messaging; to Approximate

the current value of remote resources; to be Self-centered

in deciding whether to trust other agencies’ opinions; and

Efficient when using network bandwidth.

4.1 REST+E: REST with Estimates

Our first step is to improve the precision: minimizing

the error between the current value of the local resource

and the (single) remote resource it corresponds to.

However, to better understand the role of estimation in

everyday usage of the Web, we first specified REST+E,

an elaboration of REST’s default behavior once d= .

Table 3: Summary of the R+REST architectural style.

Routing
Proxy

 Client C S

R+REST

ROUTE

C

POST

Origin
Server

S

GlobalClock

Goal Compose services provided by multiple agencies.

New
Elements

ROUTINGPROXY Component that permits clients to
control relaying.

New
Constraints

Every representation transfer must be justified by a
corresponding edge in the web of trust.

Induced
Property

Multilateral Extensibility: Can compose trusted
invocations without requiring mutual trust.

Table 4: Summary of the REST+D architectural style.

ε

Mutex
Lock

(Proxy)

 Client
(success)

C

S

REST+D

LOCK

C

PUT

Origin
Server

S

d

 Client
 (failure)

C

(Internet) (RPC)

GlobalClock

Goal Refer to a pairwise distributed read/write resource
reliably.

New
Elements

MUTEXLOCK Component ensures only one client at a
time has write access to the origin server.

New
Constraints

Lock must be acquired before attempting write.

Current state of the resource must be read before
attempting write.

Induced
Property

ACID (Pairwise) Simultaneous Agreement:
Clients can modify centralized resources within 3d
— but only in the absence of contention.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

Best-effort representation transfers are pushed down to

the presentation layer of the network using TCP’s sliding-

window acknowledgement and retransmission protocols.

Approximate representations are returned by caches of

several sorts: browser histories, caching proxies, and

content distribution networks. Staleness is generally

acceptable, even preferred in some cases.

Self-centered trust management is enforced by the use

of server-based access controls, such as passwords.

Efficient representation formats are selected by client-

driven content negotiation and compressed encodings.

4.2 ARRESTED: Putting it all together

We combined each these four basic capabilities to

derive new styles from REST for centralized (ARREST),

distributed (ARREST+D), estimated (ARREST+E), and

decentralized resources (ARRESTED).

By combining asynchrony and routing, we created

first-class subscriptions, which are the building block for

familiar event notification services. Architects can specify

simultaneous notification to a group of components using

multiple, persistent subscriptions.

With an event-based style, it is easier to induce both

ACID (ARREST+D) and BASE (ARREST+E) properties.

In particular, End-to-end Estimator functions can manage

private proxy resources that replace references to shared

resources. The upper half of Table 6 describes compo-

nents that can store-and-forward retransmissions of lost or

delayed notifications, predict future values from past

information already received, discard information from

untrusted sources, and summarize past data so as to send

only the latest information. Ultimately, summarizers

could even take advantage of excess bandwidth to reduce

latency further by speculating about future states as well

[43]. All of these extensions to REST serve to increase

precision of an estimate of a single remote resource

(ARREST+E).

Table 5: Summary of the REST+E architectural style

REST+E

Origin
Server

 Client
GET

GlobalClock

TCP/IP

Accept-types

History Cache

TCP/IP

Content-Neg.

[Proxy] Cache

AccessControlCredentials

C S

Goal Refer to a read-only centralized resource beyond its
now horizon

[Old]
Elements

[TCP/IP], [CACHE], [ACCESSCONTROL],

[CONTENTNEGOTIATION]

New
Constraints

Inertia assumes that the most recent representation is
still valid, until cache revalidation fails.

Induced
Property

Approximate agreement: The local proxy should be
in simultaneous agreement P% of the time

Table 6: Summary of the ARREST+E and ARRESTED architectural styles.

Central.
Event

Router
 Client

ARREST+E

SUBSCRIBE

Origin
Server

POST

GlobalClock

Credentials TrustManager Credentials TrustManager

C S C S

Summarizer PredictorStore/ForwardStore/Forward

Agent #3 Agent #5

Agent #4

Agent #2

Agent #1

ARRESTED

Subscriber
Resource
(per #4)

Subscriber
Resource
(per #2)

Subscriber
Resource
(per #5)

Assessor

Assessor

Assessor

1

2

3

5

4

Web of

Trust

Goal New Elements New Constraints Induced Property

STOREANDFORWARD Connector that adds end-
to-end retransmission & acknowledgement.

End-to-end retransmission of
messages and acknowledgements.

Best-Effort data transfer:
Cope with message loss.

PREDICTOR Connector for encapsulating
Turing-complete prediction functions.

Predict probable current state
from past data (where possible).

Approximate estimates:
Cope with message delay.

TRUSTMANAGER Connector that drops
notifications from untrusted sources.

Ensure that all reachable
endpoints are also trusted.

Self-Centered: Cope with
dynamic participation.

Refer to a read/write
resource connected by a
faulty network beyond
its now horizon.

SUMMARIZER Connector to resample queued
events at lower frequency, reduce size.

Prohibit transmission of already-
expired data. Eliminate buffering.

Efficient data transfer:
Cope with net congestion.

Decentralize control of
a shared resource across
disjoint ‘now horizons’

ASSESSOR Component that manages the risk
of inter-agency disagreement over the ‘true’
value using a panel of opinions.

Eliminate reliable references to
remote resources; only contingent
assessments remain.

Consensus-freedom: avoid
presuming feasibility of
consensus.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

The ultimate challenge we must address, though, is aid

architects in designing applications that accurately model

even uncertain information in decentralized systems. Our

proposal for increasing accuracy is to assess multiple,

simultaneously valid opinions of the same concept from

several agencies. If we presume the errors of measure-

ment are independent — and we are speaking of decen-

tralizing some concept that is at least conceivably

centralizable (a price, rather than an arbitrary value) —

then multiple observations can reduce total error.

Of course, such a Decentralized decision function may

be as simple as taking the minimum, maximum, mean,

median or mode; or as complicated as a Turing-complete

simulation of an underlying physical process. Any of

these, though, is preferable to blocking while waiting for

a lock from a transaction manager.

5. Implementation Experience

Deriving new architectural styles and validating the

properties they can induce by construction is only a

conceptual exercise. It is at least as important to establish

that all of these new components, connectors, and

constraints are actually implementable; and that actual

applications can be constructed in each of these styles.

5.1 Infrastructure

We have over five years of experience developing an

experimental event-routing infrastructure along these

lines. Eventually, that laid the foundation for the award-

winning commercial edition sold by KnowNow, Inc [44].

The original prototype implementations were released

separately as an open-source project in December 2002

called MOD_PUBSUB (by analogy to the Apache MOD_*

naming convention for Web server extensions) [23]. As

shown in Figure 4, it was developed in many languages.

Using MOD_PUBSUB with existing web tools and

browsers, web pages can now respond to incoming events

from the network — in real-time; in plain text, HTML,

XML, and/or SOAP format; and without relying on Java

or ActiveX in Mozilla, Netscape, and Microsoft browsers.

Both event notification services implement many of

the component types introduced in §3 and §4, such as

NOTIFYINGORIGINSERVER. Other elements are applica-

tion-specific enough that they must be supplied by the

architect, such as ESTIMATORs and ASSESSORs. Yet others

appear as sample applications and reusable libraries, such

as an implementation of STOREANDFORWARD called ZACK.

5.2 Methodology

Based on our experience writing decentralized applica-

tions, we can identify a few common issues that arose.

Since ARRESTED is an event-based architectural

style, the first phase of developing a decentralized

application is still generic event-based analysis: identify-

ing the components, event sources, subscription qualifi-

ers, message formats, and the like. The second phase is a

methodology specifically addressing unique concerns

raised by decentralization. We propose five steps:

1. Identify the agencies. In any real marketplace, the

interests of traders, brokers, and the exchange diverge

significantly. Note that a single organization may develop

the software used to enact all of these agencies’ roles, but

the design must remain robust in the face of independent

implementations. Part of the challenge of developing

architectural styles for decentralization is coming up with

abstract models of software written by others.

2. Characterize the latencies. The next step is to char-

acterize the latencies, both of the networks the application

will run on top of, and of the real-world phenomena that it

is attempting to represent. The latter may be more

challenging: it may appear that the NYSE’s ticker stops

updating a stock’s price on weekends, but the “after-

hours” valuation may keep changing as news breaks.

3. Establish the web of trust. This requires more than

merely authenticating credentials for each agency; it also

determines which external resources ought to be consid-

ered “equivalent” to the same concept. This could range

from lexical matching to ‘Semantic Web’ tags [2].

4. Eliminate remote references. This is the constraint

unique to the ARRESTED architectural style: replacing

all resources owned by external agencies with private

assessments. Architects face tradeoffs between different

prediction engines, compression engines, and other types

of estimators; our style at least isolates such complexity.

5. Track the provenance of events. In an era of profli-

gate computing resources, event notification is an

appropriate use of surplus bandwidth, and audit trails are

an appropriate use of surplus storage. Ideally, every

datum displayed to a user interface ought to indicate its

confidence interval. Furthermore, tracing ownership is

Apache
Web Server

CGI scripts

mod_perl

ModPub
Sub.pm

kn_events

Dynamic HTML
Web Browser

DOM Level 1

pubsub.js

Active
Panel

Windows

ActiveX

libkn.vb

Excel
Macro

Java Virtual
Machine

pubsub
.java

kn_jms

M
es

sa
ge

-
D

ri
ve

n
-

B
ea

n
 A

P
I

SOAP.cgi

mailto.cgi

procmail filter

Perl (5.0)

mailfrom

HTTP
POST

SOAP

SMTP
TOSMTP

FROM

...

perftool

pubsub_
throughput

HTTP tunnels

Figure 4: MOD_PUBSUB is an open-source ARREST toolkit.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

essential for re-evaluating results after security breaches,

cancellations, or anti-messages invalidate past data [18].

5.3 An Auto Auction Application

To experiment with our styles and methodology, we

developed AUTOMARKET, a used-car auction marketplace.

Centralized. In the simplest mode, the owner of the

central event router (web server) is the only agent that can

set prices. We tested this by writing ‘classified ad’ events

directly into files on the server’s disk (no remote access).

Distributed. The next step is allowing multiple bid-

ders to publish new bids to a shared topic. We tested this

with both REST+D by relying on the central router to

arbitrate the order bids arrived in and to guarantee

delivery; and with ARREST+D by using our ZACK

protocol to count acknowledgements from other traders.

Estimated. Since our example is not particularly

high-frequency, the primary type of latency risk is

disconnection rather than a few seconds’ arbitrage. Per

REST+E, AUTOMARKET defaults to a policy of inertia by

displaying any recent bid within the last 24 hours. To

experiment with ARREST+E, we connected the same

feed to KnowNow’s Excel spreadsheet adaptor and used

its built-in time-series data to extrapolate current prices.

Decentralized. Finally, we adapted our user interface

to work with generic concepts such as “truck prices.”

Rather than presenting price data for several different

vehicles, we let users configure which types they

considered to be “trucks” and calculated the average

current price. Note that this did not rely upon bidders to

classify what vehicles were trucks, nor upon “hidden

hierarchy” in the router’s topic names, but could be set

individually by each trader.

6. Related Work

While our definition of decentralization in terms of

latency and agency, and our architectural approach

towards addressing it may be novel, they are by no means

the only models for managing the risk of disagreement.

6.1 Alternative Models of Decentralization

The literature of distributed computing includes many

other formulations related to the consensus problem:

Byzantine Generals. In this problem, several parties

must coordinate an attack simultaneously to win — but

could also lie to each other [29]. The solution originally

proposed is only robust against conspiracies of up to 1⁄3 of

the generals. This can still suffice for read-only decen-

tralized applications, such as file sharing [26].

Invariant Boundaries. First identified in [5] as the

boundary between systems that agree on an invariant and

those that cannot, it closely resembles our specific

condition of simultaneous agreement. A more general

condition applying to invariant boundaries was stated as

the Consistency, Availability, Partitionability (CAP)

theorem in [13] (later proven in [15]), which states:
It is impossible to reliably provide atomic, consistent

data when there are partitions in the network. It is fea-

sible, however, to achieve any two of the three proper-

ties… most real-world systems today are forced to set-

tle with returning “most of the data, most of the time.”

Logical Clocks. Over the years, there have been many

approaches that simulate the operation of a centralized,

sequential processor atop a distributed processing

network: logical clocks [27], virtual synchrony [4], and

group communication [34].

Single-Assignment Variables. An architect could avoid

disagreement entirely by restating the problem so as to

eliminate mutable variables [42]. One example is the

technique of single-assignment: rather than resetting the

value of Pleader several times, a series of distinct variables

could each be set just once: First-Pleader, Second-Pleader,

and so on. Another approach is manipulating pointers to

“future” values in parallel functional languages [17].

Peer-to-Peer Communication. [14] presents a formal

model for peer-to-peer computing that uses variables to

represent channels between peers. Casting communication

channels as variables may make it clearer that the latency

of network links also determines the maximum possible

update frequency of any interaction across them.

Table 7: Experiments with AUTOMARKET in several styles.

Claim Experiment Observation

A
R

R
ES

T Simultane-
ous
invocation of
multiple
services.

Operating the
router like a
‘classified ad’
server by writing
new BIDs
directly to disk.

New information
triggered updates on
many users’ displays;
could invoke per-user
active proxies like price
and units conversion.

A
R

R
ES

T
+

D Allow many
clients to
read and

write to a
shared ACID
resource
reliably.

Operating the
router as a
passive relay of
BID events
controlled
directly by each
user.

Event notification
enabled users to update
all copies of their BIDs
in all other components
as soon as possible.

A
R

R
ES

T
+

E BASE allows
disconnected
users to
predict
current
prices.

Connecting the
prices to an
Excel spread-
sheet to plot
trends; using
constrained

Fitting a logarithmic
curve allows SELLERs to
model increasing-price
auctions; buyers can
place ‘limit orders’ in
to cope with delays.

A
R

R
ES

T
ED Consensus-

freedom
permits
assessment
of concepts.

Deriving a
private topic
from the market
according to a
trader’s rules.

Note how AUTOMARKET
can provide synthetic
estimates of the “truck”
market, per each user’s
definition of a truck.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

6.2 Alternative Approaches to Decentralization

The challenge of decentralization recurs at many layers

of abstraction in computing, from hardware to software:

Asynchronous VLSI. As semiconductor performance

increases, it will become impossible to distribute a clock

signal across a processor die, much less an entire system

bus. This requires new kinds of ‘self-timed’ circuits [41].

Control theory. The study of feedback systems, also

known as cybernetics, resulted in rules for assessing

signals and estimating state with observer variables [40].

Internetworking. The breakthrough that permits inter-

connection of autonomous LANs is the end-to-end hypo-

thesis: the notion that even an unreliable core can be used

to synthesize reliable services, even without signaling.

Middleware. Application integration, even inside a

single organization, faces barriers of interoperability and

performance that led to a vast array of design patterns for

message-oriented & event-based communication [38].

Mobile Systems. Caching and replication are optimistic

strategies for managing inconsistency in disconnected

operation, such as Bayou [7] or the Coda filesystem [25].

Software Architecture. Other researchers in the field

has also described styles for managing latency, such as

processing real-time news and data streams [35].

7. Conclusions

In this paper, we presented: a formal definition of

decentralization; an analysis of the limitations of consen-

sus-based software architectural styles; derivation of new

architectural styles that can enforce the required proper-

ties; and implementations that demonstrate the feasibility

of those styles and sample applications.

Figure 5 summarizes our findings. First, we identified

two basic factors limiting the feasibility of consensus:

latency and agency. These correspond to two boundaries,

indicated by dashed lines: the ‘now horizon’ within which

components can refer to the value of a variable ‘right

now’; and an agency boundary within which components

can trust each other. Another way to describe them is that

the now horizon separates consensus-based styles from

consensus-free ones; and the agency boundary separates

master/slave styles from peer-to-peer ones.

First, we identified four new capabilities that could be

combined with REST individually to induce the proper-

ties we desired: events, routes, locks, and estimates. Then,

we were able to combine these to derive four new styles

optimized for each of the four types of resources.

For centralized resources, we enforce simultaneous

agreement by extending REST into an event-based

architectural style by adding Asynchronous event

notification and Routing through active proxies

(ARREST). For distributed control of shared resources,

we enforce ACID transactions by further extending REST

with end-to-end Decision functions that enable each

component to serialize all updates (ARREST+D).

The alternative to simultaneous agreement is decen-

tralization: permitting independent agents to make their

own decisions. This requires accommodating four

intrinsic sources of uncertainty that arise when communi-

cating with remote agencies: loss, congestion, delay, and

disagreement. Their corresponding constraints are Best-

effort data transfer, Efficient summarization of data to be

sent, Approximate estimates of current values from data

already received, and Self-centered trust management.

These so-called ‘BASE’ properties can be enforced by

replacing references to shared resources with end-to-end

Estimator functions. Such extensions to REST can

increase precision of measurements of a single remote

resource (ARREST+E); as well as increase accuracy by

assessing the opinions of several different agencies

(ARRESTED) to eliminate independent sources of error.

Furthermore, application of these styles to real-world

problems has been shown to be both feasible and

effective, using both open-source and commercial tools.

Acknowledgements

This work is based on the first author’s doctoral dis-

sertation, which also benefited from the support of Dr.

André van der Hoek and Dr. Debra J. Richardson. The

authors are also grateful for the assistance of Dr. Joseph

Touch, Dr. E. James Whitehead, Dr. Roy T. Fielding, Eric

M. Dashofy, Adam Rifkin, and our anonymous reviewers.

This material is based upon work supported by the

National Science Foundation under Grant #0205724.

ARRESTED

ARREST+E

REST+E

REST

A+REST R+REST

ARREST

ARREST+D

REST+D

"now horizon"

Consensus-based
styles

Consensus-free
styles

REST+P

Master-slave
styles

Peer-to-peer
styles

agency boundary

Centralized Systems

Decentralized Systems

D
istrib

u
ted

 System
sEs

ti
m

at
ed

 S
ys

te
m

s

Figure 5: Diagram summarizing our four new architectural
styles, derived from four capabilities added to REST.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

References

[1] Association for Computing Machinery. ACM Computing

Classification System. 1998.

[2] Berners-Lee, T., Hendler, J. and Lassila, O. The Semantic

Web in Scientific American, 2001. vol. 284 (5), pp. 34-43.

[3] Berners-Lee, T., Masinter, L. and McCahill, M. RFC 1738:

Uniform Resource Locators (URL). IETF, December 1994.

[4] Birman, K. P. and Joseph, T. A. Exploiting Virtual Syn-

chrony in Distributed Systems, in Eleventh Symposium on

Operating Systems Principles, (Austin, Texas, 1987).

[5] Brewer, E. Invariant Boundaries (Invited Keynote), in 9th

International Workshop on High Performance Transaction

Systems (HPTS) (Pacific Grove, CA, October 14-17 2001).

[6] Carzaniga, A., Rosenblum, D. S. and Wolf, A. L. Design and

Evaluation of a Wide-Area Event Notification Service in

ACM Trans. on Computer Systems, 2001, 9 (3). pp. 332-383.

[7] Demers, A. J., Petersen, K., Spreitzer, M. J., Terry, D. B.,

Theimer, M. M. and Welch, B. B. The Bayou architecture:

Support for data sharing among mobile users, in IEEE

Workshop on Mobile Computing, (Santa Cruz, 1994), p. 2-7.

[8] Dickerson, C. The Battle for Decentralization in Infoworld,

May 2, 2003.

[9] Fielding, R. T. Architectural Styles and the Design of

Network-based Software Architectures (PhD Thesis), UC

Irvine, Information and Computer Science, 2000.

[10] Fielding, R., Gettys, J., Mogul, J. C., Frystyk, H., Masinter,

L., Leach, P. and Berners-Lee, T. RFC 2616: Hypertext

Transfer Protocol – HTTP/1.1. IETF, June 1999.

[11] Fielding, R. T. and Taylor, R. N. Principled Design of the

Modern Web Architecture in ACM Transactions on Internet

Technology (TOIT), 2002, 2 (2). pp. 115-150.

[12] Fisher, M. J., Lynch, N. A. and Paterson, M. S. Impossibil-

ity of Distributed Consensus with One Faulty Process in

Journal of the ACM, 1985, 32 (2). pp. 374-382.

[13] Fox, A. and Brewer, E. Harvest, Yield, and Scalable

Tolerant Systems, in Proceedings HotOS-VII, (1999).

[14] Giesen, J., Wattenhofer, R. and Zollinger, A. Towards a

Theory of Peer-to-Peer Computability, in 9th Int'l Colloq. on

Structural Info. and Comm., (Andros, Greece, June 2002).

[15] Gilbert, S. and Lynch, N. A. Brewer's Conjecture and the

Feasibility of Consistent, Available, Partition-tolerant Web

Services in SIGACT News, 2002, 33 (2).

[16] Gray, J. and Reuter, A. Transaction Processing: Concepts

and Techniques. Morgan Kaufmann, 1992. 1070pp.

[17] Halstead, R. Multilisp :A Language for Concurrent

Symbolic Computation in ACM Transactions on Program-

ming Languages and Systems, 1985, 7 (4). pp. 501-538.

[18] Jefferson, D. R. Virtual time in ACM Trans. on Program-

ming Languages and Systems, 1985, 7 (3). pp. 404-425.

[19] Khare, R. What’s in a Name? Trust. (Internet-Scale

Namespaces, Part II) in IEEE Internet Computing, Novem-

ber/December, 1999. vol. 3 (6), pp. 80-84.

[20] Khare, R. Who Killed Gopher? An Extensible Murder

Mystery in IEEE Internet Computing, 1999. vol.3(1), p.81-4.

[21] Khare, R. Extending the Representational State Transfer

(REST) Architectural Style for Decentralized Systems (PhD

Thesis), UC Irvine, Information & Computer Science, 2003.

[22] Khare, R. and Rifkin, A. Composing Active Proxies to

Extend the Web, in OMG-DARPA-MCC Workshop on Com-

positional Software Architecture, (Monterey, CA, Jan. 1998)

[23] Khare, R., Rifkin, A., Sitaker, K. and Sittler, B.

mod_pubsub: an open-source event router for Apache, 2002.

[24] King, J. L. Centralized vs. Decentralized Computing:

Organizational Considerations and Management Options in

ACM Computing Surveys, 1983, 15 (4). pp. 320-349.

[25] Kistler, J. J. and Satyanarayanan, M. Disconnected

Operation in the Coda File System, in 13th ACM Symp. on

OS Principles, (Pacific Grove, CA, 1991), pp. 213-225.

[26] Kubiatowicz, J. Extracting Guarantees from Chaos in

Communications ACM, 2003, 46 (2). pp. 33-38.

[27] Lamport, L. Time, Clocks and the Ordering of Events in a

Distributed System in Comm. ACM, 1978, 21 (7). pp.558-65

[28] Lamport, L. The Mutual Exclusion Problem: Part II-

Statement and Solutions in J. ACM, 1986, 33 (2). pp.327-48.

[29] Lamport, L., Shostak, R. and Pease, M. The Byzantine

Generals Problem in ACM Transactions on Programming

Languages and Systems, 1982, 4 (3). pp. 382-401.

[30] Lynch, N. A. Distributed Algorithms. Morgan Kaufmann,

San Mateo, CA, 1996. 904pp.

[31] Martin, A. Wires, Forks, and Multiple-Output Gates in

Gries, D. ed. Beauty is Our Business, 1990, p. 304.

[32] Milojicic, D. S., Kalogeraki, V., Lukose, R., Nagaraja, K.,

Pruyne, J., Richard, B., Rollins, S. and Xu, Z. Peer-to-Peer

Computing. HP Labs, Palo Alto, CA, 2002. 51pp.

[33] Oram, A., Minar, N. and Shirky, C. Peer-to-Peer:

Harnessing the Power of Disruptive Technologies 1st ed.

O'Reilly & Associates, 2001. 432pp.

[34] Renesse, R. v., Birman, K. P. and Maffeis, S. HORUS: A

Flexible Group Communication System in Communications

of the ACM, 1996, 39 (4). pp. 76-83.

[35] Roodyn, N. and Emmerich, W. An Architectural Style for

Multiple Real-Time Data Feeds, in 21st Int’l Conf. on Soft-

ware Engineering, (Los Angeles, CA, 1999), pp. 564-72.

[36] Rosenblum, D. S. and Wolf, A. L. A Design Framework for

Internet-Scale Event Observation and Notification, in 6th

ESEC/5th ACM FSE, (Zurich, Sept. 1997), pp. 344-360.

[37] Rosenblum, D. S. and Wolf, A. L. Internet Scale Event

Notification, in Wkshp. on ISEN, (Irvine, CA, July, 1998).

[38] Schmidt, D. C., Stal, M., Rohnert, H. and Buschmann, F.

Pattern-Oriented Software Architecture, v2: Patterns for

Concurrent and Networked Objects. Wiley, 2000. 666pp.

[39] Schneier, B. Secrets and Lies. Wiley, 2000. 432pp.

[40] Sontag, E. D. Mathematical Control Theory: Deterministic

Finite Dimensional Systems. Springer-Verlag, 1998. 531pp.

[41] Sutherland, I. E. and Ebergen, J. Computers Without Clocks

in Scientific American, August, 2002. vol. 287 (2).

[42] Thornley, J. A Parallel Programming Model with Sequen-

tial Semantics (PhD Thesis), Caltech CS Department, 1996.

[43] Touch, J. D. Mirage: A Model for Latency in Communica-

tion (PhD Thesis), U. of Penn., Comp. and Info. Sci., 1992.

[44] Udell, J., Gillmor, S. and Eds. 2002 Technology of the Year

Award (Pub/Sub): KnowNow 1.5 in Infoworld, Jan 24, 2003.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

