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Abstract.  The current interest in programming models and software infrastructures to 

support ubiquitous and environmental computing is heightened by the falling cost of 

hardware and the ubiquity of local-area wireless networking technologies.  Interactive 

workspaces are technologically augmented team-project rooms that represent a specific 

sub-domain of ubiquitous computing.  We argue both from related work and from our 

own experience with a prototype that the tuplespace model of communication forms the 

best basis for a coordination infrastructure for such workspaces.  This paper presents the 

usage and characteristics expected of interactive workspaces, from which we derive a 

set of key system properties for any coordination infrastructure in an interactive 

workspace.  We show that the design aspects of tuplespaces, augmented with some new 

extensions, yield a system model, which we call the Event Heap, that satisfies all of the 

desired properties.  We also briefly discuss why other coordination models fall short of 

the desired properties, and describe our experience using our implementation of the 

Event Heap model.  The paper focuses on a justification of the use of tuplespaces in 

interactive workspaces, and does not provide a detailed discussion of the Event Heap 

implementation or our more general experience with interactive workspaces, each of 

which is treated in detail elsewhere. 

1 Introduction 

Improvements in device technologies and falling costs enable ubiquitous computing, an approach 

proposed originally in [49].  Devices from large wall-sized displays to small PDAs can now be 

networked together in localized areas, wirelessly or otherwise, forming the hardware side of the 

ubiquitous computing environment.  Once connected together, however, the problem is how to allow 

programs running on the devices to work together, either as architected or ad-hoc ensembles. 

Our own project, Interactive Workspaces [28], investigates the systems and human-computer interface 

(HCI) issues that arise in technologically rich, room-based ubiquitous computing environments.  

Interactive workspaces are technologically-augmented team-project rooms that are used by groups to do 

collaborative problem solving.  These spaces contain both permanent computational and I/O resources 

as well as portable devices that are brought in by participants and integrate with the environment.  

Compared to other room-based ubiquitous computing projects [5, 10, 12, 13, 18, 45], Interactive 

Workspaces features a stronger systems emphasis, focusing on providing software infrastructure for the 

dynamic interaction of heterogeneous and ad hoc collections of new and legacy devices, applications, 
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and operating systems.  Our experience with the “iRoom,” our prototype interactive workspace, and the 

realities of these environments suggests that currently-used programming models are incomplete or 

inadequate. 

During the past three years we have had the chance to go through several iterations of interactive 

workspace coordination infrastructure.  Our experience the flaws and limitations of each generation 

informed the design of the next generation and led to a better understanding of the environment in 

general.  Based on this experience, we can write down certain indispensable desiderata for our software 

infrastructure: 

1. It must tolerate a dynamic environment: portable devices entering and leaving the room’s wireless 

network should not disrupt other applications and devices. 

2. It must enable the system (room) as a whole to maintain a high degree of robustness and availability 

despite inevitable (but usually transient) software and hardware failures.  While this is generally 

true for all ubiquitous computing rooms, we are acutely aware of the problem as researchers since 

we work with rapidly prototyped, potentially instable, software and do not want experimentation to 

destabilize our existing system. 

3. It must allow the rapid integration of new devices and systems.  A common-language approach such 

as “Java everywhere” is not enough by itself: we wish to leverage devices and their existing 

application bases, i.e. Win32 productivity applications or Palm built-in PIM applications. 

4. Both the software infrastructure and applications written to use it must be portable across 

installations, allowing as much as possible for the heterogeneity of specific equipment installed at 

each site.  We would like a software infrastructure that can be to an interactive workspace what an 

operating system is to a PC—applications programmed for our infrastructure should run unmodified 

in any interactive workspace running our infrastructure. 

We argue for a set of characteristics that must be taken into account by any software infrastructure for 

an interactive workspace (Section 3).  These characteristics in turn imply certain properties for software 

infrastructures in this domain (Section 4); we show that tuplespaces, a referentially and temporally 

decoupled coordination model described in more detail later, have a set of features that give them most 

of the desired software infrastructure properties, and introduce some extensions to provide the 

properties tuplespaces lack (Section 5).  Specifically, these extensions are: self-description, flexible 

typing, standard routing fields, tuple expiration, query registration, ordering, and modular restartability. 

We refer to tuplespaces plus this set of extensions as the Event Heap, which is also the name of our 

prototype implementation.  In large part the extensions are needed to overcome the transition from 

using tuplespaces as a closed system, in which all participating processes are designed to work together, 

to an open system, in which a more diverse collection of applications needs to interoperate.  Note also, 

that while we could have chosen a different coordination model as our point of departure, tuplespaces 

required the fewest changes for the interactive to be compatible with the interactive workspace s 

environment.  This paper presents our arguments to support this claim. 

In addition, although it has previously been possible to specify what a technology rich team-project 

space might look like, there has been no standard concept of how to enable an application for use in 

such a space.  The Event Heap model advocated in this paper provides such a concept.  

This article gives systems arguments for the utility of tuplespaces and the need for the given extensions 

in the interactive workspace domain, but provides few details of our prototype implementation of the 

Event Heap and only a brief discussion of our extensive experience with it; the interested reader may 

see [27].  Further, although the Interactive Workspaces project is quite broad and, in particular, also has 

2 of 33 



a strong focus on Human Computer Interaction (HCI) problems for this domain, we do not go beyond 

system arguments as to the utility of tuplespaces;  a good overview of the project is provided in [28]. 

2 An Example Scenario 

Although most of this paper will argue in terms of abstract properties, we feel that a concrete interactive 

workspace usage scenario will help to motivate those arguments.  We provide here a scenario set in the 

iRoom that reflects how we feel such spaces may be used.  The scenario is set in the iRoom, and is 

based on research we have done with the Center for Integrated Facilities Engineering (CIFE) [33], a 

civil engineering research group on campus.  The iRoom looks like a standard conference room with 

technological additions.  Specifically, there are three six foot diagonal touch sensitive displays along 

one wall, a bottom projected table, a 6 foot diagonal high resolution front display, and wireless support 

for PDAs and laptops that are brought into the space.  All the displays are driven by one or more stand 

alone PCs.  A more detailed video version of this scenario may be found on-line at: 

http://iwork.stanford.edu.   

 

Figure 1 - Construction Management in the iRoom 

Consider a group of construction management engineers and contractors using the iRoom to plan a 

major construction project.  Upon entering the workspace, one group member uses a touch sensitive 

tablet at the room entrance to turn on the lights and the three projectors for the touch screens on the side 

wall.   

As the meeting begins, the leader displays a web-page outline that will serve as a guide for the meeting 

on the left most touch screen.  Each topic in the outline is a hyperlink that brings up related data for that 

topic on the other displays in the room.  Some of that data is in the form of web pages, while other data 

is brought up in specific construction site modeling and planning applications, some of which were not 

originally designed to run in the workspace.  Figure 1 shows a mockup of the iRoom being used for 

such a scenario. 

Later in the meeting, the leader is suddenly called away and turns off his laptop which is being 

displayed to one of the large touch screens in the room.  No other software that had been interacting 

with files and applications on the leader’s laptop is affected, but the display screen he was using is now 

blank.  Another member of the group uses his wireless PDA to switch it to display a machine that is 

permanently in the workspace. 

The leader leaves the group with the task of figuring out a way around a problem with the schedule.  

They bring up a top down map of the construction site on the table, a 3D model of the construction site 

which shows the project state for any given date on one touch screen, and the project scheduling 
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software on another.  All of these are separate stand-alone applications, but each application’s data is 

automatically associated with similar data being displayed in other applications.  Thus when the users 

select or make changes in one view, the other views immediately reflect the new state, and similarly the 

model viewer and schedule keep their dates synchronized.  They decide to open a second 3D model 

viewer on a third screen in the room and dissociate its date from the other applications.  They set it to a 

date earlier in construction so that they can do side by side comparisons with the construction state for 

other dates.  Still, as they select different parts of the model to look at, both the viewer with fixed date 

and the original synchronize to the same view. 

When the meeting is over, the users shut down the room using a simple web based interface. 

3 The Nature of an Interactive Workspace 

Few interactive workspaces exist, and those that do are mostly research prototypes.  Therefore, to 

reason about the type of coordination infrastructure needed in such a space, we collaborated with 

researchers in other fields and discussed with them how they would foresee themselves using such a 

space.  In addition, we built the previously mentioned iRoom, and ran our own research meetings in the 

room, developing software to make things run more smoothly.  We have also read studies [14, 26, 34, 

35] on the use of low-tech team-project rooms where groups come together to solve problems using 

white boards, flip charts, and other non-electronic equipment.  These activities led us to two categories 

for characteristics of interactive workspaces:  those based on the human factors of collaboration in a 

team-project room, and those based on the technology that is likely to be deployed in such spaces.  Note 

that the two are interrelated; for example, interactive workspaces need to provide for portable devices 

entering, engaging and disengaging with ongoing activity in the space.  This dynamism arises from both 

the availability of portable device technology and the way humans use such devices.  Table 1 provides a 

summary of interactive workspace characteristics, and the remainder of this section discusses them in 

more detail. 

Summary of Interactive Workspace Characteristics 

Based on Human Factors 

 H1.  Bounded Environment 

 H2.  Human Centered Interaction and Flexible Reconfiguration 

 H3.  Human Level Performance Needs 

Based on Technology Factors 

 Heterogeneity 

  T1.  Hardware 

  T2.  Software and Software Platforms 

 Changing Environment 

  T3.  Short Timescale Change 

  T4.  Long Timescale Change (Space evolution) 

Table 1- Summary of Interactive Workspace Characteristics 

3.1 The Human Side 

Human side characteristics arise from the way humans interact in and perceive team-project rooms. 

Bounded Environment 

An interactive workspace is bounded in physical extent, therefore humans expect devices and 

applications to coordinate with one another within the space.  By the same token, coordination with 

applications and devices outside of the space should not occur unless a user specifically requests the 

coordination.  In the scenario from Section 2, for example, the construction engineers expect their 

laptops to interact with the room software infrastructure while in the workspace, but not when they 

leave (when the leader turns on his laptop back in his office, his interactions with it should no longer 
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effect the software running in the workspace).  One of the authors has previously identified this as  the 

‘boundary principle’ [31].  Therefore, the software infrastructure for a particular room must only 

support the devices within the room unless explicitly over-ridden by users to do otherwise.  The 

bounded nature of an interactive workspace we refer to as H1. 

Human-centered Interaction and Flexible Reconfiguration 

Work in team-project rooms is driven by a group of people working through one or more problems.  As 

work proceeds, different tools and information may be necessary, and different sub-groups may form 

[34, 35].  In standard team-project rooms this means that the tools at hand are constantly being used in 

different ways—white boards are erased and written over, flip charts set to different graphs, etc..  By 

extension, we expect that participants in an interactive workspace will use the devices and applications 

that best help them to solve each new problem that arises in the course of a collaboration session. In 

other words, the coordination system needs to support flexible reconfiguration and dynamic 

coordination. 

From the systems perspective, the software environment of an interactive workspace will consist of 

ensembles of applications that dynamically coordinate with one another.  This style of interaction is 

evident in the scenario we lay out in Section 2 where the construction engineers pull up various 

applications to better understand various problems.  We refer to the desire to keep interaction centered 

on humans and the ability to flexibly reconfigure applications and hardware in a workspace as 

characteristic H2. 

Human Performance Constraints 

Since workspaces will be used by humans, there is a limitation on the number of participants that can 

meaningfully collaborate within a given room.  Most studies have shown that meaningful collaboration 

is limited to groups of two to fifteen participants [26].  This observation can be used to establish a limit 

on the number of devices and amount traffic a coordination infrastructure needs to be able to handle.   

Additionally, humans have certain expectations about reaction to events generated through their 

interaction with the system.  For example, an event generated to turn on all lights is only relevant for a 

few seconds, after which new lights brought into the room shouldn’t turn themselves on. 

We refer to the need for system performance to be tailored to human needs as characteristic H3. 

3.2 The Technology Side 

Heterogeneity 

One of the main characteristics of an interactive workspace will be the heterogeneity of both devices 

and software in the space.  While it is possible to custom build an interactive workspace and a suite of 

applications using a standard set of interoperable devices running the same development platform (for 

example, Java across a set of standard PCs and Windows CE machines), this precludes evolution of the 

space to allow integration of new devices, and excludes the possibility of integrating existing 

applications not built on the platform of choice. 

The devices in an interactive workspace will naturally be heterogeneous because each will be chosen 

for its suitability to addressing a particular kind of task.  In the scenario presented in Section 2, for 

example, individual engineers had laptops and PDAs they brought with them, but they also used 

permanent machines in the space with large touch screens.  In other cases, there may be some more task 

specialized devices that need to be used.  Perhaps a certain wireless device is well suited to attacking 

certain problems for the collaborators using the space.  Some collaborative activities may require the 
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use of an exotic or custom-built device like a high-resolution custom display such as the interactive 

mural [23, 25].  This type of hardware heterogeneity we refer to as characteristic T1. 

Similar arguments apply to the software components in an interactive workspace.  Working groups 

within companies rely on complex off-the-shelf software as well as in-house solutions (the construction 

engineers in our scenario from Section 2, for example, rely on a custom developed 4D modeler that 

displays a 3D model of construction state for any specific date during construction); it is usually 

impractical or impossible to rewrite the applications just to make them work in an interactive 

workspace.  Further, even when software is custom-written, hardware heterogeneity suggests that any 

coordination infrastructure should work with as many software platforms as possible.  We refer to the 

variety of software environments that will be present in an interactive workspace as characteristic T2. 

Changing Environment 

An important characteristic of an interactive workspace is the constant change within the space.  This 

change will occur both on short time scales as devices crash and restart or as devices enter and exit the 

workspace, as well as on longer time scales as the interactive workspace as a whole is continually 

upgraded and modified. 

Short term change occurs in two main ways.  The first is through the entry and exit of portable devices 

that are brought in by users of the space—the meeting leader abruptly leaving in the scenario from 

Section 2, for example.  The applications and capabilities of these devices need to be integrated with 

other software in the space as smoothly as possible, and their unexpected exit should have no ill effects 

on the other devices and applications in the workspace.  Even in normal operation, “experimental” 

devices or software often fail unexpectedly and must be recovered; the coordination infrastructure 

needs to be tolerant of these failures as well.  The characteristic of changing over short time scales we 

refer to as T3. 

Long term change occurs in the evolving layout of the interactive workspace and the complement of 

devices permanently embedded in the space: as the space is used to solve new problems, obsolete 

devices are removed, and new technology is brought into the space.  This is similar to the ‘incremental 

evolution’ that [17] suggests will take place in smart homes.  Any coordination infrastructure must 

therefore be capable of being adapted to work with new devices and platforms over time, thereby 

allowing coordination between old and new applications and devices.  We refer to the incremental 

evolution that occurs in interactive workspaces as characteristic T4. 

4 Properties for Coordination Infrastructures 

The characteristics of interactive workspaces discussed in the previous section lead to a set of properties 

that a coordination infrastructure designed to support user collaboration in such a space needs to 

support.  Table 2 provides a summary of the properties and how they relate to the characteristics 

discussed in Section 3, while the rest of the section describes the properties and their relationships to 

interactive workspace characteristics in more detail. 
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Table 2 - Necessary Coordination System Properties 

System Property Interactive Workspace Characteristic Supported 

P1. Limited Temporal 

Decoupling 
• Human Level Performance Needs (H3) by allowing data to disappear after 

their period of relevance is exceeded. 

• Short Timescale Change (T3) by masking transient failure, and by preventing 

system performance degradation by limiting build-up of tuples. 

P2. Referential Decoupling • Human Centered Interaction and Flexible Reconfiguration (H2) by 

minimizing need to hard-wire specific configurations. 

• Short Timescale Change (T3) by discouraging application interdependence, 

thus minimizing the chances of cascading failures. 

P3. Extensibility • Human Centered Interaction and Flexible Reconfiguration (H2) by making it 

easier to integrate diverse applications. 

• Long Timescale Change (T4) by allowing applications to be adapted as 

workspace evolves. 

P4. Expressiveness • Human Centered Interaction and Flexible Reconfiguration (H2) by providing 

for a variety of coordination patterns. 

• Heterogeneous Software and Software Platforms (T2) by providing a variety 

of coordination patterns that may be needed by legacy software.  

• Long Timescale Change (T4) by providing for new coordination patterns that 

may be needed with future applications. 

P5. Simple and Portable 

Client API 
• Heterogeneous Hardware (T1) and Heterogeneous Software and Software 

Platforms (T2) by minimizing effort required to support new hardware and 

software platforms. 

• Long Timescale Change (T4) by minimizing effort required to support new 

platforms. 

P6. Easy Debugging • Human Centered Interaction and Flexible Reconfiguration (H2) by making it 

easier to debug user problems. 

• Long Timescale Change (T4) by making it easier to troubleshoot integration 

of new technology. 

P7. Perceptual Instantaneity • Human Level Performance Needs (H3). 

P8. Scalability to Workspace-

sized Traffic Loads 
• Bounded Environment (H1) limits scalability to a single workspace. 

• Human Level Performance Needs (H3) also restricts needed scalability to 

traffic humans can generate. 

P9. Failure Tolerance and 

Recovery 
• Human Centered Interaction and Flexible Reconfiguration (H2) by 

minimizing impact of failures on users. 

• Short Timescale Change (T3) by preventing crashes from causing systemic 

failure and allowing for quick recovery. 

P10. Application Portability • Human Centered Interaction and Flexible Reconfiguration (H2) by 

encouraging development of a larger set of applications which can be 

composed. 

• Long Timescale Change (T4) by providing a broader selection of new 

applications with which to evolve workspace functionality. 

4.1 Limited Temporal Decoupling (P1) 

Temporal decoupling allows communication between components that are not simultaneously active.  

This allows newly-started applications or devices just entering an interactive workspace to react to 

activity that occurred in the seconds or minutes before they became connected (the exact amount of 

time will depend on the period of relevance of the information to which the reaction is occurring—a 

“turn on the lights” message should be ignored after a few seconds while a “current topic” message 

might be relevant for several minutes).  It also permits applications that crash and restart to receive 

communications sent while they were restarting.  Temporal decoupling addresses the short term change 

(T3) experienced in interactive workspaces. 
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On the other hand, the system should limit temporal decoupling to a ‘relevant’ time interval; humans 

expect an action in one application to trigger side-effects in other applications within a reasonable time, 

or not at all (H3). 

In addition, limiting temporal decoupling solves the problem of what to do with unconsumed messages, 

which if buffered forever would over long periods of time result in an accumulation of messages, 

system slow down and, eventually, a system crash. 

4.2 Referential Decoupling (P2) 

Referential decoupling allows entities to communicate with one another without naming each other 

directly.  Coordination systems with this property encourage the design of applications that are 

minimally interdependent with one another, but that can nonetheless react to one another.  One way that 

referential decoupling is possible is by using a level of indirection such that senders and receivers only 

interact through an intermediary (for example, in the Metaglue system [13]).  Another is for senders to 

broadcast messages with attributes, and have receivers select messages for receipt based on attributes 

rather than on the name of the message source (for example, in the Intentional Naming System [6]).   

Referential decoupling makes it harder to create applications that are tightly interdependent since 

applications are not programmed to interact with pre-specified peers according to some pre-defined 

pattern.  This provides for the short-term changes in an interactive workspace (T3) since applications 

are less likely to crash as a result of the disappearance or failure of another application with which they 

were being coordinated.  In addition to reducing interdependencies, referential decoupling makes it 

easier to design applications whose components are location independent.  Applications no longer need 

to send update messages to a specific application on a specific machine, but can instead send the 

message and have the intermediary route it to the appropriate location, or have the receiving application 

pick it up independent of location based on the content of the message.  This flexibility leads to a 

coordination infrastructure that is more conducive to the dynamic selection of applications in an 

ensemble which is an aspect of human-centered interaction (H2) in an interactive workspace. 

4.3 Extensibility (P3) 

A coordination system needs to provide extensibility in order to cope with the long-term change and 

incremental evolution (T4) of interactive workspaces.  It must be possible to add functionality and 

adapt applications to one another without modifying existing applications, or having access to their 

source code.  This allows integration of task-specific legacy applications for use in an interactive 

workspace environment, supporting H2. 

Some important techniques that should be supported to provide extensibility in a coordination system 

are: 

Snooping: This allows applications to spy on communications between other applications in the 

system.  This technique allows a new program to be integrated with a pre-existing set of 

applications by having it read and react to messages sent by the pre-existing set.  For example, a 

smart-classroom which allows the professor to coordinate several electronic whiteboards could have 

an application added to it that displays the whiteboard state on students laptops. 

• 

• 

• 

Interposability: This technique allows an intermediate application to pick up messages from a 

source, translate them to a new format, and then forward them on to a receiver that only understands 

the new format.  This allows applications that speak different message protocols to interact with one 

another without having to modify either programs code. 

Stream Transformation: This technique is related to the other two but is more general.  Stream 

transformation allows an application to receive messages of several different types that are being 
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sequentially emitted by one or more applications and use the information in those streams to create 

one or more new message streams.  Some important types of transformations are: summarization (a 

large number of messages are reduced to a stream of fewer messages), interpolation (additional 

messages are created based on input messages), and stream merging (messages from one or more 

input streams are combined to create a new output stream) [9].   

4.4 Expressiveness (P4) 

The coordination infrastructure and its API should be sufficient to express as many different types of 

coordination as possible.  This need not mean that a separate API hook be provided for all potential 

interactions, but simply that the set of API primitives provided can be used to express a variety of 

different types of coordination (different routing patterns, synchronous and asynchronous 

communication, etc.).   

This flexibility is needed to provide for integration of legacy applications (T2) which may need specific 

types of coordination or distribution patterns.  It also allows applications to be arranged to interact with 

one another in a variety of ways, which supports more flexible human-centered interaction (H2).  

Finally, it allows for long-term change and incremental evolution (T4) of interactive workspaces by 

making it more likely that future applications and devices can be supported within the framework. 

4.5 Simple and Portable Client API (P5) 

The number of API calls supported, and the amount of code to support the software infrastructure in the 

per application client code should be minimized.  The main reason for this is to simplify the task of 

making new platforms compatible with the coordination system by making it easy to port the client 

infrastructure code.  This makes it easier to support the heterogeneous devices in the space (T1), and to 

support new platforms that may be integrated with an interactive workspace as it evolves (T4).  The 

client libraries also need to be small to insure they will fit on impoverished devices.  Simplicity of the 

API is also important since it minimizes the amount of code that needs to be written to integrate legacy 

applications (T2). 

Note that this requirement is seemingly in contradiction with P4, which advocates an API that allows 

many different coordination patterns to be expressed.  As will be discussed in more detail in the sub-

section of 5.1 on Infrastructure API, just as it is possible to have a RISC processor with a small number 

of operations that is fully general in its capability to do computation, it is possible to have a small 

number of coordination primitives which are sufficient to express a variety of coordination types. 

4.6 Easy Debugging (P6) 

Since the ensembles that arise from human-centered interaction (H2) in an interactive workspace will 

be composed of applications not necessarily designed to work with one another, the coordination 

system must be designed in such a way as to make it easy to figure out and debug interactions.  This 

also makes it easier to trouble shoot the integration of new devices and applications into the workspace, 

and thus supports workspace evolution (T4). 

4.7 Perceptual Instantaneity (P7)  

Since the coordination infrastructure is intended to support the interaction of applications with one 

another as driven by the users of the space (H3), coordination and actions across applications and 

devices should be perceptually instantaneous for the humans working in the interactive workspace.  

Studies show that perceptual instantaneity varies from 10 ms to about 1 s of latency depending on the 

type of action taken by the human [8].  More specifically, Miller [36] identifies the following thresholds 

for R, the time it takes for the system to respond to a user’s command: 
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• R>100 ms: the illusion of “instantaneous” response time is lost; user perceives the system as 

sluggish. 

• R>1 sec: the user’s thought process is interrupted and the delay is perceived as obtrusive. 

• R>10 sec: the user becomes distracted from the task at hand and will start to work on other 

tasks while he waits. 

This system property means that the coordination system need not perform at the level of systems that 

are used to coordinate distributed computation.  In these systems, inter-process coordination is the main 

bottleneck and communication throughput and latencies must be minimized.  Relative to these high 

performance systems, a coordination infrastructure in an interactive workspace can burn cycles and 

bandwidth to provide for some of the more challenging properties of interactive workspaces. 

4.8 Scalability to Workspace-sized Traffic Load (P8) 

As the coordination system will only work within the bounded environment (H1) of the interactive 

workspace, the system need only scale to handle the amount of load that can be generated by humans 

working therein.  This load is limited by the number of devices, and applications in use by humans and 

the rate at which they cause the applications and devices to generate coordination messages (related to 

H3).  The number of humans is limited by social factors which constrain the total number of 

participants that can meaningfully work together in a workspace.   

We estimate that interactive workspaces of the near future will have on the order of tens of devices, and 

that humans will specifically interact with applications during meetings on the order of one time per 

minute.  On top of this, we expect there to be status updates from devices and applications at a rate of 

around ten events per device per minute.  In aggregate, we think there will be on the order of tens of 

events per minute that the system will need to be able to handle with a latency of less than 100 ms. 

4.9 Failure Tolerance and Recovery (P9) 

In order to be productive, users must not be continually interrupted during collaboration.  This means 

that failures in components should not cause other components or the software infrastructure to fail.  

Individual applications may be failure prone, either due to rushed development time on commercial 

products or due to buggy research applications, and, although the coordination infrastructure system 

should be constructed to be robust, it too may fail on occasion.  The system therefore needs to provide 

mechanisms for coping with these failures in order to allow for the short term dynamism (T3) of the 

workspace.  The same mechanisms can support human-centered interaction (H2) by minimizing 

disruptions to collaborators in an interactive workspace. 

4.10 Application Portability (P10) 

The coordination infrastructure and applications that are built on top of it should be deployable in any 

interactive workspace running the infrastructure.  This property should be inherent in the entire 

design—there should be nothing about the coordination infrastructure that specifically associates it with 

one particular interactive workspace.  Further, the general programming style suggested by the 

infrastructure should be designed to discourage writing applications that are closely associated with a 

single interactive workspace.  While it is a sound general design principle to encourage 

compartmentalization and reuse, encouraging applications to be created independent of any given 

interactive workspace also leads to a larger selection of applications for use in any given workspace.  

This in turn gives more options for long term change and evolution of individual interactive workspaces 

(T4), and provides a better human-centered experience (H2) by giving users more tools from which to 

choose during collaborations.   
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5 Tuplespace Features and Needed Extensions 

Tuplespaces were first proposed by Gelernter and Carriero as a coordination system for parallel 

programs.  They proposed the Linda [7] tuplespace model.  A tuple is a set of ordered typed fields, each 

of which either contains a value or is undefined; a tuplespace is an abstract space containing all tuples 

and visible to all processes (the original Linda system was designed for coordination of processes for 

parallel computing, so we use “processes” here.—in our system and other modern tuplespace 

implementations, however, full applications are also allowed to participate).  The most important 

language primitives are ‘out’ (puts a tuple into the space), ‘in’ (consume a tuple from the space), and 

‘read’ (copy a tuple from the space), where the ‘in’ and ‘read’ operations supply a match template that 

may specify explicit values or wildcards for any tuple fields.  Figure 2 shows an abstract representation 

of how tuplespaces function. 

ReceiverSender
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TuplespaceTuplespace
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becomes available in the tuplespace (2); 

ReceiverSender
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(4)  
(b) Receiver submits read request for ‘circle type’ 

tuple (3); Tuplespace returns copy of ‘circle type’ 

tuple submitted in step 1 (4) 

ReceiverSender

Remove

TuplespaceTuplespace

(5)

(6)  
(c) Receiver submits take request for ‘circle type’ tuple (5); Tuplespace returns copy of ‘circle type’ tuple 

submitted in step 1 and removes copy in tuplespace (6) 

X

Figure 2 - Tuplespace System Diagram (shaded objects are tuples, and hollow objects are templates) 

In this section we present the design aspects of the tuplespace system model that give it some but not all 

of the properties that were advocated in Section 4, followed by the extensions needed to satisfy the 

remaining properties.  Table 3 summarizes the system features, both intrinsic to tuplespaces and specific 

to our extensions, and shows how they relate to the desired system properties P1 through P10.  While in 

most cases, no one feature completely provides for a given property, in aggregate the features in the 

table and described in this section provide for all of the previously defined properties. 
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System Feature System Property Provided or Aided 

Routing  

 F1. Content Based Addressing • Referential Decoupling (P2). 

• Expressiveness (P4) by allowing flexible content selection. 

 F2.  Support of All Routing 

Patterns 
• Expressiveness (P4). 

 F3. Standard Routing Fields* • Extensibility (P3) by encouraging routing compatibility between applications. 

• Application Portability (P10) by insuring that the same fields are used for 

routing in different interactive workspaces. 

Persistence  

 F4. Limited Data Persistence* • Limited Temporal Decoupling (P1). 

• Failure Tolerance and Recovery (P9) by preventing tuple buildup which could 

lead to system instability. 

 F5. Query Persistence/ 

Registration* 
• Extensibility (P3) by making it possible to reliably snoop on communication. 

• Easy Debugging (P6) by enabling snooping to monitor application interactions. 

• Expressiveness (P4) by allowing guaranteed tuple receipt. 

Communication Transparency  

 F6. Transparent 

Communication 
• Extensibility (P3) by enabling snooping, interposition and stream 

transformation. 

• Easy Debugging (P6) by enabling monitoring of application interactions. 

 F7. Self-describing Tuples* • Extensibility (P3) by allowing existing applications to more easily be integrated 

with new ones. 

• Easy Debugging (P6) by making it easier for humans to understand inter-

application communications. 

• Application Portability (P10) by allowing reverse-engineering of applications to 

integrate them in new environments. 

 F8. Flexibly Typed Tuples* • Application Portability (P10) by allowing additional fields to be added to tuples 

without breaking other applications. 

• Extensibility (P3) in a similar fashion to P10. 

Distribution of Infrastructure  

 F9. Logically Centralized • Limited Temporal Decoupling (P1). 

• Referential Decoupling (P2). 

• Becomes feasible because Scalability to Workspace-sized Traffic Loads (P8) 

limits traffic to that which can be generated by devices in a single workspace. 

 F10. Physically Centralized • Simple and Portable Client API (P5) by reducing client code overhead. 

• Perceptual Instantaneity (P7) relaxes performance constraints that might make 

the bottleneck of a centralized system intolerable. 

• Becomes feasible because Scalability to Workspace-sized Traffic Loads (P8) 

limits traffic to that which can be generated by devices in a single workspace. 

Infrastructure API  

 F11. Simple API • Simple and Portable Client API (P5). 

 F12. General API • Extensibility (P3) by permitting arbitrary coordination code. 

• Expressiveness (P4). 

Ordering  

 F13. At Most Once, Per Source 

FIFO* 
• Extensibility (P3) by not requiring special application code for ordering. 

Failure Tolerance  

 F14. Modular Restartability* • Failure Tolerance and Recovery (P9). 

Table 3 - System Features and Related Properties 

                                                 
* Not provided by basic tuplespace model. 
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A variety of tuplespaces have been introduced since Linda which modify the basic features, in some 

cases making them more compatible with the needs of interactive workspaces.  Nonetheless there is no 

canonical replacement to the original Linda tuplespaces model, so we use that for comparison.  Section 

5.4 summarizes some of the more prominent “modern” tuplespace systems and how their features align 

with the extensions we propose to the basic tuplespace model. 

5.1 Design Aspects of the Basic Tuplespace Model 

Routing 

Routing involves the aspects of a coordination system that determine how a message gets from a sender 

to a receiver.  This involves addressing, or how senders and receivers are determined; whether senders 

or receivers determine routing; what routing patterns are supported; and whether message transmission 

is push or pull based. 

For addressing, sources and recipients may be specified explicitly, or logically through a level of 

indirection.  Tuplespaces provide logical routing through the use of content based addressing, since 

message delivery is determined by the matching of attributes in tuple fields, with neither sender nor 

receiver specifying one another.  We refer to content based addressing as feature F1.  It provides 

referential decoupling, one of the needed system properties (P2).  In addition, content based routing 

provides a more expressive way for receivers to choose tuples of interest since they can receive tuples 

based on arbitrary combinations of field values (supporting property P4).  In tuplespace systems, 

content based routing is combined with receiver based routing, which means that receivers determine 

which content they will get.  Note that content based routing may also be used with systems using 

sender based routing as is the case for the Intentional Naming System [6]. 

Tuplespaces also support all of the following routing patterns: 

Unicast (Point-to-Point): Send a message from a sender to a specific receiver.  Accomplished in 

tuplespaces by having receiver match for a specific value in a tuple field indicating it is the recipient 

and doing either a destructive ‘in’ call, or a non-destructive ‘read’ call. 

• 

• 

• 

• 

Broadcast (One-to-all): Send a message from a sender to all receivers.  Accomplished in 

tuplespaces by having all receivers match on a special broadcast value in a standard tuple field and 

doing a non-destructive ‘read’ call. 

Multicast (One-to-N): Send a message from a sender to a group of receivers.  Accomplished in 

tuplespaces by having all receivers in the group match on a special value representing the group in a 

standard tuple field and doing a non-destructive ‘read’ call. 

Anycast (One-to-exactly-one-other): Send a message from a sender to exactly one of a collection 

of possible receivers.  This is useful for submitting messages that need to be processed exactly once 

by one of several valid receivers.  Accomplished in tuplespaces by having all receivers in the group 

of valid receivers match on a special tuple field value representing the group, and doing a 

destructive ‘in’ call so that only the first recipient to match will see the tuple. 

The ability to support all of the different routing patterns we call feature F2.  This feature makes 

tuplespaces’ API more expressive (property P4), allowing many types of coordination to be 

programmed in the system. 

Persistence 

Data persistence ensures that messages don’t disappear immediately after their creation.  This is 

provided by tuplespaces, since tuples are maintained in the tuplespace until a receiver performs the 
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destructive removal operation ‘in.’  This full persistence provides temporal decoupling (P1) of 

processes or applications using the tuplespace, since the recipient need not be running at the time the 

tuple is created.  Unfortunately, we identified limited temporal decoupling (therefore limited 

persistence) as the desired property, and traditional tuplespaces provide no way of ‘expiring’ 

unconsumed tuples after their period of utility is over.  We return to this as an extension later in Section 

5.2.  Still, together with this expiration feature, the system as a whole has limited data persistence, 

which we call feature F4. 

Query persistence (F5) provides a similar guarantee for requests to receive messages.  In receiver 

routed systems, the recipient specifies messages to receive, in the case of tuplespaces by specifying a 

template that a candidate tuple must match before it is received.  If that ‘query’ is allowed to persist, the 

system can ensure that a receiver gets a copy of all messages that match the query.  In tuplespaces, there 

is no query persistence—the template is passed as an argument to the retrieval call and is forgotten by 

the system as soon as the request is satisfied.  This is known as a ‘pull’ or polling based system, while 

systems with query persistence are ‘push’ based systems.  The absence of query persistence means that 

tuples that are placed and deleted between two polls from an application will not be seen by the polling 

application, which makes it difficult or impossible to write debugging (P6), logging and snooping (P3) 

applications.  To allow for these important types of applications, tuplespaces must be extended to 

support query persistence, as is discussed in Section 5.2.   

As a nice side effect, allowing query persistence also reduces network overhead, since ‘pull’ based 

systems require a complete round-trip over the network for each tuple retrieved—the request must be 

sent to the server and the result returned.  With query persistence, one request to the server suffices for 

the return of all matching events until the query is removed.   

Transparency vs. Opacity of Communication 

Transparency of communication is the degree to which applications using the coordination 

infrastructure are able to observe and to some degree interpret communications among other entities.  

Tuplespaces are transparent since all posted tuples may be seen by all participating applications until 

they are removed.  (Applications cannot, however, determine which applications receive copies of any 

given tuple).  Transparent communication we refer to as feature F6.  The transparency provided makes 

the system more extensible (P3) by allowing snooping and interposability (although to work 

consistently the query persistence issue mentioned under persistence must also be addressed), and 

makes it easier to debug (P6) the system by observing communications.   

The richness of the data format and the opacity of the format (how easy it is to perform introspection on 

a message) also affect communication transparency.  The tuplespace model provides a relatively simple 

data format:  tuples contain an ordered set of fields, each with a primitive type and value—no nesting of 

tuples is permitted.  Therefore, tuples with the same number of fields and field order but different 

semantic meanings for fields cannot be disambiguated (e.g. a tuple with a single integer field whose 

value specifies a page number is indistinguishable from one whose integer field specifies a file 

descriptor number).  This is a drawback we address later in Section 5.2 with the flexible typing 

extension. 

Format opacity refers to how difficult it is for a party that knows nothing about a message to determine 

its contents.  A message format with destination and a payload of bytes is completely opaque, while one 

that provides information on semantic meaning in addition to the content is relatively transparent.  

Tuplespaces provide limited transparency:  any application that retrieves a tuple may determine the 

number of fields, field types and field content, but the tuple as a whole is not typed or named, nor are 

individual fields, so it is not straightforward to determine the meaning of the tuple or fields unless one 
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is an intended recipient of a message.  The self-describing tuples extension described in Section 5.2 

addresses this deficiency. 

It should be noted that there are two problems here, whether an application can determine the meaning 

of a message of unknown format, and whether a developer can look at a captured message and 

determine the meaning.  Format transparency makes the latter likely, but without sophisticated artificial 

intelligence the former would remain unlikely.   

Distribution of Infrastructure 

Another design decision is to what extent to the software infrastructure is centralized or decentralized.  

The tuplespace model is logically centralized, with a central space that is used to exchange tuples.  This 

logical centralization, which we call feature F9, makes it easier to keep applications referentially and 

temporally decoupled (P1 and P2) since the system can act as a proxy between senders and receivers.  

Logical centralization does, however, reduce the scalability of the system (Internet scale coordination 

through a logically centralized coordination infrastructure would not be feasible), but due to P8 we only 

need the system to scale enough to support the devices in a single workspace. 

In most implementations (JavaSpaces [3] and T Spaces [50], for example) the system is also physically 

centralized with a server machine hosting the tuplespace.  This is also the approach we have chosen 

with the Event Heap, and we refer to this physical centralization as feature F10.  While physically 

centralizing reduces performance and limits the scalability of a system, with modern processors and 

networks the performance of such a centralized tuplespace system is more than adequate for the tens or 

hundreds of devices and applications that can be expected to be used by a group collaborating in an 

interactive workspace.  By physically centralizing the system the implementation can also be 

concentrated in the server, making the client software simpler (P5).  This makes it easier to port the 

client API to new platforms.  Although physical centralization creates a single point of failure, several 

implementations such as [22] show how to distribute the tuplespace across several machines, so a 

cluster could be used instead of a single server.  Further, our use of the Event Heap’s temporal 

decoupling combined with soft state to regenerate date across Event Heap server failures allows an 

interactive workspace to tolerate most transient failures in the centralized tuplespace even without a 

distributed implementation.  Another concern is how much performance a single server can provide, but 

the number of transactions per second and the latency necessary are limited both by P7 and P8. 

Infrastructure API 

The tuplespace model has a very simple API (P5) with six functions that are used to express the 

coordination (the three mentioned at the beginning of Section 5, non-blocking versions of the two read 

operators, and an ‘eval’ function which can be used to launch new processes).  This makes it easy to 

port the system to new platforms.  In addition, a simple API makes it easy to add wrappers to existing 

application’s programmatic interfaces when source code is unavailable (similar to “puppeteering” [16]), 

a critical ability in integration of legacy applications.  While a simple API doesn’t necessarily imply a 

simple implementation, for tuplespaces the client-side implementation turns can be made quite simple.  

The simple API feature we call F11. 

In the Event Heap we have C++, Java, and Python native support, and using COM and OLE under 

Windows we’ve been able to support Visual Basic and integrate with Office applications.  We also have 

a web interface for submission of events through a Java servlet.  We attribute in large part our ability to 

support so many different interfaces to the simplicity of the API.  Using the various platforms has also 

enabled us to integrate with legacy applications in a fairly straightforward manner.  For example, we 

were able to integrate Office applications into our system in little more than the time to learn the COM 

15 of 33 



interface using our Java code and a Java-COM bridge library.  Integrating with CIFE’s 4D viewer (one 

of the applications in the scenario from Section 2) took a little less than 100 lines of commented C++ 

code added into their original application. 

Another important design characteristic of the API is its generality.  Gelernter and Carriero [21] suggest 

that coordination languages (what we have been calling the API of our coordination infrastructure) 

should be thought of as orthogonal to computational languages.  Each coordination language provides a 

set of primitives that can be used in any computation language.  They further state that some 

coordination languages are ‘general purpose’ and can be used to express any type of coordination 

(analogous to a procedural language being Turing-complete). 

A main feature of the tuplespace model, they argue, is that it is in fact a general purpose coordination 

language (the generality of the API we call feature F12).  As one example, RMI can be implemented 

with a set of two tuplespace calls on calling application and two on the application receiving the call.  

This generality provides for portability to new platforms and heterogeneity, both goals that we specified 

earlier for coordination infrastructures in interactive workspaces.  In terms of our systems properties, it 

also means that tuplespace systems are more extensible (P3) and expressive (P4) since any type of 

coordination can be expressed using the tuplespace API. 

5.2 Needed Extensions 

The tuplespace model satisfies many of the desired properties for a coordination infrastructure for an 

interactive workspace, with notable shortcomings including application portability (P10) and 

extensibility (P3).  The reasons for these stem from its original intent as a coordination system for 

parallel applications, in which all the processes were designed together.  This means that there are never 

any issues of coordination among processes that are foreign to one another.   

The remainder of this section details a set of extensions to the tuplespace model to address its deficits in 

the interactive workspace domain.  We call tuplespaces plus these extensions the Event Heap model.  

The model has been implemented in a system with the same name [27].  Tuples used by the Event Heap 

are slightly different from those in the basic tuplespace model, being typed and having other standard 

fields, among other things.  To distinguish them from basic Linda-style tuples, we refer to them as 

events throughout the remainder of the paper.  Other extended tuplespaces systems that have 

implemented some of these features are discussed in Section 5.4. 

Self-describing Tuples 

One problem with using tuplespaces in an interactive workspace is that the semantic meaning of fields 

in a tuple is only known by the programmer creating the processes that use the tuplespace.  This makes 

it difficult to reverse engineer tuple communication to integrate new applications with an existing 

collection of cooperating applications.  To get around this problem, the tuple fields can be made self-

describing by adding a string containing a name to the type and value for each field.  We call this 

feature F7
1
.  With self-description, a field can, for example, be called ‘Xpos’ if it contains the x 

position for the data being represented by the tuple.  Combined with tuple typing, the extension which 

will be discussed next, self-description makes it more likely that new developers extending an existing 

application can infer the meaning of the tuple and write applications to emit and react to the tuple (note 

that it most likely won’t help applications at run-time since parsing text and inferring meaning is a 

challenging AI problem).  This provides for additional extensibility (P3) and improves application 

portability (P10).  Finally, it also makes it easier to debug the system by monitoring traffic in the 

                                                 
1 Since it contributes to communication transparency (F6), this feature is given a number in that grouping. 
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tuplespace (P6).  Self-describing fields have been used in other extended tuplespaces implementations 

including TSpaces [50]. 

 

Figure 3 - The Event Heap Debugger 

So far in our project, self describing fields have proven most useful in debugging and adapting 

applications.  We have written a debugger application (Figure 3) which allows users to browse the 

current state of the Event Heap and perform the basic operations through a user interface.  Since event 

fields have human readable names it is relatively easy to look at the events and determine their 

function.  One can look at the Event Heap in the debugger and determine whether an action didn’t 

complete because no event was generated, or because the event did not reach a valid target.  New 

graduate students on the project have also been able to adapt their Event Heap code to work with old 

code by looking at the events generated and then testing out how changing field values and 

resubmitting events effect the results. 

Flexible Typing 

In a parallel application, the programmer or programmers can determine ahead of time standard formats 

and meanings for the tuples that will be exchanged.  In an interactive workspace, applications 

developed separately might choose tuples of the same size and field order, but with different semantics, 

causing erratic behavior when collisions occur.  These problems can be solved by the introduction of 

flexible typing, which we refer to as feature F8
2
.  Figure 4 shows some of the problems that can arise 

by comparing matching in a basic tuplespace extended only with self-description, and a tuplespace with 

both flexible typing and self-description. 

Typing is accomplished by adding a special tuple type field (or event type in the case of the Event 

Heap) whose value determines the minimal set of fields required for this tuple type and the meanings of 

each field.  Now applications need only avoid collisions on the name of this type, which solves the 

problem for the majority of the cases and provides for application portability to new spaces (P10).  The 

                                                 
2 Along with self-description, this feature is numbered in the communication transparency group. 
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type of problem fixed by this is shown in Figure 4a.  Typing has been implemented in other extended 

tuplespace systems such as JavaSpaces [3], and L2imbo [15].  

Note that the issue of typing and the issue of naming are inter-related when tuplespace-based 

coordination is used.  Typically, naming is used to specify targets for messages, and types to specify 

content of messages.  Since tuplespaces use content-based routing, the type of the message typically 

plays a role in determining which recipients will receive any given tuple (i.e. those recipients that are 

matching on the given tuple-type).  Thus, providing a tuple type field in some measure both prevents 

type collision and provides a means of naming intended recipients.  The issue of typing and naming is 

further discussed in Section 8.2. 

Tuplespace with Self-description Only  Tuplespace with Flexible Typing and Self-Description 

Double xPos Double xPos  EventType MapLoc EventType GridCoord 

Double yPos 
= 

Double yPos  Double xPos Double xPos 

    Double yPos 

≠ 

Double yPos 

(a) Example of False Match Under Basic Tuplespaces that is Fixed by Typing 

Double xPos Double xPos  EventType MapLoc EventType MapLoc 

Double yPos Double yPos  Double xPos Double xPos 

 

≠ 

Int zoomFactor  Double yPos Double yPos 

    

= 

Int zoomFactor 

(b) Example of Flexible Typing Allowing Additional Field Data to be Inserted 

Double xPos Double yPos  EventType CameraPos EventType CameraPos 

Double yPos Double zPos  Double xPos Double yPos 

Double zPos 

≠ 

Double xPos  Double yPos Double zPos 

    Double zPos 

= 

Double xPos 

(c) Example of Field Ordering Causing Mismatch which is Fixed by Flexible Typing 

Figure 4 - Flexible Typing Examples (‘=’ : Tuples will  match if values match; ‘≠’ : Tuples can  not match) 

In addition, there is a problem of allowing newer applications to use an enhanced version of a tuple 

while maintaining interoperability with older applications.  To get around this, the typing of tuples can 

be made ‘flexible.’  Specifically, matching can be changed to ignore field order and allow matching to 

any tuple that has a super-set of the template’s fields (as in Figure 4b).  Thus, newer applications can 

add fields with supplemental information without breaking compatibility, analogous to adding 

experimental headers in HTTP, making the system extensible (P3).  Flexible typing has been advocated 

for software systems in general in [44].  It should also be noted that having a flexible data format is 

relatively independent of choosing to use an extended tuplespace for coordination.  For example, we 

expect that similar flexible typing could be applied in message passing or publish-subscribe 

coordination systems. 

We have needed the flexible typing feature on several occasions during development of applications for 

our project.  The multibrowsing system [30] allows users to push and pull web pages between 

computers in the iRoom.  At one point we upgraded the Windows version of the system to support 

specification of whether the newly retrieved page was to be opened minimized, or maximized, and 

whether it should be brought to the front.  We did this by keeping the same event format while adding 

on extra fields for the Windows version.  Making these changes didn’t even require a recompile of the 

Linux version of the application, which was able to ignore the new fields.   

Standard Routing Fields 

While the standard tuplespace model supports all of the routing patterns (one-to-one, broadcast, etc.), 

individual application developers must have a convention for which tuple fields are set to determine 
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their routing.  This works well for parallel applications with processes designed to work together.  In 

the ‘open’ tuplespace environment of an interactive workspace, however, a standard for fields is needed 

to insure a compatible routing mechanism between all applications.  This in turn enhances the 

extensibility of the system (P3) and application portability (P10).  We call the addition of standard 

routing fields feature F3
3
. 

With the standard routing fields extension, the Event Heap client implementation tags the source fields 

of source tuples with information about the source and the target fields of template tuples with 

information about the querying receiver.  By default, the target fields are set to wildcards on senders 

allowing the tuple to be routed to any receiver, and source fields are set to wildcards on receivers so 

they match tuples from any source.  By overriding the target values of an event sent from a source, an 

application programmer can route the tuple to a specific target instead of all targets, and by overriding 

the source values used by a receiver the programmer can select only tuples from a specific source rather 

than tuples from all sources.   

As an example, to send to all ‘3DViewer’ applications, a sender can set the ‘TargetApplication’ field on 

a tuple to ‘3DViewer.’  Since the client-side of the coordination infrastructure sets the 

‘TargetApplication’ field of template tuples on all 3D Viewer applications to ‘3DViewer,’ the tuple will 

only be picked up by 3D Viewer applications (but only by those that would otherwise match the tuple 

which was sent).  If a tuple is sent without the application writer overriding the value of 

‘TargetApplication’ field, that field will be sent out set to a wildcard value and will therefore match all 

receivers looking for a tuple that otherwise matches the one being sent.   

The Event Heap supports routing by program instance, application name, device, person, group or any 

combination of these.  The types of routing were determined by consulting with several research 

groups, including a design research group in the Mechanical Engineering Department, that are using the 

Event Heap to write applications for their specific research area.  Figure 5 gives another example of 

using the routing fields to either send to a specific screen, or multicast to all screens. 

                                                 
3 This features number appears out of order, but is actually correct since it falls in the category of routing along with content-based 

addressing and support for all routing patterns (F1 and F2, respectively). 
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String EventType “ViewChange”

String TargetDevice “FrontScreen”

Int ViewNumber *

waitForEvent

waitForEvent

String EventType “ViewChange”

String TargetDevice “SideScreen”

int ViewNumber *

String EventType “ViewChange”

String TargetDevice “FrontScreen”

int ViewNumber 13

PutEvent

 
Step 1: One client places event for “FrontScreen” 

while two other clients block 

String EventType “ViewChange”

String TargetDevice “FrontScreen”

int ViewNumber 13

waitForEvent

String EventType “ViewChange”

String TargetDevice “SideScreen”

int ViewNumber *

String EventType “ViewChange”

String TargetDevice “FrontScreen”

int ViewNumber 13

 
Step 2:  The client that was waiting for 

“FrontScreen” receives a copy of the event 

A source sends an event to the “FrontScreen”. 

 

String EventType “ViewChange”

String TargetDevice “FrontScreen”

Int ViewNumber *

waitForEvent

waitForEvent

String EventType “ViewChange”

String TargetDevice “SideScreen”

int ViewNumber *

String EventType “ViewChange”

String TargetDevice *

int ViewNumber 7

PutEvent

String EventType “ViewChange”

String TargetDevice “FrontScreen”

int ViewNumber 13

 
Step 1:  One client places an event for target device 

‘*’ while two other clients block 

String EventType “ViewChange”

String TargetDevice “FrontScreen”

int ViewNumber 13

String EventType “ViewChange”

String TargetDevice *

int ViewNumber 7

String EventType “ViewChange”

String TargetDevice *

int ViewNumber 7

String EventType “ViewChange”

String TargetDevice *

int ViewNumber 7

 
Step 2: Both blocking clients match on target device 

‘*’ and receive a copy of the event 

Later, a source sends an event to all screens. 
Figure 5 - Using the Event Heap Standard Routing Fields 

We do not have a lot of experience yet using the default routing fields since they were only added in the 

most recent Event Heap release.  Nonetheless, they were implemented to address a real problem we 

were seeing with applications in the iRoom.  Specifically, a common technique was to generate an 

event to trigger an action on some specific touch screen in the room.  This was done by creating an 

event field indicating the target, and having each potential target wait for events with its ID in the target 

field.  Unfortunately, since developers all used different field names and ID schemes, every time 

different applications needed to be integrated the developers of all components needed to be gathered 

together, or careful sleuth-work with the Event Heap debugger had to be done.  Self-description made it 

relatively easy to determine which fields contained the target, but since developers were using integer 

IDs for the value of the target it was difficult to determine the meaning of each ID.  We are hopeful that 

having a standardized method for routing will eliminate this problem in the future.  

Tuple Expiration 

The standard tuplespace model provides temporal decoupling, but not the limited temporal decoupling 

we had specified as a desirable system property.  In an interactive workspace there is no guarantee that 

a tuple posted by an application will ever be consumed (perhaps the intended recipient has crashed or is 

not functioning), so if tuples aren’t expired they can build up in the tuplespace, leading to the eventual 

exhaustion of server resources and crash of the server software.  This leads the system to be more 

failure prone, the opposite of (P9).  Extending tuplespaces by adding an expiration field to all tuples 
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which is set by application developers gives the system limited temporal decoupling (P1), and also 

allows each tuple to have an expiration period proportional to the time over which it would appear 

reasonable to users of the room to see a causal effect of that tuple (as determined by the developer).  

Tuple expiration along with the data persistence of the standard tuplespace model provide the limited 

data persistence feature (F4).  Other extended tuplespace implementations, including TSpaces [50] have 

expiration for similar reasons.  While other systems have used garbage collection for tuple expiration, 

the Event Heap uses a single thread that deletes tuples as they expire. 

Query Persistence/Registration 

Another drawback of the basic tuplespace model is that it only supports polling.  This means that tuples 

placed into the tuplespace and removed between successive polls by a process will not be seen by that 

process.  In the controlled environment of a parallel application using a tuplespace this race condition 

can be avoided by careful programming, but in an interactive workspace with a diverse collection of 

applications it cannot be avoided.  Further, the introduction of the expiration extension makes the 

problem worse since tuples may simply expire before they can be retrieved by a polling process.  The 

solution is to add an extension which allows a query to be registered with the coordination system.  The 

query persists until it is deregistered, and for as long as it persists, a copy of each posted tuple which 

matches the template is returned to the querying application by a notification call.  This is, in fact, the 

only mode of retrieving messages in a publish-subscribe system.  Query registration and persistence 

makes the system easier to debug (P6) since trace applications can log all tuples placed into the 

tuplespace.  It also improves extensibility (P3) since it allows snooping applications (see Extensibility 

in Section 4) to spy on and react to communications even between applications which perform 

destructive reads of tuples.  The overall expressiveness of the system (P4) is also improved since this 

type of guaranteed receipt is not possible with standard tuplespaces.  We refer to query 

persistence/registration as feature F5
4
. Query registration has been a popular feature in other extended 

tuplespace implementations including JavaSpaces [3],TSpaces [50] and Lime [38]. 

Query registration was added to the Event Heap specifically to support logging applications when we 

realized that there was no other way to insure receipt of all events during the time an application was 

connected to the Event Heap. 

FIFO, At Most Once Ordering 

Normal tuplespaces provide no guarantee of the order of tuples returned by a series of identical queries, 

which has a strong negative impact on applications for an interactive workspace.  In practice most 

applications perform a loop retrieving tuples that match some particular schema, and then performing 

some action based on the contents of the retrieved tuple.  To allow other applications to react to the 

same tuple (which in turn permits multi-cast routing), applications by default perform a non-destructive 

read.  On the next call in the loop, however, the same tuple may be retrieved again since it will still be a 

valid match to the template.  In order to not react twice to the same tuple, the application must track 

which tuples it has seen, which adds to development time.  This problem of duplicate retrieval is known 

as the multiple read problem, and has been noted by [43].  This additional development time could 

discourage developers from doing it the right way and lead them to  use destructive reads instead (in 

fact we saw this in early Event Heap versions that didn’t support ordering). 

Having applications perform destructive reads reduces extensibility of the system, which detracts from 

P3.   Since most applications use this feature, and we want to maintain extensibility, it is desirable to 

                                                 
4 This is considered feature number five since it goes in the persistence category along with feature four, data persistence. 
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add per-source FIFO, at most once, ordering or better to any extended tuplespace system intended for 

an interactive workspace.  We call this feature F13, and adding it ensures that each tuple will be seen at 

most once, and the oldest unseen tuple from a source will always be returned before newer unseen 

tuples.  While total ordering would allow applications to perform more sophisticated reasoning on 

tuples read, having it as a rigid specification would make it more difficult to implement clustered 

versions of the Event Heap model.  Since most applications do not need total ordering, only per source 

FIFO, at most once ordering is specified.  The Event Heap implementation does in fact provide total 

ordering in most cases as a side effect of having a physically centralized server based implementation.  

Per-source ordering is also in LIME [38] and has also been found useful when applying the tuplespace 

model to other domains.  See, for example, [32].  To our knowledge, no tuplespace system or 

application of tuplespace systems has needed stronger than per-source ordering (such as total causal 

ordering). 

It became clear very early on in the development of the Event Heap that providing FIFO, at most once 

ordering, was important.  During the design of the projector control system for the iRoom, we needed a 

means of telling projectors to turn on or switch to displaying different video sources.  Unfortunately, 

using basic tuplespace semantics through TSpaces (which we were then using as the underlying system 

for the Event Heap), the same projector event was picked up over and over again until it expired.  While 

we initially tried several ad-hoc indexing schemes just for that application, as more programs were 

developed it became clear that this was a common problem and we added FIFO, at most once ordering 

into the coordination infrastructure.  

Modular Restartability 

In addition to the basic failure tolerance provided by tuplespaces through decoupling, an important 

extension for the interactive workspace domain is modular restartability (feature F14).  Any application 

or even a component of the coordination infrastructure can be restarted without causing failure in other 

components.  In the Event Heap implementation the client side API is designed to automatically 

reconnect should the server go down and later restart.  The server itself was, of course, also 

programmed such that crashing clients do not affect it.  During development this has allowed us to 

restart client applications at will, restart the server after a crash, or bring up a new version of the server 

software without having to restart client applications running on the various machines in the iRoom.  

Modular restartability was not included in the original tuplespace model since in most parallel 

applications all processes need to run to completion to solve the problem.  Thus, failure in one always 

required a restart of the whole system.  Modular restartability helps support property P9. 

5.3 A Note on Performance 

One of the characteristics we specified for interactive workspaces was that the software infrastructure 

would be bound by human performance needs (H3), and the associated property, P7, stated that the 

coordination system must have the property of supporting perceptual instantaneity.  Performance is not 

a feature designed into the system, but rather a characteristic determined by features of the system and 

how well they have been implemented.  No matter how well the features we specify provide the other 

system properties, if it is not possible to implement the system such that perceptual instantaneity is 

achieved, the overall model is not tenable. 

Our verification that satisfactory performance can be achieved is through our prototype implementation 

of the Event Heap model.  Tests of the system show that it can handle several hundred connected 

devices, and several hundred events per second at latencies of around 50 ms for a round trip (post to the 

Event Heap followed by a retrieval of the same event).  Our code is not well optimized, but nonetheless 

the systems performance exceeds the needed 100 ms of latency, even under the conditions we expect 
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from an interactive workspace sized traffic load (P8).  A more detailed presentation of our 

measurements and an analysis of more efficient implementations of the model are left for a future 

publication. 

5.4 Comparison to Modern Tuplespace Systems 

As has been mentioned throughout the previous section, some of the extensions we found to be 

necessary have been included in other systems based on the tuplespace model.  While none of these 

modern tuplespace systems have all of the features we find to be necessary, all of them could 

potentially be extended to make a suitable coordination infrastructure for interactive workspaces. 

Table 4 summarizes where several of the modern tuplespace systems fall with regards to the extensions 

we have just proposed.  Although not proposed as a desired feature since it lies at the implementation 

level, cross platform support has been included in the table as many of the systems are fairly tightly tied 

to the class system of a particular language (most notably Java).  To avoid this problem in the Event 

Heap we have a standard TCP/IP based wire protocol and simple event specification that are language 

independent. 

The four tuplespace-based systems that appear in the table are Gigaspaces [1], TSpaces [50], L2imbo 

[15] and LIME [38].  Gigaspaces is the first enterprise level commercial product that implements and 

extends the basic JavaSpaces [3] specification proposed by Sun.  TSpaces is an IBM project, and is 

designed to be a general tool for ubiquitous computing type applications.  L2imbo seeks to use filtering 

of events between multiple tuplespaces as a mechanism for providing Quality of Service (QoS) 

guarantees.   LIME stands for Linda in a Mobile Environment and was developed to explore how 

tuplespaces can be made to function in an environment where connectivity between devices is 

constantly changing as users with mobile devices roam around.  

Extension Gigaspaces TSpaces L2imbo LIME
7
 

Flexible Typing ∼1 ∼5  × 

Self-describing Tuples 2  × × 

Standard Routing Fields × × × ∼8 

Tuple Expiration 3   × 

Registration   ×  

FIFO, At Most Once Ordering × × × 
9 

Modular Restartability × × × 
10 

Platform Independence ∼4 × 
6 ×11 

1. Standard Java Classes are used. 

2. Through Java class reflection. 

3. Using Jini leases. 

4. A JNI bridge to C++ is provided, but no general wire protocol is exposed for other platform support.  JNI also incurs the overhead of a complete 

JVM per C++ application. 

5. Tuples don’t have traditional types.  Standard matching requires tuples to have the same number of fields in the same order by type, but more 

flexible database style queries are supported. 

6. Only C is implemented, but they have a language independent wire protocol. 

7. Based on descriptions in their papers [38, 40, 41]. 

8. No routing fields within tuples are provided, but the system provides one tuplespace per device and a means of insuring a tuple is eventually 

made available in the tuplespace of some specific device. 

9. A special ONCEPERTUPLE registration mode is available that insures each tuple will be retrieved only once. 

10. This is inherent to their design goals. 

11. Only Java is supported, but all communication is socket based, so assuming Java class structure is not relied upon heavily in their serialization it 

could be possible to support other platforms. 

 
Table 4 - Tuplespace Extension Support in Modern Tuplespaces (  = has feature, × = doesn’t have feature,  ∼ = limited support of 

feature) 

As can be seen, none of the systems have all of the features we found necessary, nor do they have the 

same features as one another.  The table does not tell the whole story since most of the systems have 

additional features that are well suited for their domains but inappropriate for an interactive workspace. 
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6 Other Alternatives 

While in the end we determined tuplespaces to be the coordination infrastructure best suited to 

interactive workspaces, there are many other coordination infrastructure that were candidates.  Table 5 

compares the tuplespace model and three other systems.  The Event Heap extended tuplespace model is 

not included in the table since it has all of the properties by design (it would be a column of check 

marks).   

 Tuplespaces RMI/RPC 

w/Rendezvous 

Pub-Sub MOM
*
 

P1. Limited Temporal Decoupling ∼ × ×  

P2.  Referential Decoupling  ×  ∼ 

P3. Extensibility ∼ × ∼  

P4. Expressiveness ∼ × × × 

P5. Simple and Portable Client API  ×  ∼ 

P6. Easy Debugging ∼ × ∼ ∼ 

P7. Perceptual Instantaneity    × 

P8. Scalability to Workspace-sized 

Traffic Loads 
    

P9. Failure Tolerance and Recovery ∼ ×   

P10. Application Portability × ×   

Table 5 – Comparison of How Well Desired Interactive Workspace System Properties are Met by Various 

Coordination Infrastructures (  = fully meets property, × = doesn’t have property, or limited,  ∼ = mostly 

meets property) 

The remainder of the section describes in more detail how RMI/RPC, Publish-Subscribe and Message-

Oriented-Middleware (MOM) fall short of the desired properties.  Note that any of these coordination 

models could be modified and extended to provide the same set of properties as the Event Heap, but 

tuplespaces required the least total amount of change.  As the table shows, publish-subscribe would 

have also been a reasonable candidate, but it had limited support for two of the properties (limited 

temporal decoupling and expressiveness), while tuplespaces only had limited support for one of the 

properties (application portability). 

6.1 RMI/RPC Systems with Rendezvous 

Both RPC (remote procedure call) and RMI (remote method invocation, RPC’s object-oriented 

equivalent) make execution of a procedure or method on a remote process appear local.  Since they 

mimic a function call, all communication is transient and synchronous, with the calling application 

blocking until the result is returned.  Calls cannot work until an appropriate remote target is found, so a 

proper coordination infrastructure must provide some mechanism for applications to rendezvous, or 

find out about one another.  Through that mechanism the caller obtains the handle to use for the 

procedure call or method invocation. 

                                                 
* As noted in the text, MOM systems vary quite a bit in terms of features.  We have done our best to represent here what is most common.  
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Figure 6 - RMI-Rendezvous System Diagram: Remote services register interfaces (1); Calling processes retrieve interfaces (2,3) and then 

make invocations on the remote service (4,5) 

As an interactive workspace coordination infrastructure, RMI/RPC has many drawbacks.  Since the 

system is synchronous and transient, it is fundamentally coupled both referentially and temporally.  

This tight coupling also means applications are strongly interdependent—if the remote application 

hangs in a call, the calling application will also hang.  This makes RMI/RPC systems less tolerant of 

transient failure.  It is relatively hard to extend collections of applications using RMI/RPC since the 

method invocation schemata and semantics must be known in order to integrate a new application—this 

also makes applications less portable for integration in new environments.  The system can’t perform 

most routing types without client applications implementing most of the logic themselves (broadcast, 

for example) so it is relatively non-expressive.  APIs are typically not very portable since they are either 

tied to a specific language or include a great deal of client API overhead to allow for translation of calls 

and passed parameters between languages.  Finally, since all communication is direct and opaque it can 

be difficult to debug collections of applications using RMI/RPC.  CORBA [51] and Jini [48] are 

examples of this type of coordination model, although to be fair both include extensions that allow them 

to avoid some of the drawbacks of a basic RMI/RPC system with rendezvous.  An example of a RMI-

Rendezvous system is shown in Figure 6. 

6.2 Publish-Subscribe Systems 

Publisher Subscriber

Bus

Infrastructure

Register

 
(a) Subscriber Registers for a Certain Type of 

Message 

Publish

Publisher Subscriber

Bus

Infrastructure

 
(b) A publisher generates a non-matching Message, 

so it is not delivered. 

Notify

Publisher Subscriber

Bus

Infrastructure

Publish

 
(c) A matching message is generated and delivered to the subscriber 

X

Figure 7 - Publish-Subscribe System Diagram 

Publish-Subscribe systems work entirely using a mechanism similar to the query 

persistence/registration extension for tuplespaces used by the Event Heap.  Applications subscribe to 

messages of interest, and then receive a copy anytime another entity publishes a matching message.  

The basic mechanism is shown in Figure 7.  Messages of interest can be specified by a channel, a 

subject, or more complex content based matching schemes similar to those used by tuplespaces.  

Perhaps the best example of a publish-subscribe system is the InfoBus [39].  Eugster et al. give a good 

overview of publish subscribe systems and their properties [19].  Also, the SIENA system has shown 

how publish-subscribe can be extended to Internet-scales while keeping performance reasonable [11]. 
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After tuplespaces, publish-subscribe systems come closest to having the properties needed for 

coordination in an interactive workspace.  However, they provide no temporal decoupling—an 

application must be running and subscribed at the time of message generation to receive a copy of the 

message.  Further, publish-subscribe is not a general purpose coordination system since it is designed 

primarily for broadcast and multicast.  This makes other routing patterns and coordination types 

difficult or impossible; for example, anycast is not possible since there is no way to squelch a message 

once one of the receivers acknowledges receipt (in contrast, even the basic tuplespace model can 

support anycast if candidate recipients perform destructive reads to prevent others from receiving the 

same tuple). 

6.3 Message-Oriented-Middleware (MOM) 

Sender Receiver

Sender
Receiver

Broker

 

Figure 8 - Message Oriented Middleware System Diagram: Senders emit objects which are passed through several queues, eventually 

arriving at the appropriate location or locations 

Message-Oriented-Middleware (MOM) is a less specific type of coordination model.  It is sometimes 

referred to as message-queuing, and often includes features similar to publish-subscribe.  MOM 

systems are intended to route messages between computer systems at sub-organizations within a 

corporation, or between computer systems within one or more corporations (for example routing of 

money transfers).  Their main intent is to guarantee that request messages are delivered and that result 

messages are returned, so they usually provide transactions, fault tolerance and guaranteed delivery.  

Figure 8 shows an abstract representation of a MOM system.   

In one style of MOM system, senders generate a stream of messages with a given target.  A series of 

one or more intermediate servers routes the messages to the target.  If the target is down, the messages 

are buffered for as long as needed.  This decouples the applications in time, so they need not be running 

simultaneously.  This style of operation is similar to IBM’s MQ-Series [4], for example.   

Other MOM systems allow content such as stock quotes to be sent into the coordination infrastructure, 

where intermediate servers and applications may consume them, transform their formats, or combine 

them with other messages before re-publishing them.  Receivers specify content they want to receive, 

and the system collects and queues the information for them, even if they go down.  This latter style of 

operation is similar to Gryphon [2]. 

Since MOM systems vary quite a bit, it is hard to specify how they compare on the properties.  As a 

rule they are not designed to be general purpose coordination systems, and thus are not as expressive as 

is desirable for an interactive workspace.  Also, since many are designed to provide transactions or 

work over Internet scales, the latency in the system cannot be guaranteed to be perceptually 

instantaneous.  Some of the systems are referentially coupled, requiring sender to specify receiver.  

Depending on the implementation, the API may not be very portable, and debugging may be difficult 

since transported data may be opaque (sometimes deliberately so through encryption of sensitive 

business information being transferred in the messages). 
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7 Discussion 

7.1 Experience 

Our prototype iRoom includes three SmartBoard wall-size touch-sensitive displays, a hi-res Mural 

display, a tabletop display, wireless LAN and wireless pointing devices, and integration with laptops 

and PDA’s.  Space does not allow a detailed description of our extensive experience with the iRoom to 

date.  We routinely use several applications that rely on the functionality of the Event Heap, including 

PointRight [29] for multi-display mouse control, multibrowsing [30] for web browsing across displays, 

ICrafter [42] for controlling lighting and projectors from handheld and other devices [20], 

SmartPresenter for multi-display presentations, and iStuff wireless buttons that can be programmed as 

“macros” (e.g. power up the entire room).  Most of these were realized by combining a diverse array of 

off-the-shelf applications (e.g. PowerPoint) with  tens or hundreds of lines of ‘glue’ code.  As a 

research lab, the room has been remarkably robust under day-to-day use, and also supports several 

outside groups that use it for demos and as a facility for their own (non-Computer Science) projects.  

The system is also now deployed in several other interactive workspaces on Stanford campus, and is 

also being used at other locations around the world.  We cannot prove that the combination of 

properties we argue to be key for coordination in an interactive workspace are complete,  but we 

believe our implementation of a model with those properties, and its subsequent deployment in multiple 

locations, has demonstrated that they are a natural fit for such environments. 

7.2 Applicability of Model 

As discussed, this paper only argues for the suitability of an extended version of tuplespaces for 

coordination of user controlled applications in an interactive workspace.  Nonetheless, we believe that 

the model may also be useful in other sub-domains of ubiquitous computing.  Specifically, we believe it 

applies for coordination of applications within any bounded region of human and device interaction.  It 

could be used for coordination among devices in a home, or to allow interaction between built in 

devices and portable devices in public spaces—in restaurants, or on public transportation, for example. 

Many of the features of the model that provide for interaction of diverse devices, extensibility and the 

other mentioned properties come at the expense of scalability and performance.  The system model is 

able to sacrifice in those regions due to the bounded scope of coordination and the reduced need for low 

latency that stem from the system being designed for a small group of interacting humans.  

Nonetheless, these limit the applicability of the system to other domains.   

The limited scalability that comes from having a logically centralized mechanism of information 

exchange means that the model is not suitable for coordination across tens or hundreds of thousands of 

machines across the entire Internet.  Nor is it suitable for coordination of large widely distributed sensor 

networks.   

While tuplespaces were designed for use in high performance parallel computing applications, the 

extensions we have proposed to allow the interaction of a diverse collection of applications sacrifice 

much of the performance of the model.  For example, self-description of fields adds overhead and is not 

needed when the collection of processes are designed to work together.  So, our new model would be 

inappropriate for high performance parallel computing applications even within an interactive 

workspace. 

There are some types of communication among devices and applications in an interactive workspace 

that are not appropriate for an extended tuplespace model.  In particular, it is not suited to streaming of 

high bandwidth data, such as sound or video, where throughput needs are beyond what the content 

based matching system could reasonably handle.  It is also not designed to support human computer 

interaction which requires tight motor-visual feedback, such as gesture interaction.  In particular for 
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gestures, several trips through the Event Heap might be needed to build up the gesture: low level 

movements need to be sent, recognized as a gesture, and the gesture needs to then be mapped to the 

appropriate application level action.  Even with short transit times per pass through the Event Heap, the 

total latency could reach the point of being noticeable to users. 

Another potential issue is the likely increase of the number of devices in an interactive workspace as 

hardware become cheaper and more plentiful.  This leads to the conjecture that as time goes on the 

centralized implementation will have to handle increasing traffic loads, and might eventually reach a 

breakdown point.  While we can’t be certain, we suspect that the processor power of the central server 

will scale at least as quickly as the number of devices, such that a centralized implementation will 

remain sufficient for a single interactive workspace.   

8 Open Issues 

While we have identified tuplespaces as a good starting point as a coordination infrastructure for an 

interactive workspace, and have specified a set of extensions that can be added to create a complete 

model for coordination, there are nonetheless several open issues that we have yet to fully address. 

8.1 Security and Privacy 

In some ways, security and privacy in interactive workspaces are simplified by the use of the Event 

Heap model since authenticated users can be given access to the Event Heap and will be restricted to 

coordination in that space (this is another way tuplespaces fit well with the bounded environment 

characteristic of interactive workspaces, H1).  

On the other hand, one of the design features of tuplespaces and the Event Heap is the transparency of 

data and communication.  Together they make it easier to debug collections of applications and make 

the system more extensible.  These same features, however, make the system insecure and public to all 

users in an interactive workspace.  Unfortunately, it is not obvious how to fix this.  While there are 

many obvious security fixes that could be made—for example, allow tuples to be partially encrypted—

many of them would degrade the ability to debug and extend the system, and it is not obvious whether 

this is what is desired. 

The main problem is that a social model for security in an interactive workspace needs to be 

determined.  Unlike communication across the Internet, coordination within the workspace occurs due 

to interactions of individuals with applications within the space.  Just as there is an implicit agreement 

when people meet in a room that all conversations there are public, it seems that when people 

collaborate within an interactive workspace there should be an implicit agreement that all “electronic 

conversations” are also public.  On the other hand, sometimes charts or photos are shared at a meeting 

with the assumption that no record is taken out with participants.  When that same information is 

electronic it can easily be captured and used at a later time. 

For the time being our strategy has been to firewall the interactive workspace so that no outside 

machines have access to the traffic in the room.  We realize that a more detailed analysis of the social 

and technological issues related to security in interactive workspaces is needed. 

8.2 Type Collisions 

The issue of type collision arises in any system that allows interoperation of applications not designed 

to work together, so it is of course an issue for any coordination infrastructure designed to work in an 

interactive workspace.  There are two main issues: name collision on tuple types and use of different 

tuple type names for similar information.  Type collision occurs when two application designers choose 

the same tuple type name for tuples with different content.  We expect that this will be relatively rare 

since we use strings for type names.  Further, since field names and types must also match for the tuples 
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to match, unless the designers also choose the same set of mandatory fields, there shouldn’t be a 

collision.  Other discussion of typing and naming and how the two are inter-related for tuplespace 

systems can be found earlier in this paper in the flexible-typing part of Section 5.2 . 

The second problem is more likely:  two designers choose different type names for events conveying 

similar content.  This could happen, for example, when two projector companies come up with different 

names for the tuples types that control their projectors.  Fortunately, adapters can be made using the 

interposability feature of the system.  An adapter is a software intermediary that can pick up tuples of 

one type and convert them into tuples of another type which then get deposited in the tuplespace.  Other 

researchers have done work on this in the past, for example with the Event Exchange system [37] which 

worked with T Spaces [50].  We have an initial version of an application called the “Patch Panel” that 

allows these type conversions to be easily set up either programmatically through sending events to a 

well known Event Heap service, or through an easy to use GUI. 

8.3 Improving Performance and Integrating More Communication Types 

As discussed in Section 7.2, we did not envision an extended tuplespace-based architecture in general, 

or the Event Heap specifically, to be the only method of communication among applications and 

devices in an interactive workspace.  Specifically, traffic that needs high throughput or low latency, or 

both, did not seem appropriate for this type of coordination system.  In fact our intention for the Event 

Heap was that it handle no more than a few events per second at a latency of around one hundred 

milliseconds per event.  This led us to implement PointRight [29], our mouse redirection system for the 

iRoom, using the Event Heap to handle coarse scale configuration changes, and direct socket 

connections for transmission of actual mouse events. 

Experience with our latest Event Heap implementation has led us to reconsider.  As shown in Section 

5.3 even when handling several hundred events, and several hundred devices the latency stays less than 

50 ms.  We now use the Event Heap for transportation of mouse events for the Macintosh port of 

PointRight and it allows several users to smoothly control the mouse over a 802.11b wireless network.    

Based on this experience we hope to define a broader set of coordination and communication types that 

can be handled through an extended tuplespace in the interactive workspace domain.  Our current 

implementation is not highly optimized, so we hope to improve performance without changing the 

current interface.  We would also like to investigate adding new semantics for high throughput streams 

so that developers don’t need to use multiple different communication libraries to program applications 

for an interactive workspace. 

9 Related Work 

A large number of interesting and complex, but non-interoperable, projects [5, 10, 13, 18, 45] are 

investigating room or work-area based ubiquitous computing.  Each has uncovered important insights 

in ubiquitous computing but none have yet to propagate and deploy their frameworks significantly 

beyond the project’s boundaries.  Many are focused more on making the environment ‘smart’ and 

responsive to users’ needs, and have focused less on creating a reusable, portable and robust software 

infrastructure.   

The Gaia project [12] is seeking to make an operating system for interactive-workspace-like 

environments.  Like us, their goal is to provide application portability, but we are seeking to provide a 

standard interconnection framework for applications rather than attempting to abstract away the 

diversity of devices and applications found in such spaces.  We see their approach as promising for 

designing new applications to work in an interactive workspace, but it is unclear how well it will be 

able to handle legacy applications and the incremental evolution of a space with the addition of new 

devices. 
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The i-Land project [45] has been investigating human computer interaction in ubiquitous computing 

rooms.  As a platform for creating and testing applications in their prototype room, they have created 

the BEACH system [46, 47].  It provides both a conceptual model of applications in such spaces, and a 

corresponding software infrastructure based on SmallTalk.  In their system, coordination is 

accomplished through the use of shared objects and the ability to monitor those objects for state 

changes.  This is most similar to a publish-subscribe system, and has the advantages and disadvantages 

of that system as described in Section 6.2. 

The Intelligent Room project at MIT is also investigating environments similar to those we are 

investigating, although they are focusing on making the environment smart and responsive to the users 

in the space.  They have created the Metaglue system [13] as a framework for creating the applications 

in their space.  It is Java based and relies on RMI for inter-application communication.  It most 

resembles the RMI-Rendezvous system described in Section 6.1.  To lessen the coupling inherent to 

RMI, calls in their system are routed through an intermediary that forwards them to the appropriate 

final target.  This allows the software infrastructure to switch the bindings between objects on the fly. 

Hasha [24] proposes publish/subscribe for controlling homes filled with smart appliances, sensors and 

I/O devices; we believe the limited temporal persistence and expiration properties we have added to 

tuplespaces make them slightly more useful for connecting legacy components and applications and for 

dealing with partial failure and state corruption.  Jini [48] provides lower level mechanisms by which 

clients and servers that understand common interfaces can interact with each other, but does not specify 

how coordination proceeds after the initial rendezvous.  JavaSpaces [3], Gigaspaces [1] (a commercial 

implementation of JavaSpaces), and TSpaces [50] are all extended versions of the tuplespace model, 

and an earlier implementation of the Event Heap was actually built on top of TSpaces.   

10 Conclusions 

Because of practicality and complexity constraints, many ubiquitous computing application scenarios, 

both within and without interactive workspaces, will continue to be characterized as loosely-integrated 

ensembles of heterogeneous, and often legacy, components.  We propose that at least within the sub-

domain of interactive workspaces, a tuplespace model with extensions does the best job of satisfying 

the demands and characteristics of the space.  Further, we suggest that this model gives a way of 

thinking about how applications for interactive workspaces can be written and made to interact with one 

another in a standard manner.   

While we have yet to work outside of this sub-domain, our survey of other work makes us think that a 

similar set of coordination infrastructure properties may apply more generally in the ubiquitous 

computing field.  This domain may be a “killer app” for tuplespace-based models of coordination, 

because of the basic model’s portability, extensibility, flexibility, and ability to deal with heterogeneous 

environments.  We encourage interested readers to help evaluate and extend our approach by setting up 

their own Interactive Workspace.  The hardware can be easily simulated using a collection of PC’s, 

handhelds and laptops, and the Event Heap software described in this paper, along with other software 

infrastructure for interactive workspaces that we have developed, are available as Open Source at 

http://iros.sourceforge.net.  More information on the Interactive Workspaces project in general may 

be found at http://iwork.stanford.edu.   
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