
1

Extending UML for Agents
James Odell

James Odell Associates
3646 W. Huron River Dr.

Ann Arbor, MI 48103
Tel: +1 (734) 994-0833

jodell@compuserve.com
www.jamesodell.com

H. Van Dyke Parunak
ERIM Center for Elec. Commerce

P.O. Box 134001
Ann Arbor, MI 48113

Tel: +1 (734) 623-2509

vparunak@erim.org
www.erim.org/~vparunak

Bernhard Bauer
Siemens
ZT IK 6

D-81730 München
Tel: +49 (89) 6 36-5 06 54

bernhard.bauer@
 mchp.siemens.de

ABSTRACT
Gaining wide acceptance for the use of agents in industry requires both relating it to the nearest antecedent technology (object-oriented
software development) and using artifacts to support the development environment throughout the full system lifecycle. We address both of
these requirements in this paper by describing some of the most common requirements for modeling agents and agent-based
systems—using a set of UML idioms and extensions. This paper illustrates the approach by presenting a three-layer AUML representation
for agent interaction protocols and concludes by including other useful agent-based extensions to UML.

Keywords
Agents, UML, interaction protocols, AUML, design artifacts, software engineering.

1. INTRODUCTION
Successful industrial deployment of agent technology requires techniques that reduce the risk inherent in any new technology. Two ways
that reduce risk in the eyes of potential adopters are:

• to present the new technology as an incremental extension of known and trusted methods, and
• to provide explicit engineering tools that support industry-accepted methods of technology deployment.

We apply both of these risk-reduction insights to agents.

To leverage the acceptance of existing technology, we present agents as an extension of active objects, exhibiting both dynamic autonomy
(the ability to initiate action without external invocation) and deterministic autonomy (the ability to refuse or modify an external request).
Thus, our basic definition of an agent is “an object that can say ‘go’ (dynamic autonomy) and ‘no’ (deterministic autonomy).” This
approach leads us to focus on fairly fine-grained agents. More sophisticated capabilities can also be added, such as mobility, BDI
mechanisms, and explicit modeling of other agents. Such capabilities are extensions to our basic agents, that is, they can be applied where
needed, but are not diagnostic of agenthood.

Accepted methods of industrial software development depend on standard representations for artifacts to support the analysis, specification,
and design of agent software. Three characteristics of industrial software development require the disciplined development of artifacts
throughout the software lifecycle. The scope of industrial software projects is much larger than typical academic research efforts, involving
many more people across a longer period of time, and artifacts facilitate communication. The skills of developers are focused more on
development methodology than on tracking the latest agent techniques, and artifacts can help codify best practice. The success criteria for
industrial projects require traceability between initial requirements and the final deliverable—a task that artifacts directly support.

The Unified Modeling Language (UML) is gaining wide acceptance for the representation of engineering artifacts in object-oriented
software. Our view of agents as the next step beyond objects leads us to explore extensions to UML and idioms within UML to
accommodate the distinctive requirements of agents. The result is an Agent UML (AUML).1

Section 2 provides background information on agent design methods in general, on UML, and on the need for AUML. Section 3 introduces
a layered approach to representing agent protocols in AUML. Templates and packages provide a high-level summary (Section 4), sequence
diagrams and collaboration diagrams furnish alternative views of the interactions among agents (Section 5), and state diagrams and activity
diagrams detail the internal behavior of individual agents in executing protocols (Section 6). Section 7 proposes some other UML
extensions that represent several commonly used notions employed by the agent community.

1 Note: Many of the features required by agents and agent-based systems are also—independently—cited as useful by objects and object-

oriented systems. As such, many of the extensions suggested in this paper would be in harmony with many of the new features suggested
for OO development.

Extending UML for Agents

Page 2

2. BACKGROUND
Agent UML (AUML) synthesizes a growing concern for agent-based software methodologies with the increasing acceptance of UML for
object-oriented software development.

2.1 Agent Software Methodologies
The agent R&D community is increasingly interested in design methods and representational tools to support the associated artifacts (see
[12] for a helpful survey). Multi-Agent System Engineering was the focus of a session at ATAL’97 [5, 10, 13, 17, 19, 23, 25, 26] and the
entire MAAMAW’99 [9].

A number of groups have reported on methodologies for agent design, touching on representational mechanisms as they support the
methodology. Our own report [23] emphasizes methodology, as does the work by Kinny and colleagues [15, 16] on modeling techniques
for BDI agents. The close parallel that we observe between design mechanisms for agents and for objects is shared by a number of authors,
for example [5, 6].

The GAIA methodology [28] includes specific recommendations for notation that supports the high-level summary of a protocol as an
atomic unit, a notation that is reflected in our recommendations. The extensive program underway at the Free University of Amsterdam on
compositional methodologies for requirements [11], design [4], and verification [14] uses graphical representations with strong links to
UML’s collaboration diagrams, as well as linear (formulaic) notations better suited to alignment with UML’s metamodel than with the
graphical mechanisms that are our focus. Our discussion of the compositionality of protocols is anticipated in the work of Burmeister et al.
[7], though our notation differs widely from hers. Dooley graphs facilitate the identification of the “character” that results from an agent
playing a specific role (as distinct from the same agent playing a different role) [21, 27]. We capture this distinction by leveraging UML’s
existing name/role:class syntax in conjunction with collaboration diagrams.

This wide-ranging activity is a healthy sign that agent-based systems are having an increasing impact, since the demand for methodologies
and artifacts reflects the growing commercial importance of our technology. Our objective is not to compete with any of these efforts, but
rather to extend and apply a widely accepted modeling and representational formalism (UML)—one that harnesses insights and makes
them useful for communicating across a wide range of research groups and development methodologies.

2.2. UML
During the seventies, structured programming was the dominant approach to software development. Along with it, software engineering
technologies were developed in order to ease and formalize the system development lifecycle: from planning, through analysis and design,
and finally to system construction, transition, and maintenance. In the eighties, object-oriented (OO) languages experienced a rise in
popularity, bringing with it new concepts such as data encapsulation, inheritance, messaging, and polymorphism. By the end of the eighties
and beginning of the nineties, a jungle of modeling approaches grew to support the OO marketplace. To make sense of and unify these
various approaches, an Analysis and Design Task Force was established on 29 June 1995 within the OMG. By November 1997, a de jure
standard was adopted by the OMG members called the Unified Modeling Language (UML).

The UML unifies and formalizes the methods of many approaches to the object-oriented software lifecycle and supports the following
kinds of models:
• static models- such as class and package diagrams describe the static semantics of data and messages. Within system development, class

diagrams are used in two different ways, for two different purposes. First, they can model a problem domain conceptually. Since they are
conceptual in nature, they can be presented to the customers. Second, class diagrams can model the implementation of classes—guiding
the developers. At a general level, the term class refers to the encapsulated unit. The conceptual level models types and their
associations; the implementation level models implementation classes. While both can be more generally thought of as classes, their
usage as concepts and implementation notions is important both in purpose and semantics. Package diagrams group classes in conceptual
packages for presentation and consideration. (Physical aggregations of classes are called components which are in the implementation
model family, mentioned below.)

• dynamic models- including interaction diagrams (i.e., sequence and collaboration diagrams), state charts, and activity diagrams.
• use cases- the specification of actions that a system or class can perform by interacting with outside actors.
• implementation models- such as component models and deployment diagrams describing the component distribution on different

platforms.
• object constraint language (OCL)- is a simple formal language to express more semantics within an UML specification. It can be used

to define constraints on the model, invariant, pre- and post-conditions of operations and navigation paths within an object net.

In this response, we are suggesting agent-based extensions to the following UML representations: packages, templates, sequence diagrams,
collaboration diagrams, activity diagrams, class diagrams, deployment diagrams, and statecharts. The UML model semantics are
represented by a metamodel whose structure is also formally defined by OCL syntax. OCL and the metamodel offer resources to capture
the kinds of logical specifications anticipated in (for example) [4, 11, 14, 15, 16, 28], but space does not permit exploring this use of UML
in this response.

Extending UML for Agents

Page 3

2.3. AUML
The current UML is sometimes insufficient for modeling agents and agent-based systems. However, no formalism yet exists to sufficiently
specify agent-based system development. To employ agent-based programming, a specification technique must support the whole software
engineering process—from planning, through analysis and design, and finally to system construction, transition, and maintenance.

A proposal for a full life-cycle specification of agent-based system development is beyond the scope of this response. Both FIPA and the
OMG Agent Work Group are exploring and recommending extensions to UML [1, 20]. In this paper, we will present a subset of an agent-
based extension to the standard UML (AUML) for the specification of agent interaction protocols (AIP) and other commonly used agent-
based notions.

Interaction protocols were chose because they are complex enough to illustrate the nontrivial use of AUML and are used commonly enough
to make this subset of AUML useful to other researchers. Agent interaction protocols are a good example of software patterns which are
ideas found useful in one practical context and probably useful in others. A specification of an AIP provides an example or analogy that we
might use to solve problems in system analysis and design.

We want to suggest a specification technique for AIPs with both formal and intuitive semantics and a user-friendly graphical notation. The
semantics allows a precise definition that is also usable in the software-engineering process. The graphical notation provides a common
language for communicating AIPs—particularly with people not familiar with the agent-based approach.

Before proceeding, we need to establish a working definition:

An agent interaction protocol (AIP) describes a communication pattern as an allowed sequence of
messages between agents and the constraints on the content of those messages.

3. A LAYERED APPROACH TO PROTOCOLS
Figure 1 depicts a protocol expressed as a UML sequence diagram for the contract net protocol. When invoked, an Initiator agent sends a
call for proposal to an agent that is willing to participate in providing a proposal. (The stick-headed arrow indicates an asynchronous
communication.) The Participant agent can then choose to respond to the Initiator before a given deadline by: refusing to provide a
proposal, submitting a proposal, or indicating that it did not understand. (The diamond symbol indicates a decision that can result in zero or
more communications being sent—depending on the conditions it contains; the “x” in the decision diamond indicates an exclusive o r
decision.) If a proposal is offered, the initiator has a choice of either accepting or rejecting the proposal. When the participant receives a
proposal acceptance, it will inform the initiator about the proposal’s execution. Additionally, the Initiator can cancel the execution of the
proposal at any time. (Note: the stick arrows indicate unnested, asynchronous communications (messages). The interpretation of the term
"unnested" in UML 1.3—as communicated via email from Gunnar Overgaard—is not yet well defined in a UML document. This notations
can be changed, once a firm standard exists for unnested, asynchronous communications.)

contract
initiation

call-for-proposal

FIPA Contract Net Protocol

Initiator Participant

refuse

not-understood

propose

accept-proposal

reject-proposal

inform

cancel

deadline

x

x

Initiator, Participant
Deadline

call-for-proposal, refuse*,
not-understood*, propose,

reject-proposal*, accept-proposal*,
cancel*, inform*

Figure 1. A generic AIP expressed as a template package.

This figure also expresses two more concepts represented at the top of the sequence chart. First, the protocol as a whole is treated as an
entity in its own right. The tabbed folder notation at the upper left indicates that the protocol is a package, a conceptual aggregation of
interaction sequences. Second, the packaged protocol can be treated as a pattern that can be customized for analogous problem domains.
The dashed box at the upper right-hand corner expresses this pattern as a template specification that identifies unbound entities within the
package which need to be bound when the package template is being instantiated.

Extending UML for Agents

Page 4

The original sequence diagram in Fig. 1 provides a basic specification for a contract net protocol. More processing detail is often required.
For example, an Initiator agent requests a call for proposal (CFP) from a Participant agent. However, the diagram stipulates neither the
procedure used by the Initiator to produce the CFP request, nor the procedure employed by the participant to respond to the CFP. Yet, such
details are important for developing detailed agent-based system specifications.

Role-1 Role-2

••• •••

CA-1

CA-2

CA-3

CA-4

Role-3
x

y

g z

Role-2

Figure 2. Interaction protocols can be specified in more detail (i.e., leveled
or nested) using a combination of diagrams.

Figure 2 illustrates how leveling can express more detail for any interaction process. For example, the process that generated the
communication act CA-1 could be complex enough to specify its processing in more detail using an activity diagram. The agent receiving
CA-1 has a process that prepares a response. In this example, the process being specified is depicted using a sequence diagram, though any
modeling language could be chosen to further specify an agent’s underlying process. In UML, the choice is an interaction diagram, an
activity diagram, or a statechart.

Finally, leveling can continue “down” until the problem has been specified adequately to develop or generate code. So in Fig. 2, the
interaction protocol at the top of the diagram has a level of detail below, which in turn has another level of detail. Each level can express
intra-agent or inter-agent activity.

In summary, these two examples illustrate several features of our approach:

• The protocol as a whole is an entity. This top level is discussed further in Section 4.
• The sequence diagram itself describes the inter-agent transactions needed to implement the protocol. Section 5 further discusses this

notation and an alternative (the collaboration diagram).
In addition to inter-agent transactions, complete specification of a protocol requires discussion of intra-agent activity and is supported by
UML’s activity diagrams and statecharts (discussed in Section 6).

4. LEVEL 1: REPRESENTING THE OVERALL PROTOCOL
Patterns are ideas that have been found useful in one practical context and can probably be useful in others. As such, they give us examples
or analogies that we might use as solutions to problems in system analysis and design. Agent interaction protocols, then, provide us with
reusable solutions that can be applied to various kinds of message sequencing we encounter between agents. There are two UML
techniques that best express protocol solutions for reuse: packages and templates.

4.1. Packages
Since interaction protocols are patterns, they can be treated as reusable aggregates of processing. UML describes two ways of expressing
aggregation for OO structure and behavior: components and packages. Components are physical aggregations that compose classes for
implementation purposes. Packages aggregate modeling elements into conceptual wholes. Here, classes can be conceptually grouped for
any arbitrary purpose, such as a subsystem grouping of classes. Since AIPs can be viewed in conceptual terms, the package notation of a
tabbed folder was employed in Fig. 1.2

Because protocols can be codified as recognizable patterns of agent interaction, they become reusable modules of processing that can be
treated as first-class notions. For example, Fig. 3 depicts two packages. The Purchasing package expresses a simple protocol between a
Broker and a Retailer. Here, the Broker sends a call for proposal to a Retailer and the Retailer responds with a proposal. For certain
products, the Retailer might also place a request with a Wholesaler regarding availability and cost. Based on the return information, the
Retailer can provide a more accurate proposal. All of this could have been put into a single Purchasing Protocol package. However, many

2 In UML 1.3, packages only group class diagrams as a unit. However, we recommend that behavior-related diagrams should also be

grouped using the same mechanism—instead of defining yet-another symbol. And more generally, packages should also be used to
group any arbitrary model grouping.

Extending UML for Agents

Page 5

businesses or departments may not need the additional protocol involving the Wholesaler. Therefore, two packages can be defined: one
for Purchasing and one for Supplying. When a particular scenario requires the wholesaler protocol, it can be nested as a separate and
distinct package. However, when a purchasing scenario does not require it, the package is more parsimonious.

call-for-proposal

Purchasing

Supplying

Broker Retailer Wholesaler

request

inform

propose

•••

Figure 3. Using packages to express nested protocols.

Burmeister et al. suggest a similar construct when they describe their complex cooperation protocols [7]. Their three primitive
protocols—offering, requesting, and proposing—“are general enough to be used in a large number of interaction situations.” Their
approach “allows for the construction of (more complex) application or task protocols.” In addition to their three primitive protocols, we
advocate a pragmatic approach where the analyst may extend Burmeister’s general set to include any protocols that might be reused for a
nested specification—using AUML.

4.2. Templates
Figure 1 illustrates a common kind of behavior that can serve as a solution in analogous problem domains. In Fig. 3, the supplying behavior
is reused exactly as defined by the Supplying package. However, to be truly a pattern—instead of just a reusable component—package
customization must be supported. For example, Fig. 4 applies the FIPA Contract Net Protocol to a particular scenario involving buyers and
sellers. Notice that the Initiator and Participant agents have become Buyer and Seller agents, and the call-for-proposal has become the
seller-rfp. Also in this scenario are two forms of refusal by the seller: Refuse-1 and Refuse-2. Lastly, an actual deadline has been
supplied for a response by the seller.

seller-rfp

Buyer Seller

refuse-1

not-understood

propose

accept-proposal

reject-proposal

inform

cancel

deadline:
8/8/99 at

12:00 hours
x

x

xrefuse-2

Buyer, Seller

FIPA Contract Net Protocol

8/8/99 at 12:00

seller-rfp, refuse-1, refuse-2, not-understood, propose,
reject-proposal, accept-proposal, cancel, inform

Figure 4. Applying the template in Fig. 1 to a Figure 5. Producing a new package using the
particular scenario involving buyers and sellers. Fig. 1 template; Fig. 4 is the resulting model.

In UML argot, the AIP package serves as a template. A template is a parameterized model element whose parameters are bound at model
time (i.e., when the new customized model is produced). In Fig. 1, the dotted box in the upper right indicates that the package is a template.
The unbound parameters in the box are divided by horizontal lines into three categories: role parameters, constraints, and communication
acts. Figure 5 illustrates how the new package in Fig. 4 is produced using the template definition in Fig. 1.3 Wooldridge et al. suggest a

3 This template format is not currently UML compliant but is recommended for future UML extensions.

Extending UML for Agents

Page 6

similar form of definition with their protocol definitions [28]. In their packaged templates “a pattern of interaction . . . has been formally
defined and abstracted away from any particular sequence of execution steps. Viewing interactions in this way means that attention is
focussed on the essential nature and purpose of interaction rather than the precise ordering of particular message exchanges.” Instead of the
notation illustrated by Wooldridge et al., our graphical approach more closely resembles UML, while expressing the same semantics.

5. LEVEL 2: REPRESENTING INTERACTIONS AMONG AGENTS
UML’s dynamic models are useful for expressing interactions among agents. Interaction diagrams capture the structural patterns of
interactions among objects. Sequence diagrams are one member of this family; collaboration diagrams are another. The two diagrams
contain the same information. The graphical layout of the sequence diagram emphasizes the chronological sequence of communications,
while that of the collaboration diagram emphasizes the associations among agents. Activity diagrams and statecharts capture the flow of
processing in the agent community.

5.1. Sequence Diagrams
A brief description of sequence diagrams using the example in Fig. 1 appeared above. (For a more detailed discussion of sequence
diagrams, see Rumbaugh [24] and Booch [3].) In this section, we discuss some possible extensions to UML that can also model agent-
based interaction protocols.

Figure 6 depicts some basic elements for agent communication. The rectangle can express individual agents or sets (i.e., roles or classes) of
agents. For example, an individual agent could be labeled Bob/Customer. Here Bob is an instance of agent playing the role of customer.
Bob could also play the role of Supplier, Employee, and Pet Owner. To indicate that Bob is a Person—independent of any role he
plays—Bob could be expressed as Bob:Person. The basic format for the box label is agent-name/role:class. Therefore, we could express
all the various situations for Bob, such as Bob/Customer:Person and Bob/Employee:Person.

Agent-1/Role:Class

CA-1

Agent-2/Role:Class

CA-2

Figure 6 Basic format for agent communication.

The rectangular box can also indicate a general set of agents playing a specific role. Here, just the word Customer or Supplier would
appear. To specify that the role is to be played by a specific class of agent, the class name would be appended (e.g., Employee:Person,
Supplier:Party). In other words, the agent-name/role:class syntax is used without specifying an individual agent-name.

The agent-name/role:class syntax is already part of UML (except that the UML syntax indicates an object name instead of an agent name).
Figure 6 extends UML by labeling the arrowed line with an agent communication act (CA), instead of an OO-style message.

•••

CA-n

CA-2

CA-1

•••

CA-n

CA-2

CA-1

•••

CA-n

CA-2

CA-1

x

(a) (b) (c)
Figure 7. Some recommended extensions that support concurrent threads of interaction.

Another recommended extension to UML supports concurrent threads of interaction. While concurrent threads are not forbidden in OO,
they are not commonly employed.

4
 Figure 7 depicts three ways of expressing multiple threads. Figure 7(a) indicates that all threads CA-1

to CA-n are sent concurrently. Figure 7(b) includes a decision box indicating that a decision box will decide which CAs (zero or more) will
be sent. If more than one CA is sent, the communication is concurrent. In short, it indicates an inclusive or. Fig. 7(c) indicates an exclusive
or, so that exactly one CA will be sent. Figure 7(a) indicates an and communication.

Figure 8 illustrates one way of using the concurrent threads of interaction depicted in Fig. 7. Figures 8(a) and (b) portray two ways of
expressing concurrent threads sent from agent-1 to agent-2. The multiple vertical, or activation, bars indicate that the receiving agent is
processing the various communication threads concurrently. Figure 8(a) displays parallel activation bars and Fig. 8(b) activation bars that
appear on top of each other. A few things should be noted about these two variations:

• The semantic meaning is equivalent; the choice is based on ease and clarity of visual appearance.
• Each activation bar can indicate either that the agent is using a different role or that it is merely employing a different processing thread

to support the communication act. If the agent is using a different role, the activation bar can be annotated appropriately. For example in
Figs. 8(a) and (b), CA-n is handled by the agent under its role-1 processing.

4 As OO implementations become more advanced, such an extension would be considered useful in any case.

Extending UML for Agents

Page 7

• These figures indicate that a single agent is concurrently processing the multiple CAs. However, the concurrent CAs could each have
been sent to a different agent, e.g., CA-1 to agent-2, CA-2 to agent-3, and so on. Such protocol behavior is already supported by UML;
the notation in Fig. 7, on the other hand, is a recommended extension to UML.

(For more detailed treatment of these extensions to the UML sequence diagram for protocols, see [2].)

CA-1

Agent

or[role-1]

[role-1]

Agent Agent Agent

CA-2

CA-3

CA-1

CA-2

CA-3

(a) (b)

Agent Agent Agent Agent

or

CA-1

CA-2

CA-3

CA-1

CA-2

CA-3

(c) (d)

Agent Agent Agent Agent

or

CA-1

CA-2

CA-3

CA-1

CA-2

CA-3

x x

x

(e) (f)

Figure 8. Multiple techniques to express concurrent communication with an
 agent playing multiple roles or responding to different CAs.

5.2. Collaboration Diagrams
Figure 9 is an example of a collaboration diagram and depicts a pattern of interaction among agents. One of the primary distinctions of the
collaboration diagram is that the agents (the rectangles) can be placed anywhere on the diagram; whereas in a sequence diagram, the agents
are placed in a horizontal row at the diagram’s top. The sequence of interactions are numbered on the collaboration diagram; whereas the
interaction diagram is basically read from the top down. If the two interaction diagrams are so similar, why have both? The answer lies
primarily in how clear and understandable the presentation is. Depending on the person and interaction protocol being described, one
diagram type might provide a clearer, more understandable representation over another. Semantically, they are equivalent; graphically they
are similar. For example, Fig. 10 expresses the same underlying meaning as Fig. 8 using the sequence diagram. Experience has
demonstrated that agent-based modelers can find both types of diagrams useful.

Dooley Graphs [21] are isomorphic to collaboration diagrams. The critical distinction is that a single agent can appear as multiple nodes in
a Dooley Graph. The ICMAS paper calls these nodes characters. The intuition in the terminology is that a character is a specific agent
playing a specific role. The role is an abstraction over several characters with similar patterns of interaction. Inversely, each node is an
agent in a specific role, where "role" is here defined fairly narrowly (not just purchaser, for example, but purchaser under a renegotiated
contract in contrast with the same purchaser's role in the original contract).

Given our notation for an agent playing a role and having a precise enough definition of roles, we could construct a collaboration diagram
that has the same semantic content as a Dooley Graph.

Extending UML for Agents

Page 8

12: assert +
 request
14:

6:

2: question

3:

4:

10: refuse

5: propose
7: commit

 8: commit
11: ship

9: assert

13: ship

1.1: request

<<role change>>

1.2: request

1.3: request

<<role change>>

<<role change>>

C /
Contractor2

C /
Contractor1

B /
Contractor

A
Customer

B /
Competitor
Analyzer

C /
Competitor

D /
Contractor

D /
Debtor

A /
Negotiator

Figure 9. An example of a collaboration diagram depicting an
interaction among agents playing multiple roles.

assert + request

pay

request

question
inform

refuse

refuse

propose

commit

commit

assert

ship

ship

<<role change>>

<<role change>>

<<role change>>

C /
Contractor1

C /
Contractor2

C /
Competitor

D /
Contractor

D /
Debtor

A /
Negotiator

B /
Contractor

A /
Customer

B /
Competitor

Analyzer

request

Figure 10. A sequence diagram version of Fig. 9.

5.3. Activity diagrams
Agent interaction protocols can sometimes require specifications with very clear processing-thread semantics. The activity diagram
expresses operations and the events that trigger them. (For a more detailed treatment, see Odell’s description of activity diagrams in [18].)
The example in Fig. 11 depicts an order processing protocol among several agents. Here, a Customer agent places an order. This process
results in an Order placed event that triggers the broker to place the order, which is then accepted by an Electronic Commerce Network
(ECN) agent. The ECN can only associate an order with a quote when both the order and the market maker’s quote has been accepted.
Once this occurs, the Market Maker and the Broker are concurrently notified that the trade has been competed. The activity diagram
differs from interaction diagrams because it provides an explicit thread of control. This is particularly useful for complex interaction
protocols that involve concurrent processing.

Customer Broker Market MakerECN

Place
Order

Process
Order

Create
QuoteAccept

Quote
Accept
Order

Match
Order and

Quote

Close
Order

Settle
Order

Update
Quote

Figure 11. An activity diagram that depicts a stock sale protocol among several agents.

Activity diagrams are similar in nature to colored Petri nets in several ways. First, activity diagrams provide a graphical representation that
makes it possible to visualize processes simply, thereby facilitating the design and communication of behavioral models. Second, activity
diagrams can represent concurrent, asynchronous processing. Lastly, they can express simultaneous communications with several

Extending UML for Agents

Page 9

correspondents. The primary difference between the two approaches is that activity diagrams are formally based on the extended state-
machine model defined by UML [24]. Ferber’s BRIC formalism [8] extends Petri nets for agents-based systems; this response extends
UML activity diagrams for the same purpose.

5.4. Statecharts
Another process-related UML diagram is the statechart. A statechart is a graph that represents a state machine. States are represented as
round-cornered rectangles, while transitions are generally rendered by directed arcs that interconnect the states. Figure 12 depicts an
example of a statechart that governs an Order protocol. Here, if a given order is in a Requested state, a supplier agent may commit to the
requested negotiation—resulting in a transition to a Committed negotiation state. Furthermore, this diagram indicates that an agent’s
commit action may occur only if the order is in a Requested state. The Requested state has two other possible actions besides the
commit: the supplier may refuse and the consumer may back out. Notice that the supplier may refuse with the order in either the
Proposed or the Requested states.

A: request

B:
B: ship

A: assert

B: commit

A: assert

B. renege

B: refuse
A: assert

B: refuse

Open

Proposed Requested Committed

A: pay

A: assert

Closed

Paid

Rejected

Aborted

Reneged

Shipped

Figure 12. A statechart indicating the valid states and transitions governing an Order protocol.

The statechart is not commonly used to express interaction protocol because it is a state-centric view, rather than an agent- or process-
centered view. The agent-centric view portrayed by interaction diagrams emphasizes the agent first and the interaction second. The
process-centric view emphasizes the process flow (by agent) first and the resulting state change (i.e., event) second. The state-centric view
emphasizes the permissible states more prominently than the transition agent processing. The primary strength of the statechart in agent
interaction protocols is as a constraint mechanism for the protocol. The statechart and its states are typically not implemented directly as
agents. However, an Order agent could embody the state-transition constraints, thereby ensuring that the overall interaction protocol
contraints are met. Alternatively, the constraints could be embodied in the supplier and customer roles played by the agents involved in the
order process.

6. LEVEL 3: REPRESENTING INTERNAL AGENT PROCESSING
At the lowest level, specification of an agent protocol requires spelling out the detailed processing that takes place within an agent in order
to implement the protocol. In a holarchic model, higher-level agents (holons) consist of aggregations of lower-level agents. The internal
behavior of a holon can thus be described using any of the Level 2 representations recursively. In addition, state charts and activity
diagrams can also specify the internal processing of agents that are not aggregates, as illustrated in this section.

completed

(Payment)(Invoice)

Order
Accepted

Order
placed

Order
Close

Order
accepted

Order
assembled

Order
Ship

Order
shipped

Order

Payment
accepted

Order
Assembled

Customer

Place order

Completed

Order Processor Invoice Sender Payment Receiver

Invoice request

Received payment

Invoice

Prepare
/send

Payment
Process

Figure 13. An activity diagram that specifies order processing behavior for an Order agent.

Extending UML for Agents

Page 10

6.1. Activity Diagrams
Figure 13 depicts the detailed processing that takes place within an Order Processor agent. Here, a sequence diagram indicated that the
agent's process is triggered by a Place Order CA and ends with the order completed. The internal processing by the Order Processor is
expressed as an activity diagram, where the Order Processor accepts, assembles, ships, and closes the order. The dotted operation boxes
represent interfaces to processes carried out by external agents—as also illustrated in the sequence diagram. For example, the diagram
indicates that when the order has been assembled, both Assemble Order and Prepare/send Invoice actions are triggered concurrently.
Furthermore, when both the payment has been accepted and the order has been shipped, the Close Order process can only then be
invoked.

6.2. Statecharts
The internal processing of a single agent can also be expressed as statecharts. Figure 14 depicts the internal states and transitions for Order
Processor, Invoice Sender, and Payment Receiver agents. As with the activity diagram above, these agents interface with each
other—as indicated by the dashed lines. This intra-agent use of UML statecharts supports Singh’s notion of agent skeletons [27].

Null

Accepted

Assembled

Order placed
Accept Order

Order cancelled
Close Order

Shipped

[Order shipped & Order]
Close Order

Order Accepted
Assemble Order

Order assembled
Ship Order

to
Invoice
Issuer

statechart

Closed

from
Payment
Receiver
statechart

Order cancelled
Close Order

Order
Processor

(a)

 Null

 Transmitted

Paid

Order assembled
Prepare/send Invoice

Customer pays
Mark invoice paid

 30 days after due date
Mark invoice overdue

from
Order

Processor
statechart

Overdue

 Null

 Received

Accepted

Payment made
Receive Payment

Unacceptable
Payment received

 Rejected

Acceptable
Payment received

to
Order

Processor
statechart

Payment
Receiver

Reject Payment

Accept Payment

Invoice Issuer

Customer pays
Mark invoice paid

(b) (c)

Figure 14. Statechart that specifies order processing behavior for the three agents.

7. OTHER AUMLCONSIDERATIONS
The previous sections were constrained to examine AUML extensions for agent interaction protocols. This section presents some other
agent and agent-based notions that are also recommended for inclusion into UML 2.0.

7.1 Richer role specification
Expressing the roles (ClassifierRoles) an agent may play in the course of its interaction with other agents is an vital technique for modelers
of agent-based systems. UML 1.3 already provides some facility for expressing roles. For example in Fig. 15, agent (object) A is depicted
as playing two roles in the interaction protocol: Customer and Negotiator. The slash symbol indicates that the string that follows is a role
name.

Figure 15 contains only four agents, each playing just a few roles. Visually, however, it is at the threshold of human readability. Such an
approach could quickly become graphically too complex to be comprehensible when even a few more agents are added that play only a few
roles. Figures 16 and 17, then, illustrate two new techniques that reduce the visual complexity, yet preserve the same underlying semantics.
Figure 16 represents each role with its own lifeline; Figure 17 depicts each agent with a single lifeline, where that each activation (the tall
thin rectangle) is labeled with the appropriate role name. (Note: the usage of the guillemot in Figs. 16 and 17 are not orthodox accoding to
UML 1.3; however, no existing technique yet exists to label lifelines with role indication.)

Extending UML for Agents

Page 11

A /
Negotiator

C /
Contractor1

C /
Contractor2

assert + request

pay

B /
Contractor

request

question
inform

refuse

refuse

propose

commit

commit

assert

ship

ship

request

A /
Customer

B /
Competitor

Analyzer

C /
Competitor

D /
Contractor

D /
Debtor

<<role change>>

<<role change>>

<<role change>>

Figure 15. Role modeling using the existing UML 1.3 "slash" notation.

D :C :

assert + request

pay

B :

request

question
inform

refuse

refuse

propose

commit

commit

assert

ship

ship

request

A :

<<role:
customer>>

<<role:
negotiator>>

<<role:
contractor>>

<<role:
contractor>>

<<role:
contractor>>

<<role:
contractor>>

<<role:
competitor
analyzer>>

<<role:
competitor>>

<<role:
debtor>>

Figure 16. Role modeling representing each role with its own lifeline.

A : C : D :

assert + request

pay

B :

request

question
inform

refuse

refuse

propose

commit

commit

assert

ship

ship

<<role: customer>>

<<role: customer>>

<<role: customer>>

<<role: negotiator>>

<<role: negotiator>>

request

Figure 17. Role modeling where activation bars are labeled with the appropriate role.

Most modelers use two approaches to modeling agent roles. A modeler could either start with some conception of roles required (Fig. 18)
and the identify the agents involved (Figs. 15 through 17). Or, the modeler could use a diagram like Fig. 18 to summarize the role
involvement expressed in Figs. 15 through 17. Either way (bottom up or top down) the technique employed in Fig. 18 is useful—and it is

Extending UML for Agents

Page 12

currently supported by UML 1.3; it is included here to ensure an understanding on the overall requirement for roles by agent-based
modelers.

Negotiator Contractor

assert + request

pay

Contractor

request

question
inform

refuse

refuse

propose

commit

commit

assert

ship

ship

request

Customer
Competitor

Analyzer
Debtor

<<role change>>

<<role change>>

<<role change>>

*

Figure 18. Role modeling where each "object" node is a class or role.
(Role nodes would of course require the slash preceeding the node label.)

Collaboration diagrams currently have no facility to represent agent roles on interaction lines within UML 1.3. However, each
communication act (or message) could be labeled with the role that is responsible for issuing the request. (Note: the usage of the guillemot
in Fig. 19 is not orthodox according to UML 1.3; however, no existing technique yet exists to label interaction lines with the sender's role
indication.) This technique is illustrated in Fig. 19. For example, communication act 1.1 request is sent by agent A playing the role of
Customer.

1.3: request
<<role: customer>>

 12: assert + request
<<role: customer>>

 14: pay
<<role: customer>>

2: question

3: inform

4: refuse

 5: propose
 7: commit
10: refuse

 8: commit
11: ship
13: ship

1.1: request
<<role: customer>> 1.2: request

<<role: customer>>
 6: request

<<role: negotiator>>
 9: assert

<<role: negotiator>>

B :

A :

C :

D :

Figure 19. Role modeling where communication acts (messages) indicate the requesting role.

Activity diagrams can also be modified to represent agent roles by associating each activity with the name of the appropriate
ClassifierRole. For example in Fig. 20, an Order agent accepts, assembles, ships, and closes orders.

(Order) (Order) (Order) (Order)

(Payment)(Invoice)

Order
Accept

Order
Close

Order
Ship

Order
Assemble

Payment
Process

Payment
Send

Invoice
Send

(Customer)

Figure 20. An activity diagram with activities labeled with the appropriate agent role.

Extending UML for Agents

Page 13

And lastly, changes in roles can be represented on activity diagrams using notes. For example in Fig. 21, the Hire Employee activity
changes the role of an agent from being a Person to also being an Employee. Such a technique also currently supported by UML; it is
included here to ensure an understanding on the overall requirement for roles by agent-based modelers.

<<Role change (classify)
FROM Person

TO Person and Employee>>

Promote
Employee

Hire
Employee

Employee
hired

Employee
promoted

<<Role change (classify)
FROM Person and Employee

TO Person, Employee, and Manager>>

• • • • • •

Figure 21. Dynamic classification (role changes) expressed as notes.

7.2. Package extension
UML 1.3 employees "lollypops" to indicated interfaces. While this will suffice for some agent implementations, it will not handle those
situations where the agent—itself—is the interface. For example, a cell membrane receives various "communications" and processes them
by rejecting them or accepting them. There is not interface set that a cell publishes to the outside world. A similar analogy is applied in
many agent-based implementations. For example in Fig. 22, a Negotiator agent acts as the interface between the outside world and the
Manufacturing Cell. This would require a small extension to UML.

interface
agent

Negotiator
Agent

• • •

Manufacturing
Cell

Common
Function
Agents

Resource
Agent Resource

0..*

1..*

 an
aggregate

Common
Function
Agents

Process
Planning

Agent

Capacity
Manager

Agent

Account
Manager

Agent

1..

0..

Dispatch
Agent

• • •

telescoping
agent

packages

Figure 22. Package specifying agents instead of operations as interface points.

7.3. Deployment diagram extensions
Mobility is an important agent property—as it is for objects , as well. A way of indicating mobility paths and at-home declarations would
be a useful extension to UML.

SalesWeb Internet server

Accounting
mainframe

Inventory
mainframe

Corporate
Novell

Network/SQL

Internet

Sales
Agent

Shopper
Agent

Salesperson's
laptop

Shopper
Agent

<<at-home>>

<<mobile>>

Figure 23. Adding mobility to deployment diagrams.

7.4. Other useful agent-based notions
Agents borrow many analogies from nature. Agent-based researchers reason that if it took nature 3 billion years to develop what we now
see in the modern world, perhaps we could learn some lessons about building our own systems.

Extending UML for Agents

Page 14

Dolly:
Sheep

Dolly2:
Sheep

<<clone>>
<<prototype>>

Class Diagram

Dolly:
Sheep

Dr_Frankenstein:
Scientist

Dolly2:
Sheep

get specs

<<clone>>

Sequence Diagram

Figure 24. Representing cloning using sequence and class diagrams.

For example, agent cloning is a common agent-based technique. Figure 24 illustrates a behavioral and a structural view of agent cloning.
Mitosis and reproduction are also common techniques for agent-based societies. Figure 25 illustrates possible ways of expressing these.
Extending the UML to include these notion permanently instead of by stereotype is a recommendation as these are common techniques. If
OO approaches determine that such notions are not useful, perhaps they belong in a an Agent Profile.

A:
Amoeba

A1:
Amoeba

<<mitosis>>

A2:
Amoeba

Mitosis

Sequence Diagram

Junior:
Starfish

John:
Starfish

Janet:
Starfish

<<reproduction>>

Bisexual

Collaboration Diagram

Figure 25. Representing mitosis and reproduction using sequence and activity diagrams.

Other notions that are commonly employed for agents are parasitic and symbiotic relationships. Figure 26 illustrates some examples of
these.

Dog

Flea

0..*

0..*

<<host/parasite>>

Tree

Epiphyte

0..*

1

<<symbiosis>>

Figure 26. Representing parasitic and symbiotic relationships using class diagrams.

The interaction of many individual agents can give rise to secondary effects where groups of agents behave as a single entity, or aggregate
agent. This phenomenon is know as emergence. While such occurrences are often unplanned and unexpected, they should be anticipated.
In multiagent systems, emergence is a core concept. As such, a way of representing it is important.

Market

Consumer

0..*

0..*

<<emergence>>

Figure 27. Representing emergence possibilities using a class diagram.

8. CONCLUSION
UML provides tools for :
• specifying agent interaction protocols as a whole, as in [28];
• expressing the interaction pattern among agents within a protocol, as in [1, 8, 21]; and
• representing the internal behavior of an agent, as in [27].
• representing other agent-related UML extensions that are already commonly used, such as richer role specification, packages with agent

interfaces, deployment diagrams indicating mobility, and other techniques.
Some of these tools can be applied directly to agent-based systems by adopting simple idioms and conventions. In other cases, we suggest
several straightforward UML extensions that support the additional functionality that agents offer over the current UML version 1.3. Many
of these proposed extensions are already being considered by the OO community as useful extensions to OO development on UML version
2.0. Furthermore, many of the AUML notions presented here were developed and applied within the MoTiV-PTA projects
[http://www.motiv.de/], an agent-based realization of a personal travel assistant, supported by the German Ministry of Technology.

Extending UML for Agents

Page 15

Agent researchers can be gratified at the increasing attention that industrial and business users are paying to their results. The transfer of
these results to practical application will be more rapid and accurate if the research community can communicate its insights in forms
consistent with modern industrial software practice. AUML builds on the acknowledged success of UML in supporting industrial-strength
software engineering. The idioms and extensions proposed here for AIP’s—as well as others that we are developing—are a contribution to
this objective.

9. REFERENCES
1. Bauer, B., Extending UML for the Specification of Interaction Protocols, submitted for the 6th Call for Proposal of FIPA, 1999.
2. Bauer, B., Extending UML for the Specification of Interaction Protocols, submitted to ICMAS 2000, 2000.
3. Booch, Grady, James Rumbaugh, and Ivar Jacobson, The Unified Language User Guide, Addison-Wesley, Reading, MA, 1999.
4. Brazier, Frances M.T., Catholijn M. Jonkers, and Jan Treur, ed., Principles of Compositional Multi-Agent System Development

Chapman and Hall, 1998.
5. Bryson, Joanna, and Brendan McGonigle, "Agent Architecture as Object Oriented Design," Intelligent Agents IV: Agent Theories,

Architectures, and Languages. Proceedings of ATAL'97., ed., Springer, Berlin, 1998.
6. Burmeister, B., ed., Models and Methodology for Agent-Oriented Analysis and Design 1996.
7. Burmeister, Birgit, Afsaneh Haddadi, and Kurt Sundermeyer, ed., Generic, Configurable, Cooperation Protocols for Multi-Agent

Systems Springer, Neuchâtel, Switzerland, 1993. (Programmable model of interaction)
8. Ferber, Jacques, Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence, Addison Wesley Longman, Harlow, UK,

1999.
9. Garijo, Francisco J., and Magnus Boman ed., Multi-Agent System Engineering: Proceedings of MAAMAW'99, Springer, Berlin,

Germany, 1999.
10. Gustavsson, Rune E., "Multi Agent Systems as Open Societies," Intelligent Agents IV: Agent Theories, Architectures, and Languages,

ed., Springer, Berlin, 1998.
11. Herlea, Daniela E., Catholijun M. Jonker, Jan Treur, and Niek J.E. Wijngaards, ed., Specification of Behavioural Requirements within

Compositional Multi-Agent System Design Springer, Valencia, Spain, 1999.
12. Iglesias, Carlos A., Mercedes Garijo, and José C. González, ed., A Survey of Agent-Oriented Methodologies University Pierre et Marie

Curie, Paris, FR, 1998.
13. Iglesias, Carlos A., Mercedes Garijo, José C. González, and Juan R. Velasco, "Analysis and Design of Multiagent Systems using

MAS-CommonKADS," Intelligent Agents IV: Agent Theories, Architectures, and Languages, Munindar P. Singh et al. ed., Springer,
Berlin, 1998, pp. 313-328.

14. Jonker, Catholijn M., and Jan Treur, ed., Compositional Verification of Multi-Agent Systems: a Formal Analysis of Pro-activeness and
Reactiveness Springer, 1997.

15. Kinny, David, and Michael Georgeff, "Modelling and Design of Multi-Agent Systems," Intelligent Agents III: Proceedings of the
Third International workshop on Agent Theories, Architectures, and Languages (ATAL'96), ed., Springer, Heidelberg, 1996.

16. Kinny, David, Michael Georgeff, and Anand Rao, "A Methodology and Modelling Technique for Systems of BDI Agents," Agents
Breaking Away. 7th European Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW'96)., Walter
VandeVelde and John W. Perram ed., Springer, Berlin, 1996, pp. 56-71. .

17. Lee, Jaeho, and Edmund H. Durfee, "On Explicit Plan Languages for Coordinating Multiagent Plan Execution," Intelligent Agents IV:
Agent Theories, Architectures, and Languages, ed., Springer, Berlin, 1998, pp. 113-126.

18. Martin, James, and James J. Odell, Object-Oriented Methods: A Foundation, (UML edition), Prentice Hall, Englewood Cliffs, NJ,
1998.

19. Nodine, Marian H., and Amy Unruh, "Facilitating Open Communication in Agent Systems: the InfoSleuth Infrastructure," Intelligent
Agents IV: Agent Theories, Architectures, and Languages, Munindar P. Singh et al. ed., Springer, Berlin, 1998, pp. 281-296.

20. Odell, James ed., Agent Technology, OMG, green paper produced by the OMG Agent Working Group, 2000.
21. Parunak, H. Van Dyke, ed., Visualizing Agent Conversations: Using Enhanced Dooley Graphs for Agent Design and Analysis 1996.
22. Parunak, H. Van Dyke, and James Odell, Engineering Artifacts for Multi-Agent Systems, ERIM CEC, 1999.
23. Parunak, H. Van Dyke, John Sauter, and Steven J. Clark, "Toward the Specification and Design of Industrial Synthetic Ecosystems,"

Intelligent Agents IV: Agent Theories, Architectures, and Languages, Munindar P. Singh et al. ed., Springer, Berlin, 1998, pp. 45-59.
24. Rumbaugh, James, Ivar Jacobson, and Grady Booch, The Unified Modeling Language Reference Manual, Addison-Wesley, Reading,

MA, 1999.
25. Schoppers, Marcel, and Daniel Shapiro, "Designing Embedded Agents to Optimize End-User Objectives," Intelligent Agents IV:

Agent Theories, Architectures, and Languages, Munindar P. Singh et al. ed., Springer, Berlin, 1998, pp. 3-14.
26. Singh, Munindar P., "A Customizable Coordination Service for Autonomous Agents," Intelligent Agents IV: Agent Theories,

Architectures, and Languages, Munindar P. Singh et al. ed., Springer, Berlin, 1998, pp. 93-106.
27. Singh, Munindar P., ed., Developing Formal Specifications to Coordinate Heterogeneous Autonomous Agents IEEE Computer

Society, Paris, FR, 1998.
28. Wooldridge, Michael, Nicholas R. Jennings, and David Kinny, "The Gaia Methodology for Agent-Oriented Analysis and Design,"

International Journal of Autonomous Agents and Multi-Agent Systems, 3:Forthcoming, 2000.

