
Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
Extending UML for Modeling Web Applications

Luciano Baresi, Franca Garzotto, and Paolo Paolini
Dipartimento di Elettronica e Informazione - Politecnico di Milano

Piazza Leonardo da Vinci, 32 - 20133 Milano (Italy)
{ baresi, garzotto, paolini} @elet.polimi.it

Abstract
Web sites are progressively evolving from browsable,
read-only information repositories to web-based distrib-
uted applications. Compared to traditional web sites,
these web applications do not only support navigation
and browsing, but also operations that have affects their
contents and navigation states. Compared to traditional
applications, web applications integrate operations with
the built-in browsing capabilities of hypermedia.
These novelties make web application design a complex
task that requires the integration of methods and tech-
niques developed in different "worlds". This integration is
achieved in this paper by extending and customizing the
Unified Modeling Language (UML) with web design con-
cepts borrowed from the Hypermedia Design Model
(HDM). Hypermedia elements are described through ap-
propriate UML stereotypes. UML diagrams are also tai-
lored to model operations and relate them with hyperme-
dia elements. The approach is exemplified by describing
the design of a web-based conference manager.

Keywords
Web applications, Web Design, UML, HDM

1 Introduction
The main purpose of this paper is the introduction of
W2000, a framework for designing web applications
based on two preexisting assets: UML ([4]), the standard
notation for modeling object-oriented systems, widely
accepted by the software engineering community, and
HDM ([12]), an hypermedia model recognized as the an-
cestor of a family of several design models.
With the advent of the web, hypermedia and information
systems, traditionally very far apart, are converging to
define a new area of interest: web sites are becoming
complex operational environments, and information sys-
tems on the web are adopting navigation as a fundamental
interaction paradigm.
Web applications are different from “traditional” hyper-
media for three main aspects:
• Users do not only navigate, but also activate opera-

tions and transactions;
• The hypermedia structure itself may evolve, as the

application evolves;
• Different users may have different visibility of the
0-7695-0981-9/01 $10
information and different capabilities for the opera-
tions.

The essence of these features is not completely new, but
their relevance is becoming the key factor: they are crucial
and characterizing aspects, rather than marginal as it was
in the general case. Consider for example an e-commerce
web site and its shopping bag: while users are browsing
the catalog, they can bookmark the products of interest,
move products in their cart, evaluate the total and, provid-
ing additional information, complete the buying transac-
tion.
The need for information systems to become navigational
was anticipated several years ago. The motivation was to
augment the power given to users for accessing the infor-
mation, allowing them to fully exploit the linked nature
and interface facilities of hypermedia. Again, consider for
example the main legacy systems to which web-based
interfaces have been added recently.
The merging of these evolutions leads to web applica-
tions. Their sophisticated dynamics and evolution make
operations affect their contents and navigation state. They
do not only modify the contents of individual pages, but
also add or delete groups of pages and links. Shopping
carts are typical examples of dynamic elements that can be
created and destroyed by users.
Web applications address a potentially huge variety of
different users with different navigational and functional
requirements. Thus they must face the problem of provid-
ing different visibility levels – on contents, navigation,
and functionality - to different categories of users. Again
this is not completely new [5], but it is assuming an in-
creasing relevance and importance, since huge communi-
ties of non-expert users interact with web applications,
like modern portals, with different needs, skills, and cus-
tomization requirements [17].
The above considerations show that web application de-
sign is a complex task that requires the integration of dif-
ferent methods and techniques. Analogously to hyperme-
dia design, it requires the ability of organizing large struc-
tured or semi-structured contents in a non-linear way, and
of defining the multiple navigation paths across them.
Analogously to traditional application design, it requires
the ability of specifying the functional and evolutional
aspects.
Unfortunately, the design methods, models and techniques
.00 (c) 2001 IEEE 1

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
from hypermedia and software engineering cannot just be
borrowed and piled up: they must be integrated to create a
viable and usable conceptual framework. This is why this
paper proposes W2000, an integrated framework that
blends together the Unified Modeling Language (UML,
[4]) and the last version of HDM (the Hypermedia Design
Model, [12]), which was the first design model proposed
for hypermedia-hypermedia applications and inspired,
among the others, OOHDM [20], RMM [16], HDMlite
[11], WebML [7]). UML has been chosen because of its
being a standard, its graphical and intuitive representation,
and its extensibility for representing domain-specific nota-
tions. The integration between UML and HDM consists
in:
• Defining several stereotypes and customizations of

diagrams to render HDM with UML;
• Specifying guidelines to use UML as a way to specify

some of the dynamic and operational aspects of web
applications;

• Refining use case diagrams to describe high-level
user requirements, related to both functional and
navigational aspects.

We consider interface design as a separate task, with high
complexity on its own: by no means it is a sub product of
the other design activities. We do not consider interface
design in this paper, but we pave the ground for a possible
further extension of W2000 in this direction.
In this paper, we exemplify W2000 through the design of
a web-based conference manager system. The case study
is complex enough to highlight all the design requirements
raised by a real life application, and to exemplify the use
of the various modeling concepts and notational primi-
tives; lack of space obliges us to discuss only a little por-
tion of it.

The rest of this section shortly introduces our running
example. Section 2 provides an overview of the different
design activities for web applications. Sections 3, 4, 5, 6
describe the design activities in detail and exemplify them
on the case study. Section 7 compares our approach to
other similar approaches. Section 8 concludes the paper
and outlines our future work.

1.1 Running Example
A web-based conference manager system should guide all
different users involved in a conference to accomplish
their tasks. The application has to suitably promote and
advertise the conference and its structure. In addition, it
has to support authors while submitting papers, to guide
program committee members in reviewing papers, and to
help the general (program) chair selecting papers and set-
ting up a program. Involved roles impose a set of trivial
constraints on the way they can use the application. Ge-
neric users should be allowed to browse only through the
general information pages; they should never browse
0-7695-0981-9/01 $10
through submitted papers and reviews. Authors should be
able to access information about their papers, but not
those of other papers nor the information about the re-
viewing process. PC members should see all papers and
maybe reviews, except those for which they have declared
conflicts. The chair must be able to do everything. After
accepting papers, the application should notify all authors,
asking all authors of accepted papers for the camera-ready
version.

2 W2000 Design Framework
W2000 organizes the design activity in a number of inter-
dependent tasks, as summarized in Figure 1. Each activity
produces a model (i.e., a set of related diagrams), which
describes some aspects of the web application. Figure 1
does not define “yet another design process”, but it identi-
fies mutual dependencies among design tasks. A number
of activities can run in parallel, and designers may need to
rework several times the same issue, refining or modifying
a portion of the specification with respect to design deci-
sions taken during other tasks.

V

is
ib

ili
ty

 D
es

ig
n

Functional Design

Requirements Analysis

Functional
Requirements

Analysis

Navigational
Requirements

Analysis

St
at

e
ev

ol
ut

io
n

D
es

ig
n

Hypermedia Design

Information Design
Hyperbase
Structural

Design

Access Layer
Structure Design

Navigation Design
Hyperbase
Navigation

Design

Access Layer
Navigation

Design

Figure 1: W2000 Design Framework

Each block of Figure 1 identifies a design activity:
Requirements analysis. It extends “conventional” re-
quirements analysis to hypermedia applications. It consists
of two sub-activities: navigational and functional re-
quirements analysis. The former aims at highlighting the
main information and navigation structures needed by the
different users of the application. The latter identifies the
main user operations. Both activities borrow UML use-
case diagrams to clearly represent their outcome.
.00 (c) 2001 IEEE 2

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
State evolution design. It supplements requirements
analysis and defines how the application contents evolve.
This activity is not mandatory, but it is required only for
applications with complex behaviors. The straightforward
way of representing evolution is through UML statecharts
diagrams. Besides their usual purpose of making explicit
the state through which an element evolves, statecharts
diagrams become a means to reason on some peculiar
aspects of the application and on “temporal” constraints.
Hypermedia design. It consists of information and navi-
gation design. The information design specifies and or-
ganizes the application contents. According to HDM, the
hyperbase structural design structures the “core” informa-
tion that must be available to users. The access structure
design organizes the contents into higher-level structures
(collections in HDM), integrated if needed with “superim-
posed information“ [9], to support access paths to the base
contents. The navigation design defines how users can
navigate the information elements and access structures.
All delivered diagrams are based on UML class diagrams,
tailored with appropriate stereotypes.
Functional design. It specifies the main user operations
of the application. It extends the specification of standard
functions with some peculiarities specific to hypermedia
applications. Designers have to provide scenarios for all
the main activities in functional use-case diagrams. Being
able to explain how identified information objects cooper-
ate to complete an operation is twofold: it is a check on
the completeness of the hyperbase design and identifies all
operations that must be associated with selected objects.
Extended UML interaction diagrams (both sequence dia-
grams and collaboration diagrams) describe how the in-
formation objects identified so far cooperate to provide
promised services.
Visibility design. It is a key feature of many web applica-
tions. Different users, in general, have a different perspec-
tive of the application, its contents, and operations. The
purpose of visibility design is thus to specify which opera-
tions, information structures and navigation paths must be
visible to whom.
Lack of space prevents us from taking into account visibil-
ity design in detail. The reader should bear in mind that
for most design specifications there could be additional
versions tailored to specific roles, which specify what is
available to whom.

3 Requirements Analysis
Requirement analysis can start focusing on the different
categories of users, hereafter roles, which can interact
with the application. Roles elicit and help organize both
navigation paths and operations. To exemplify require-
ments analysis, we refine the informal description of the
web-based conference manager presented in Section 1.1.
The main roles involved in this application are:
• Generic users browse only public conference infor-
0-7695-0981-9/01 $1
mation;
• Authors submit papers and browse all relevant

information on their papers;
• PC members submit reviews, browse all papers, and

discuss paper acceptance;
• Conference chair assigns papers to PC members and

defines the program.
Notice that physical users are not statically associated
with single roles. A PC member, for example, can also be
an author, or an author is also a generic user. Specifying
roles is the best way to make user profiles explicit and to
avoid duplicating functionalities and navigation paths for
all users that could utilize them.

Submit paper Author

Identify accepted papers

Identify rejected papers

Define session chairs

Assign reviewers

Submit review

Declare conflict

PC Member

Conference Chair

Solicit reviews

Identify to-be-disc.
papers

Select papers
<<include>>

<<include>>

<<include>> Define conf. program

<<include>>

Assign papers
to sessions

<<include>>

Figure 2: Functional use-case model

Figure 2 presents the functional use-case model for the
conference manager system1. It identifies the main func-
tionalities and associates them with roles. Generic users
do not appear in the functional use-case model, but only in
the navigational use-case model, because they can only
browse through public pages, but they do not perform
particular actions. The conference chair assigns reviewers
to each submitted paper, solicits reviews from late review-
ers, selects papers, and organizes the conference pro-
gram. Selecting papers consists of (<<include>> in the
diagram) identifying accepted, rejected, and to-be-
discussed papers. Organizing the conference means as-
signing papers to sessions and associating each section
with a session chair.
defines the navigational use-case model, that is, the navi-
gation capabilities associated with each role. Generic us-
ers can only browse public conference site, browse “ac-
cepted” authors, and browse selected papers. Browsing
the conference site means surfing through general infor-
mation, conference program, and program committee.

1 In this simple example, each use-case model comprises a single use-
case diagram. More complex applications could require more than a
single diagram.
0.00 (c) 2001 IEEE 3

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
Authors can see all information related to their papers
(browse paper info) and browse reviews. Authors can only
see the reviews of their papers, thus the note associated
with the relation between the role and the functionality
constraints the visibility of the operation. PC members can
browse papers, browse reviews, except those of papers for
which they declared conflicts, and browse authors.
Browsing papers can be refined (<<extend>> in the dia-
gram) in browse rejected papers, browse accepted papers,
and browse to-be-discussed papers.

Browse paper info

Browse PC
Browse conference

prg.

Browse public conf.
site

<<include>>
<<include>>

Browse general info

<<include>>

Browse
assignments

Conference
Chair

Browse accepted
papers

Browse rejected
papers

Browse papers

<<extend>>

<<extend>>

Browse to-be
discussed papers

<<extend>>

 All

 All

Author

 is author

Browse "accepted"
authors

Generic User

Browse selected
papers

Browse authors

Browse
discussions

Browse reviews (2)

PC Member

Browse reviews (1)

 no conflict

Figure 3: Navigational use-case model

The conference chair can browse assignments, that is, all
assignments between papers and reviewers.
After defining the requirements models, designers should
have a rough, but complete, view of what they are about to
do. All other models should use this first set of diagrams
as reference and context. As reference, because consis-
tency must be enforced through the whole design process;
as context, because here the whole application is available
at a glance, the other models are much more focused and
detailed.

4 State Evolution Design
A distinctive feature of web applications is that their hy-
permedia schema is subject to evolution. Potentially every
information object and every navigation path is subject to
evolution, i.e., could have a number of different states,
with transitions defined to move from one state to another.
W2000 supplies state evolution diagrams to describe how
applications evolve. State evolution diagrams are not
mandatory for all application elements. They are required
only for those specific cases where a significant evolution
0-7695-0981-9/01 $10
is foreseen.
State evolution diagrams are rendered with UML state-
charts diagrams, which are exemplified in Figure 4. The
diagram describes how papers evolve within the applica-
tion. A new paper element is created when a paper is
submitted to the conference. The creation corresponds to
the first arrow and moves the paper from state Start (the
bullet in the upper part of Figure 4) to state Submitted.
When the deadline for submitting papers expires, all sub-
mitted papers move to state TBR (To Be Reviewed) and
wait for PC members to submit their reviews. Each paper
requires that three reviews be available. When submitted,
the application computes its preliminary score. If it is
greater than 12 (the predefined upper bound), the paper is
automatically accepted and it moves to state Accepted. If
the score is less than 6 (the lower bound), the paper is
rejected, and thus it enters state Rejected. If the score is
between the two bounds, the paper has to be discussed by
the PC members (state TBD – To be discussed). Finally,
after discussion, it is either accepted or rejected and thus
its state becomes Accepted or Rejected, respectively. Re-
jected papers move to state Notified as soon as the appli-
cation notifies corresponding authors with the rejection.
Authors of accepted papers are asked for the camera-
ready version of their papers (state WCR - Waiting for
Camera Ready) and when received, the paper is Ready
and can be presented. After being Presented, a paper can
be moved to the end state.
The state sequence of Figure 4 does not only clarify the
behavior of papers, but provides also designers with inter-
esting feedbacks to structure the hyperbase. States can
impact design in different ways. For example, they can
require:
• A particular flag, attribute, to mark the current state

of each information element;
• A special-purpose filter that extracts, from all ele-

ments of a given type, only those with specific prop-
erties;

• A specific container (collection, in the HDM jargon)
that includes only selected elements.

5 Hypermedia Design
The purpose of hypermedia design is to specify the infor-
mation structures (information design) and navigation
paths (navigation design) needed by the various classes of
users. Notice that hypermedia design is user-centered: It is
intended to interpret and model information and naviga-
tion as they are perceived by users, rather than capturing
structures for implementation. As such, the hypermedia
design schema is substantially different from a database
schema.
.00 (c) 2001 IEEE 4

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001

Submitted

TBR
Reviewed

Rejected TBD Accepted

WCR

Ready

Presented

Notified

deadlineExpire
d

#rev < 3
#rev = 3
6 < score < 12 score >= 12 score <= 6

rejected accepted
mail sent mail sent

CR received

presented

Figure 4: State evolution diagram for conference papers

HDM prescribes that hypermedia design is organized in
two distinct layers: the hyperbase layer and the access
layer. The hyperbase layer defines the base information
objects, their mutual associations and the navigation paths
across them. The access layer introduces alternative
groupings and organizations of the base information ele-
ments and organizes the ways users initiate their trips
within the information space. These two layers are further
organized in: design in-the-large, which frames the infor-
mation structures and navigation, and in-the-small, which
completes all missing details.
The rest of this section illustrates the hypermedia design
of the web-based conference manager through several
examples.

5.1 Hyperbase information design
HDM organizes the hyperbase information in entity types
and semantic association types2. An entity type describes
a class of information objects perceivable by users. For

2 HDM allows also users to model singletons as isolated entities without
defining ad-hoc types. This modeling option is not further addressed in
this paper.
0-7695-0981-9/01 $1
example, the conference manager requires: paper, review,
PC member, OC members3, and author.

Submission

CameraReady
0..1

0..1 Abstract

<< Entity Type >>
Paper [1..*]

<< Component Type >>

<< Component Type >>

<< Component Type >>

{XOR}

Mutually exclusive
components

PCMember [1..*]

GeneralInfo

<< Component Type>>
Person

<< Abstract Entity Type>>

OCMember [1..*]

<< Entity Type>> << Entity Type>>

Conference Team Member

<< Abstract Entity Type>>
Author [1..*]

<< Entity Type>>

ReviewComp

Review [1..*]

<< Entity Type >>

<< Component Type >>

Figure 5: An excerpt of the information design
schema (in-the-large)

All HDM concepts are rendered with special-purpose
stereotypes as presented by the excerpt of the information
structures, defined for the running example, of Figure 5. It
shows that entity types can be organized in inheritance
hierarchies and are structured in components.
Components are in part-of relations with the entities they
belong to. They are information subunits that are not self-
contained, but have well-defined roles within entities.
Components may have their own subcomponents. In
Figure 5, the paper entity type comprises three compo-
nents: abstract, submission, and camera ready. Not all
three components simultaneously exist during the life of a
paper entity since the state of an entity may change as the
application evolves: Abstract and submission exist after
submitting the paper. The camera ready replaces the initial
submission after acceptance and submission of the final
version. This property is expressed in Figure 5, by the xor
label between the two component types and by the associ-
ated comment. Notice that this behavior implements the
requirements of the state evolution diagram of Figure 4.
Semantic associations denote domain-specific binary rela-
tionships that are of interest from the user perspective.
They are defined in particular diagrams (see Figure 6)
using UML associations. A semantic association can con-
nect entities, components, or other associations. For ex-
ample, the semantic association reviews relates a PC
Member to the association has, which in turn connects
each paper assigned to a PC Member with the review he
or she has done for that paper.

3 OC member stands for organizing committee member.
0.00 (c) 2001 IEEE 5

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001

Paper

by

Review

PCMember

1..*

1..*

1..10

1..3
assignment

has

makes

1..3 << Entity Type >>
Author

<< Entity Type

Conference
<< Isolated Entity >>

<< Entity Type >>

<< Entity Type >>

1..10
1..10

reviews
1..3

Program
<< Component >>

Session
<< Component Type >>

ConferenceTeam
<< Component >>

OCMember

<< Entity Type >>

1..*

1..*

composed

composed

reviewing

Figure 6: Information design semantic
associations (in-the-large)

Figure 5 and Figure 6 concentrate on the design in-the-
large, without any specifications of the actual contents of
the various objects. As to the design-in-the-small, HDM
allows contents to be associated with components and
semantic associations. A data value is called slot, which
can both be a primitive piece of information (e.g., a string,
a date, an integer) or be a complex value (e.g., a video or
a sound track). In both cases, slots are regarded as atomic:
the designer is not interested to its inner structure (defined
at implementation level). Slots are typed: They can be
simple or composite, i.e., aggregations of other slots, and
are associated with a multiplicity. For example, Figure 7
shows the in-the-small specification of the paper entity
type.

Submission

reviewState:
{accepted, refused, toBeDiscussed}

CameraReady

Paper [1..*]

0..1
0..1 0..1

Abstract

title : text
author [1..*] : text
abstract : text
authorAddress [1..*] : text
authorE-mail [1..*] : text
topic : text
submissCategory : text

<< Entity Type >>

<< Component Type >>
<< Component Type >> << Component Type >>

number: integer

title: text
author [1..*]: text
authorAddress [0..*]: text
authorE-mail [0..*]: text
article : text
avgScore : text

number: integer

article : text
authorE-mail [1..*]: text
authorAddress [1..*]: text
author [1..*]: text

title: text

session : text

number: integer

accept()
reject()

assignToSession()

Figure 7: Information design of the paper
entity type (in-the-small)

Within semantic associations, slots are introduced as part
0-7695-0981-9/01 $10
of the description of their centers. The center of an asso-
ciation is an information structure that users exploit for
navigating the association. For example, the center may
contain slots to describe which are the linked objects to
help users properly select the one of their interest before
actually navigating to it. In most cases, the slots within
association centers are borrowed from the linked objects;
in some cases, however, additional slots must be intro-
duced (e.g., for explanation purposes). Figure 8 shows the
design in-the-small of the has semantic association, where
slots are specified explicitly.

Paper

<< Entity Type>>
Review

<< Entity Type >>1..3

has

CenterHas-Paper
<< Center Type>>

Review.<number, reviewer> [1..3]

CenterHas-Review
<< Center Type>>

Paper.<number, title, author [1..*]>

Figure 8: Information design of the has semantic
association (in-the-small)

5.2 Hyperbase navigation design
Navigation design defines the navigational nodes (nodes
for short) and navigational links (links) of the application.
Nodes, which are derived from the hyperbase structural
elements (entities, components, association centers), are
the information units as perceived and navigated by users.
Usually, they are rendered as web pages, or as well identi-
fiable logical blocks in a page.
Nodes, rendered using the UML stereotype node type, are
derived from the structural design through a set of rules
and design decisions. In the simplest case, nodes corre-
spond to leaf entity components and to association cen-
ters. Usually, additional nodes can be introduced to facili-
tate the access to the various information structures.
A link is a path that connects two nodes. Links, repre-
sented with UML arrowed associations, are organized in
two categories: structural links, which are induced by
part-of associations among components, and semantic
links, which are induced by semantic associations.
Figure 9 shows the node-link structure for the paper entity
type. The navigational topology is hierarchical: The root
corresponds to the abstract component. The symbol "@"
indicates that this node is a default, that is, all users, who
access a paper, must start navigation from this node.
Navigation design cannot be automatically derived from
the information design, but must be consistent with it.
Navigation design implies design decisions and can bene-
fit from navigation design patterns ([15], [18]), which
.00 (c) 2001 IEEE 6

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
provide readily usable solutions to well-known navigation
problems.

 << Node Type >>
Paper.Abstract

Paper.Submission Paper.CameraReady

0..1 0..1
<<Node Type >> <<Node Type >>

@

Figure 9: Navigation design of the paper entity type

For example, Figure 10 describes the navigation induced
by the one-to-many semantic association has: From each
review, a link may lead directly to the corresponding pa-
per. From a paper, an intermediate node, which corre-
sponds to the association center, can be reached. This
node lists the reviews available for the paper. Users must
select an item in the list if they want to get all details of a
particular review. To access another review, users must
return to the center node and make another selection. This
is the straightforward navigation pattern called index, ex-
pressed with the symbol .

1..3

ReviewPaper
CenterHas-Paper

<<Node Type>> <<Node Type>>
<<Node Type>>

Figure 10: Navigation design of the has semantic association

A different navigation pattern can be used to relate papers
to authors: The centers are not independent nodes, but are
included within the default nodes of the respective entities
(and will be presented in the same page). The navigation
follows the guided tour pattern: Users can scan sequen-
tially all authors of the same paper without navigating
back to the center. These examples are only two variants
of the many navigation patterns available in the literature.
It is important to notice that the navigational diagrams
presented so far give only an in-the-large specification of
the navigation, that is, the core navigational decisions of
the designer. A number of details are still missing and
they should be specified as part of the navigation design
in-the-small. For example, we should clarify what happens
when users reach the last node in a guided tour sequence.
Navigation design in-the-small should specify if users can
only go back to the previous node, or also return to the
first node or to the center node.

5.3 Access layer information design
The access layer design describes the information struc-
tures that are super-imposed [9] to the hyperbase and pro-
0-7695-0981-9/01 $10
vides alternative organizations of the base contents to us-
ers to facilitate the understanding of the hyperbase. The
access layer structural design consists of a number of col-
lections types. A collection represents a container of enti-
ties, components, associations, or other collections. These
elements are called collection members, and can be se-
lected and organized according to different criteria. A
collection may include (and usually does include) a dis-
tinguished element called collection center. Its main pur-
pose is to help users understand what the collection is
about and which are its members, and to serve as starting
point for navigation.
The in-the-large specification of collections consists of the
types of its members and (if exists) its center. Optionally,
the definition includes also the ordering and sub-grouping
criteria to organize the members, and filtering criteria by
which members can be algorithmically selected.
Once more, collections are rendered with the UML stereo-
type collection type, while their centers are represented
using center type. An example of this notation is shown in
Figure 11.

1..* << Entity Type>>

Paper

The instances of this Collection
type are submitted, accepted,
refused, and to be discussed
papers

<< Collection Type>>
PapersByCategory

OrderedBy: paper, number

<< Center Type>>
PapersByCategoryCenter

Figure 11: Information design of the
paper by category collection type

Designing a collection in-the-small means specifying the
actual contents of the collection center. A collection cen-
ter should contain enough information to allow users iden-
tify the collection members. It usually includes a list of
slots borrowed from the members, to outline what the
members are in a compact, but comprehensible way. The
collection center may also introduce new structured or
unstructured information, such as comments, explanations,
content maps or orientation maps, and similar visual or
textual cues, to improve usability and understandability of
the collection itself.

5.4 Access layer navigation design
The access layer navigation design consists of defining the
navigational links (called collection links) for each collec-
tion. These links define how users can navigate both be-
tween the center and members of a collection, and across
members. We assume that navigation within a collection
starts from the node corresponding to the center, or from
the default node of the first member element, if the center
.00 (c) 2001 IEEE 7

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
is missing. The multiple ways to access the member nodes
must be described both in-the-large (by means of naviga-
tion patterns) and in-the-small, by providing the details of
all collection links. The index and guided tour patterns
described in the previous section, and all their possible
variants, apply to collections as well, and we use the same
stereotypes to represent them in UML. An example of
navigation in-the-large within the reviews collection is
shown in Figure 12, which exploits the “Index + Guided
Tour” pattern.

 << Node Type >>
 ReviewsCenter

<< Node Type >>
Review

Figure 12: Navigation design of the reviews collection

6 Functional Design
The functional design describes how the different ele-
ments of the hypermedia cooperate to accomplish the ac-
tions defined in the functional use-case model. Functional
design is strictly related to both state evolution design
(since the applicability and the “meaning” of operations
depend upon states) and hypermedia design (since infor-
mation objects and navigation paths are used by the opera-
tions).
Scenario diagrams are rendered using suitably extended
UML interaction diagrams (both sequence and coopera-
tion diagrams). Extensions concern both objects and mes-
sage passing. Involved “objects” are organized in entities
(components, nodes), semantic associations, and collec-
tions. Message passing is not only pure invocation of
methods (functions) associated with identified elements.
Web applications require also free navigation, represented
with dotted lines, and constrained navigation through a
particular link, represented with lines with diamonds in
the middle. Free navigation allows users to “move
around” without following specific navigation paths. In
contrast, constrained navigation forces users to follow
predefined navigation paths.
In this paper, we exemplify scenario diagrams through
the extended UML sequence diagram of Figure 13: It
shows how papers are selected, that is, what information is
necessary and how it is used to compute the preliminary
scores associated with submitted papers. The example
refers to a single paper; to address all papers, the same
operation should be applied to all members of the submit-
ted papers collection.
The conference chair selects a paper through a free navi-
gation (dotted line), which means that he/she is not
obliged to follow a particular navigation path. Once the
paper is selected, he/she explores the associated reviews
through constrained navigations (lines with diamonds),
0-7695-0981-9/01 $10
traversing the links induced by the has semantic associa-
tion. Before computing the score (the user wants to evalu-
ate the paper), the application removes the paper from the
collection of submitted papers. Then, it computes the pre-
liminary score associated with the paper. The outcome of
this operation can be any number between 0 and 18 and
the possible actions depend on its actual value. UML se-
quence diagrams allow alternatives to be represented on
the same diagram by drawing multiple arcs exiting from
the same point and by associating each arc with a predi-
cate to decide which path must be followed. In this case, if
the score is greater than 12 the paper is added to the col-
lection of accepted papers and the state becomes ac-
cepted. If the score is less than 6, the paper is added to the
collection of reject papers and its state becomes rejected.
Finally, if the score is between 6 and 12, the paper is
added to the collection of TBD papers and its state be-
comes TBD.4
A complete specification for a web application should
contain at least one scenario diagram for each operation
identified in the functional use-case model. Usually a sin-
gle scenario is sufficient for simple and sequential opera-
tions. More complex functions, with nested alternatives
and deep modifications of the hyperbase, usually require
several scenarios to represent all possible and meaningful
alternatives. Squeezing all alternatives in a single diagram
would lead to unreadable models.
An important cross check is the consistency between the
navigation paths, as they are used within these diagrams,
and their definition in the hypermedia design.

7 Related Work
To the best of authors’ knowledge, W2000 is the first ap-
proach that integrates in a single unified framework most
of the powerful structural and navigational abstractions,
introduced by hypermedia web models, with functional
and behavioral primitives provided by UML. Other ap-
proaches do not cover completely either hypermedia mod-
eling or behavior specification and thus they all lack in
specifying the mutual relations between the two aspects.
If we consider UML extensions specific to hypermedia
modeling, UHDM [2] renders OOHDM (an object-
oriented extension of HDM [20]) by extending UML with
suitable stereotypes and OCL constraints. It defines a con-
ceptual model, which is a “standard” class diagram that
identifies the domain entities together with their relation-
ships, a navigation model, which is a customized class
diagram that identifies the classes of the conceptual model
and the navigation among them, and a presentation model,
which describes the abstract user interface by means of
UML object and statecharts diagrams.

4 Notice that the diagram represents also the different states in which the
paper can be.
.00 (c) 2001 IEEE 8

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001

: Paper

 : Conference
Chair

R1:Review R2: Review R3 : Review

[score >= 12]

[score <= 6]

[6< score < 12]

compute(R1, R2, R3)

Accepted

Rejected

TBD

Reviewed

R1

R2

R3

Submitted
Papers :

Accepted
Papers :

 TBD Papers Rejected
Papers :

remove

add

has

has

has

add

add

evaluate

Figure 13: Scenario diagram for Select papers

Since UHDM is based on OOHDM, the main differences
between UHDM and our approach are the same as those
between OODHM and HDM2000.
Given the generality and extensibility of UML, all well-
known hypermedia models (e.g., HDM [12], HDM-lite
[11], RMMM [16], OOHDM [20], Araneus [1], WSDM
[10], WebML [6] [7]) could be represented with suitable
customizations of UML, and, in principle, they could have
been adopted for hypermedia design in our framework. In
contrast, we have chosen HDM2000 for a number of rea-
sons. HDM2000 decomposes the information and naviga-
tion schemas in two layers -- hyperbase and access layer --
and allows the designer to define them at two levels: in the
large and in the small. These abstraction levels do not
appear in any of the above-mentioned models, but, to the
best of authors’ experience, they are extremely useful to
plan the design activity, to make it more organized, and to
structure design documentation more effectively. In addi-
tion, HDM2000 introduces a number of novelties with
respect to HDM, and other models, that are useful to spec-
ify complex design situations. For example, it provides
isolated entities and isolated collections, identifies differ-
ent roles for elementary data units (slots), includes content
attributes in the definition of associations (see the notion
of center), and incorporates a set of sophisticated naviga-
tion patterns as built-in design primitives [15].
A different approach to web modeling is presented in
[19]: UML is not extended, but it is simply used to associ-
ate a standard graphical interface with Jessica, an existing
object-model for designing web-services. Besides UML
syntax, Jessica elements are defined by means of XML
code to allow designers to define web services by specify-
ing a (too simple) UML model and automatically obtain-
0-7695-0981-9/01 $10.0
ing the XML equivalent. The direct mapping between
Jessica (UML) and XML precludes any modeling abstrac-
tion and functional behavior is not addressed.
Considering web applications modeling, the use of UML
has been discussed by Conallen in [8], which aim at pro-
posing a workable solution for releasing web applications.
The proposal privileges client-server interactions and un-
derestimate the logical vs. physical design of both infor-
mation and navigation structures. It defines stereotypes,
tagged values, and OCL constraints to model web pages
and hyperlinks, forms, frames, and client-server compo-
nents at a concrete level (for example, a web page is seen
as a fragment of html code). Conallen adapts also all clas-
sical phases of software development to web architectures,
and tailors almost all UML diagrams to render web-
related concepts. For example, use-case diagrams are used
to represent requirements and interaction diagrams both
exemplify use cases and show how objects interact. But,
neither use-cases nor interaction diagrams are extended to
address navigation issues.

8 Conclusions and Future Work
This paper introduces W2000, an UML-HDM integrated
framework for the design of web applications. The under-
lying assumption is that web applications are complex, in
their nature, thus their design is necessarily a complex
task. Web applications are not standard applications, with
“more data” to take into account, nor are hypermedia ap-
plications with a few operations added. Web applications
design requires the integration of two distinct but interre-
lated activities: hypermedia design, which focuses on in-
formation structures and navigation paths, and functional
design, which focuses on operations. To integrate the two
0 (c) 2001 IEEE 9

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
“different worlds” W2000 proposes:
• Special-purpose extensions to use-cases to capture

both operational and navigational requirements;
• An UML-based description of HDM, the supporting

hypermedia design model;
• An extension to standard UML dynamic diagrams to

model web operations
In this paper, all presented concepts have been exempli-
fied only on a web-based conference manager system, but
the effort for the definition of W2000 is paying off. We
are apparently able to specify a number of interesting (and
difficult) operational features, and to integrate them with
the hypermedia design. However, our future agenda in-
cludes:
• To keep using W2000 for defining further web

applications to have a large base set of case studies.
• To fine-tune the definition of W2000 to improve ex-

pressiveness without impairing readability (tradeoff
always difficult to keep under control).

• To extend the approach to address presentation de-
sign issues.

• To restructure the suite of design tools JWEB ([3]),
which was previously based on the original HDM, to
support all steps of W2000.

9 References

[1] P. Atzeni, G. Mecca, and P. Merialdo: “Design and Maintenance

of Data-Intensive Web Sites”, Proc. EDBT 1998, pp. 436-450.
[2] H. Baumeister, N. Koch, and L. Mandel: “Towards a UML Ex-

tension for Hypermedia Design”, in Proceedings of UML´99 The
Unified Modeling Language - Beyond the Standard, LNCS 1723,
Fort Collins,USA, October 1999, Springer Verlag

[3] M. A. Bochicchio, R. Paiano, and P. Paolini, "JWeb: an HDM
Environment for Fast Development of Web Applications", in
Proceedings of IEEE Multimedia Computing and Systems 1999
(ICMCS '99), Vol.2, pp.809-813.

[4] G. Booch, I. Jacobson, and J. Rumbaugh: “The Unified Modeling
Language User Guide”, The Addison-Wesley Object Technology
Series, 1998.

[5] P. Brusilowsky and Milosavljevic (guest eds.) "The New Review
of Hypermedia and Multimedia - Special Issue on Adaptivity and
User Modeling in Hypermedia Systems", Taylor Graham, Vol. 4,
1998

0-7695-0981-9/01 $10
[6] S. Ceri, P. Fraternali, S. Paraboschi: “Data-Driven, One-To-One
Web Site Generation for Data-Intensive Applications”, in Proc.
VLDB’99, Edinburgh, September 1999, Morgan Kaufmann, pp.
615-626.

[7] S. Ceri, P. Fraternali, A. Bongio: “Web Modeling Language
(WebML): a modeling language for designing Web sites”, in
Proc. Int. Conf. WWW9, Amsterdam, May 5 2000

[8] J. Conallen: “Building Web Applications with UML”, Addison-
Wesley, 2000.

[9] L. Delcambre, D. Maier, “Models for Superimposed Informa-
tion”, In Proc. Of the International Workshop on the World-Wide
Web and Conceptual Modelling, WCM’99, Paris, 15 Nov. 1999.

[10] O.M.F. De Troyer, C.J. Leune, “WSDM: a user centered design
method for Web site”, in Proc. Of Int. Conf. WWW7

[11] P. Fraternali, P. Paolini: “A Conceptual Model and a Tool Envi-
ronment for Developing More Scalable, Dynamic, and Custom-
izable Web Applications”, Proc. EDBT 1998, pp. 421-435.

[12] F. Garzotto, P. Paolini, D. Schwabe, “HDM - A Model-Based
Approach to Hypertext Application Design”, TOIS 11(1) (1993),
pp.1-26

[13] Garzotto F., Mainetti L., Paolini P., “Hypermedia Design, Analy-
sis and Evaluation Issues”, Communications of the ACM,
Vol.38, No.8, Aug.1995, pp. 49-56.

[14] F. Garzotto, L. Mainetti, P. Paolini, “Navigation in Hypermedia
Applications: Modeling and Semantics”, in Journal of Organiza-
tional Computing and Electronic Commerce, 6 (3), 1996

[15] F. Garzotto, P. Paolini, D. Bolchini, and S. Valenti: "Modeling
by patterns" of Web Applications, in Proc. Of the International
workshop on the World-Wide Web and Conceptual Modelling,
WWWCM’99, Paris, 15 Nov. 1999, pp. 293-306.

[16] T. Isakowitz, E. Stohr, P. Balasubramanian: “RMM: A Method-
ology for Structured Hypermedia Design”, CACM (1995), 38(8),
pp. 34-44.

[17] MILIA - The World's Interactive Content Marketplace -
THINK.TANK SUMMIT" - panel on "Personalization and Cus-
tomization for E-commerce" Cannes (France), Feb. 2000.

[18] G. Rossi, D. Schwabe and F. Lyardet, “Improving Web informa-
tion systems with navigational patterns”, in Proc. Of Int. Conf.
WWW8, Elsevier, pp.589-600.

[19] M. Schranz, J. Weidl, K. Göschka, and S. Zechmeister, “Engi-
neering Complex World Wide Web Services with Jessica and
UML”, In Proceedings of the 'Hawaii International Conference
On System Sciences HICSS-33', Maui, Hawaii, USA, Jan 4-7,
IEEE Computer Society 2000, p.167.

[20] D. Schwabe, G. Rossi, “An Object Oriented Approach to Web-
Based Application Design”, Theory and Practice of Object Sys-
tems, 4 (4), J. Wiley, 1998
.00 (c) 2001 IEEE 10

