
HAL Id: inria-00113959
https://hal.inria.fr/inria-00113959

Submitted on 15 Nov 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extending workflow patterns with transactional
dependencies to define reliable composite Web services

Sami Bhiri, Olivier Perrin, Claude Godart

To cite this version:
Sami Bhiri, Olivier Perrin, Claude Godart. Extending workflow patterns with transactional depen-
dencies to define reliable composite Web services. Advanced International Conference on Telecommu-
nications and International Conference on Internet and Web Applications and Services (AICT/ICIW
2006), Feb 2006, Guadeloupe, French Caribbean, pp.145-150, �10.1109/AICT-ICIW.2006.97�. �inria-
00113959�

https://hal.inria.fr/inria-00113959
https://hal.archives-ouvertes.fr

Extending workflow patterns
with transactional dependencies

to define reliable composite Web services.
Sami Bhiri, Olivier Perrin, Claude Godart

LORIA-University Henri Poincaré, Nancy, France
claude.godart@loria.fr

Abstract— In this paper, we introduce the concept of a trans-
actional pattern for specifying flexible and reliable composite
Web services. A transactional pattern is a convergence concept
between workflow patterns and advanced transactional models;
thus it combines workflow flexibility and transaction reliability.
Designers can simply connect together transactional patterns
to define a composite Web service. In relation, we provide
techniques to ensure control and transactional consistency of such
services.

I. INTRODUCTION

SOA provides the key enabling infrastructure required to
integrate supply chains and end-to-end e-Business applications
at a variety of different levels, from applications and data,
to business processes, and across (and within) organizations.
Thus, the applications built by composing or coordinating the
execution of several Web services can be very complex for the
following reasons: there are many components services, the
execution can last a long time, the Web services environment
is loosely coupled and asynchronous by nature. Because
machines may fail, processes may be cancelled, or services
may be moved or withdrawn, handling potential failures is
mandatory. However, traditional transactional model has been
proven to be unsuitable for long running, asynchronous, and
decentralized activities.

An increasing number of applications are being constructed
by combining or coordinating the execution of multiple Web
services, each of which may represent an interface to a
different underlying technology. The resulting applications
can be very complex in structure, with complex relationships
between their constituent services. Furthermore, the execution
of such an application may take a long time to complete,
and may contain long periods of inactivity, often due to
the constituent services requiring user interactions. In the
loosely coupled environment represented by Web services,
long running applications will require support for recovery
and compensation, because machines may fail, processes may
be cancelled, or services may be moved or withdrawn. Web
services transactions also must span multiple transaction mod-
els and protocols native to the underlying technologies onto
which the Web services are mapped.

However, handling failures using the traditional transac-
tional model for long running, asynchronous, and decentral-
ized activities has been proven to be unsuitable. Advanced

Transaction Models (ATMs) [1] have been proposed to manage
failures, but, although powerful and providing a nice theo-
retical framework, ATMs are too database-centric, limiting
their possibilities and scope [2] in this context (e.g. their
inflexibility to incorporate different transactional semantics as
well as different behavioural patterns into the same structured
transaction [3]).

In the same time, workflow [4] has became gradually a key
technology for business process automation [5], providing a
great support for organizational aspects, user interface, moni-
toring, accounting, simulation, distribution, and heterogeneity.

In this paper, we propose an approach to specify and
orchestrate flexible and reliable Web services compositions
based on the concept of transactional patterns which combines
workflow flexibility and transactional reliability.

Section II presents a motivating example. Section 3 and 4
specify the transactional composite Web services and work-
flow patterns concepts. Section 5 introduces the transactional
patterns, and shows how to use them to specify composite Web
services, while guaranteeing the transactional consistency.
Section VI presents related work, while section VII concludes.

II. MOTIVATING EXAMPLE

We consider an application for online travel arrangement,
carried out by a composite service as illustrated in figure 1.
The customer specifies its requirements for destination and
hotels. The composite service launches in parallel hotel and
flight booking. Then, the customer is requested to pay online.
Once this is done, travel documents are sent to the customer.
To deal with failures, the designers of the composite service
may want to augment the control flow described above with
a set of transactional requirements. For instance, they may
require the services FB and TDU to be sure to complete.
They may also require the service FB to be compensatable
(when an hotel booking is cancelled, or when it fails). Then,
they may specify that service TDU is an alternative for
TDFE.

Modeling this example with ATM or workflow systems is
not easy because ATM are too rigid to enable a such control
structure, and they do not support bottom-up applications
design, starting from predefined business process and using
pre-existing systems or services with diverse semantics [3]. On
the other hand, workflow systems lack functionalities to assess

Proceedings of the Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services (AICT/ICIW 2006)
0-7695-2522-9/06 $20.00 © 2006 IEEE

HB: Hotel
Booking

FB: Flight
Booking

CRS: Customer
Requirements
Specification

OP: Online
Payment

TDFE: Tickets
Delivery with

FedEx

TDU: Tickets
Delivery with

UPS

Compensate
A
N
D

A
N
D

X
O
R

Sure to complete,
compensatable Sure to complete

Activate

Fig. 1. A composite service for online travel arrangement.

that the specified transactional behavior ensure the required
reliability. In our example, if the service OP fails, causing the
travel arrangement abortion, flight and hotel booking should
be undone.

III. TRANSACTIONAL COMPOSITE WEB SERVICES

A. Transactional Web service

A Web service is a self-contained modular program built
with XML, SOAP, WSDL and UDDI specifications that can
be discovered and invoked across the Internet [6], [7]. A
transactional Web service is a Web service that emphasizes
transactional properties for its characterization and correct
usage.

The main transactional properties of a Web service we are
considering are retriable, compensatable, pivot [8]. A service
s is said to be retriable (sr) if it is sure to complete after
a finite number of activations. s is said to be compensatable
(scp) if it offers compensation policies to semantically undo its
effects. Then, s is said to be pivot (sp) if once it successfully
completes, its effects remains for ever and cannot be undone.
A service can combine properties; the set of all possible
combinations is {∅; r; cp; p; (r, cp); (r, p)}.

For each service, a set of operations is available, depending
the transactional properties of the service. For instance, a
service defined as pivot has a minimal set abort(), activate(),
cancel(), fail(), complete() allowing respectively its abortion
before activation, its activation, its cancellation during its
execution, its failure and its successful completion. A com-
pensatable service has in addition a compensate() operation
for its compensation. A retriable service has a retry() operation
allowing to activate it after each failure.

B. Transactional composite Web service

A composite Web service is a conglomeration of existing
Web services working in tandem to offer a new value-added
service [5]. It coordinates a set of services as a cohesive unit
of work to achieve common goals. A Transactional Composite
(Web) Service (TCS) emphasizes transactional properties for
composition and synchronization of component Web services.
It takes advantage of services transactional properties to spec-
ify mechanisms for failure handling and recovery. A TCS
defines orchestration between its services using dependencies
to specify how services are coupled and how the behavior of
some given services influences the behavior of some others.
These dependencies are used to express the relationships

(sequence, alternative, compensation,. . .) that exist between
component services.

A dependency specifies the relationships existing between
services. It does not specify when a service is executed, but
rather how the behavior of a service impacts another service.
Thus, a dependency defines when a service will be activated,
aborted, cancelled, or compensated. In the composite service
illustrated in figure 1, the service OP will be activated only
after the completion of both HB and FB. This means that
it exists an activation dependency between these services, and
that the precondition associated to the activate() operation of
OP is: HB.completed ∧ FB.completed.

C. Types of dependencies

In our proposition, we consider different types of dependen-
cies: activation, alternative, abortion, compensation, cancella-
tion. We classify these dependencies in two classes: activation
dependencies and transactional dependencies (compensation,
cancellation and alternative).

1) Activation dependency: It exists an activation depen-
dency between a service s1 and a service s2 if the completion
of s1 can fire the activation of s2. An activation condition
ActivateCond(s2) is associated to s2, where ActivateCond(s)
specifies when a service s will be activated.

In our example (figure 1), activation dependencies between
HB and OP , and between FB and OP are defined such
that OP will be activated after the completion of HB and
FB. That means that ActivateCond(OP) = HB.completed∧
FB.completed.

2) Alternative dependency: It exists an alternative de-
pendency between a service s1 and a service s2 if the
failure of s1 can fire the activation of s2. An alternative
condition AlternativeCond(s2) is associated to s2, where
AlternativeCond(s) specifies when a service s will be ac-
tivated (as an alternative of an other service).

In figure 1, an alternative dependency exists between
TDFE and TDU such that TDU will be activated when
TDFE fails. That means that AlternativeCond(TDU) =
TDFE.failed.

3) Abortion dependency: It exists an abortion dependency
between a service s1 and a service s2 if the failure, the
cancellation or the abortion of s1 can fire the abortion of
s2. An abortion condition AbortionCond(s2) is associated to
s2, where AbortionCond(s2) specifies when s will be aborted
after the failure, the cancellation, or the abortion of other(s)
service(s).

4) Compensation dependency: It exists a compensation
dependency between a service s1 and a service s2 if the the
failure or the compensation of s1 can fire the compensation of
s2. A compensation condition CompensationCond(s2) is as-
sociated to s2, where CompensationCond(s) specifies when
s will be compensated after the failure or the compensation
of other(s) service(s).

In figure 1, a compensation dependency exists between HB
and FB such that FB will be compensated when HB fails.
That means that CompensationCond(FB) = HB.failed.

Proceedings of the Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services (AICT/ICIW 2006)
0-7695-2522-9/06 $20.00 © 2006 IEEE

5) Cancellation dependency: It exists a cancellation de-
pendency between a service s1 and a service s2 if the
failure of s1 can fire the cancellation of s2. A cancellation
condition CancellationCond(s) is associated to s2, where
CancellationCond(s) specifies when s will be cancelled after
the failure other(s) service(s).

In figure 1, a cancellation dependency could exist between
HB and FB such that FB will be cancelled when HB fails.
That means that CancellationCond(FB) = OP.failed.

6) Constraints upon dependencies: As said before, we
distinguish between activation dependencies and transactional
dependencies. However, it is clear that the two classes of
dependencies are not independent. Thus, we can express the
following list of constraints:

• an abortion dependency between s1 and s2 exists if and
only if there is an activation dependency between s1 and
s2.

• a compensation dependency between s1 and s2 exists if
and only if there is an activation dependency between
s2 and s1, or s1 and s2 execute in parallel and are
synchronized.

• a cancellation dependency between s1 and s2 exists if and
only if s1 and s2 execute in parallel and are synchronized.

• an alternative dependency between s1 and s2 exists if and
only if s1 and s2 are exclusive.

D. Control flow and transactional flow of a TCS

Using the different classes of dependencies, we separate the
TCS control flow and the TCS transactional flow. The control
flow specifies the partial ordering of component services
activations, and it is defined as the set of the TCS activation
dependencies.

Definition 1: The control flow of a TCS is a TCS in which,
for each component service s, the following dependencies are:
AlternativeCond(s) = ∅, CompensationCond(s) = ∅ and
CancellationCond(s) = ∅. We note CF low the set of all
control flows.

The transactional flow specifies interactions for failures
handling and recovery, and it is defined as the set of its
transactional dependencies (compensation, cancellation and
alternative).

Definition 2: The transactional flow of a TCS is a TCS in
which, for each component service s, ActivationCond(s) = ∅.
We note T F low the set of all transactional flows.

As underlined in the previous paragraph, the set of transac-
tional dependencies depends on the set of activation dependen-
cies. Thus, a transactional flow is always defined according to
a given control flow.

IV. WORKFLOW PATTERNS

As defined in [9], a pattern “is the abstraction from a
concrete form which keeps recurring in specific non arbitrary
contexts”. A workflow pattern [10] can be seen as an abstract
description of a recurrent class of interactions based on
activation dependencies. For example, the AND-join pattern
(see figure 2.b) describes an abstract services orchestration

by specifying services interactions as follows: a service is
activated after the completion of several other services. Thus,
a pattern explicitly defines activation dependencies (i.e. the
control flow) between a given set of services.

HB: Hotel
Booking

FB: Flight
Booking

CRS: Customer
Requirements
Specification

A
N
D

HB: Hotel
Booking

FB: Flight
Booking

OP: Online
Payment

A
N
D

OP: Online
Payment

TDFE: Tickets
Delivery with

FedEx

TDU: Tickets
Delivery with

UPS

X
O
R

Control flow

Compensation

Cancellation

Alternative

a) b)

c)

Fig. 2. AND-split, AND-join, and XOR-split patterns and their corresponding
potential dependencies.

A. Workflow patterns in terms of control flows

Given the definitions of section III, we can expressed the
control flow of a workflow pattern in terms of activation
dependencies. In this paper, due to the lack of space, we put
emphasis on the following three patterns AND-split, AND-
join, and XOR-split to explain and illustrate our approach,
but the concepts presented here can be applied to the other
patterns1. As an example, figure 1 illustrates the patterns AND-
split applied to (CRS, HB, FB), AND-join applied to (HB, FB,
OP), and XOR-split applied to (OP, TDFE, TDU).

[10] defines an AND-split pattern as a point in the workflow
process where a single thread of control splits into multiple
threads of control which can be executed in parallel, thus
allowing activities to be executed simultaneously or in any
order.

Definition 3: We define the AND-split pattern as the
function:
AND − split(S) : S ={s0, s1, . . . , sn} −→ CF low

such that ∀i, 1 ≤ i ≤ n, ActivationCond(si) =
s0.completed.

By analogy, the AND-join pattern, defined as a point in
the workflow process where multiple parallel subprocess-
es/activities converge into one single thread of control, thus
synchronizing multiple threads, can be specified as follows:

Definition 4: We define the AND-join pattern as the
following function:
AND − join(S) : S = {s1, . . . , sn, s0} −→ CF low

such that ActivationCond(s0) =
∧

i=1..n si.completed.
Then, the XOR-split pattern, defined as a point in the work-

flow process where, based on a decision or workflow control
data, one of several branches is chosen, can be specified as
follows:

1Our approach also considers the following list of patterns: sequence, AND-
split, OR-split, XOR-split, AND-join, OR-join, XOR-join and m-out-of-n [10].

Proceedings of the Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services (AICT/ICIW 2006)
0-7695-2522-9/06 $20.00 © 2006 IEEE

Definition 5: We define the XOR-split pattern as the
following function:
XOR − split(S): S = {s0, s1, . . . , sn} −→ CF low

such that ∀i, 1 ≤ i ≤ n, ActivationCond(si) =
s0.completed

∧
ci | there is always a unique cj(1 ≤ j ≤ n)

which is evaluated to true after the completion of s0.
We argue that once defined, a workflow pattern implicitly

defines a new class of dependencies, called potential trans-
actional dependencies, i.e. a set of transactional dependencies
not initially defined by the pattern, and that can be used/added
in order to tailor (or to augment) the control flow (see figure 2).
In fact, these dependencies are directly related to the semantics
of the activation dependencies of the pattern. This can be easily
explained by the constraints we had presented in the previous
section.

Once a pattern is defined, a control flow is specified, but if
we consider the transactional dependencies, it is possible to
refine the pattern in order to take into account not only the
control flow, but also the transactional dependencies. We are
using the term potential as it can exist several transactional
dependencies, but the designer of the composite service can
only select a few of them.

Enhancing the workflow patterns with transactional aspects
is very interesting, as it makes it possible to handle failures in
a better way, i.e. to ensure the reliability of the execution of
an instance of the pattern. In our case, we are considering
transactional composite Web services, and we model the
composition using the powerful concept of patterns, and we
add reliability to the composition using transactional aspects.

B. Workflow patterns revisited with transactional dependen-
cies

In the previous paragraph, we presented potential transac-
tional dependencies. As the transactional flow we are consid-
ering is made of alternative, cancellation, and compensation,
we distinguish between three different types of potential
dependencies which are:

• Potential −CompensationCond(s): the potential com-
pensation condition specifies when s can be eventually
compensated,

• Potential − CancellationCond(s): the potential can-
cellation condition specifies when s can be eventually
cancelled,

• Potential − AlternativeCond(s): the potential alterna-
tive condition specifies when s can be eventually activated
as an alternative.

As an example, if we consider the AND-join pattern pre-
viously introduced, we obtain the following set of potential
transactional dependencies. First, there is no alternative de-
pendencies. Each service si will be compensated or cancelled
(according to its current state) when a service sj fails (1 ≤
i, j ≤ n and i �= j). Then, each service si (1 ≤ i ≤ n) will be
compensated when s0 fails or will be compensated. This can
be formally defined as follows:

Definition 6: The potential transactional flow of the pattern
AND-join applied to the service s0 is defined as:

Potential − T F lowAND−join(S) :
S = {s1, . . . , sn, s0} −→ T F low

where:

• Potential − AlternativeCond(si) = ∅,∀ 0 ≤ i ≤ n
• Potential − CompensationCond(si) =

s0.failed
⊕

s0.compensated⊕
1≤j≤n,j �=i sj .failed, ∀ 1 ≤ i ≤ n,

• Potential − CancellationCond(s0) = ∅,
• Potential − CancellationCond(si) =⊕

1≤j≤n,j �=i sj .failed, ∀ 1 ≤ i ≤ n.

Figure 2.b illustrates the potential transactional flow
of the AND-join pattern applied to (HB,FB,OP). The
service FB can be compensated when HB fails
or when OP is compensated (or when OP fails).
That means Potential − CompensationCond(FB) =
OP.failed

⊕
OP.compensated

⊕
HB.failed, and

Potential − CancellationCond (FB) = HB.failed.
We proceed analogously to add transactional dependencies

to other patterns we consider.

V. WEB SERVICES COMPOSITION USING TRANSACTIONAL

PATTERNS

A. Motivations

The use of workflow patterns appears to be an interesting
idea to compose Web services. However, current workflow
patterns do not take into account the transactional properties
(except the very simple cancellation patterns category [11]). It
is now well established that the transactional management is
needed for both composition and coordination of Web services.
That is the reason why we augment the original workflow
patterns with transactional dependencies, in order to provide
a reliable composition (or coordination). We called this new
type of patterns the transactional patterns. In the following,
we will show how a composite Web service can be composed
using these patterns, and what are the properties that can be
infered by the application of these patterns.

B. Transactional patterns

Given the transactional properties of a service (pivot, com-
pensatable, retriable), and a workflow pattern augmented with
transactional dependencies for a composite service, we are able
to deduce a new pattern, called a transactional pattern, that
will be used to specify both the control and transactional flows.
The control flow CF low is inherited from the workflow pattern
(i.e. the activation dependencies), while the transactional flow
T F low is specified using the set of transactional dependencies
for managing alternatives, compensation, or cancellation given
by the Potential − T F low function introduced in definition
6.

From a transactional pattern, one can define several trans-
actional pattern instances which are the application of a
transactional pattern to a given set of services, and where the
transactional dependencies of the instance is a subset of the set
of the potential transactional dependencies of the transactional
pattern.

Proceedings of the Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services (AICT/ICIW 2006)
0-7695-2522-9/06 $20.00 © 2006 IEEE

For instance, on figure 2.c, a designer have the choice be-
tween the alternative or the compensation dependency. His/her
choice may depend on the properties of the Web services
he/she will use. If the OP service has the compensatable trans-
actional property, the designer the compensation dependency.
Conversely, the designer may choose to keep the alternative
dependency for the delivery if the OP is not compensatable.
To summarize, the choice depends not only on the designer,
but also on the transactional properties of the component
services.

C. Composition

As said earlier, transactional patterns are interesting to
compose a set of Web services to obtain a transactional
composite service (TCS) which is reliable from an execution
point of view. Thus, we specify a TCS as a set of trans-
actional patterns instances connected together (sharing some
component services). Figure 3 shows how we can specify the
online travel arrangement service using the following transac-
tional patterns composition: TransAND−split(CRS, HB, FB),
TransAND−join(HB, FB, OP), TransXOR−split(OP, TDFE,
TDU).

HB: Hotel
Booking

FB: Flight
Booking

CRS: Customer
Requirements
Specification

OP: Online
Payment

TDFE: Tickets
Delivery with

FedEx

TDU: Tickets
Delivery with

UPS

Compensate
A
N
D

A
N
D

X
O
R

Activate

TransAND-Split
TransAND-Join

TransXOR-Split

Fig. 3. A TCS is defined as a composition of a set of transactional patterns
instances.

However, connecting a set of transactional patterns instances
can lead to a control flow and/or a transactional flow incon-
sistencies. For instance, control consistency problem can raise
when instances are disjoined (no shared services allowing
to connect the instances) or when an XOR-split instance is
followed by an AND-join instance. Likewise, transactional in-
consistency can raise when a component service fails, causing
the entire TCS abortion, with remaining effects of the partial
execution. For example, if we suppose that OP is not retriable
(it can fail) in the TCS defined in figure 3, this means that
FB should be compensated in order to be sure that it does
not exist a remaining effect (a flight is booked) after the
abortion of the TCS. This implies that it exists the compensate
transactional dependency between OP and FB, and that FB
is compensatable.

The first step to detect and correct transactional inconsisten-
cies consists in determining component services transactional
properties. We use the following rules (applied in the given
order) to determine the component services transactional prop-
erties:

1) each service is by default retriable, pivot and effectless.

2) each service which is a target of a compensation depen-
dency is compensatable and with effects.

3) each service which is a source of a cancellation, alter-
native or compensation (in case of failure) dependency
is not retriable.

Potential conditions depend on the transactional properties
of the component Web services. For instance, the potential
compensation condition OP.failed of the service FB de-
pends if OP is retriable or not. By analogy, the compensation
dependency from HB to FB (specified by the TCS in figure
3) implies that HB is not retriable (since it can fail) and FB
is with effects (since it is compensated). We can also deduce
for this TCS that the service TDU is retriable since it is not
the source of any compensation, cancellation or alternative
dependency. This is not the case of the service TDFE which
is not retriable (source of an alternative dependency).

To manage these problems, we define a TCS as valid if it
ensures both the control flow consistency and the transactional
flow consistency. In order to guarantee the reliability of the
TCS, we are using a set of rules to check both the control
flow and the transactional flow consistency. These rules are
described in [12]. Briefly summarized, the algorithm we are
using is as follows:

• after a component service failure, we are looking for an
alternative dependency, if it exists,

• after a composite service failure, we try to compensate
what can be compensated given the transactional proper-
ties of the component services,

• after a composite service failure, we cancel all the current
executions of the TCS.

In order to compute the transactional consistency, we need
not only these rules, but also the transactional properties of
each service introduced in III-A.

Thus, there are two different ways to use our approach, i.e.
to use transactional patterns for Web services composition. On
one hand, the designer chooses a set of transactional patterns,
connects them, and fixes the transactional dependencies of the
TCS. Then, we have a matching algorithm which is looking
for a set of Web services with transactional properties which
are able to match both the patterns and the dependencies of
the TCS. On the other hand, the designer defines a TCS using
transactional patterns, and a set of Web services with their
respective transactional properties. Then, the algorithm tries
to infer and select the transactional dependencies according
to the potential transactional properties. If the algorithm fails,
that means that transactional inconsistencies have been found.

VI. RELATED WORK

Coordinating a set of treatment units (or tasks) to achieve a
common goal has been tackled by both ATM [1] and workflow
systems [4]. Due to historical reasons, each of these two
technologies addressed the problem from a different point of
view. Emerged from data base transactional processing, ATM
ensures reliability and correctness for the supported applica-
tion executions. Evolved from office automation, workflow has
became the key technology for business processes automation.

Proceedings of the Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services (AICT/ICIW 2006)
0-7695-2522-9/06 $20.00 © 2006 IEEE

Unfortunately, the workflow flexibility is missed in ATM
and the transactional reliability is not supported by work-
flow systems. To overcome these limitations, [13] proposed
a transactional Workflow system supporting multitask and
multisystem activities where: (a) different tasks may have dif-
ferent execution behaviors or properties, (b) designers define
the coordination of the different tasks, and (c) specify their
required failure atomicity. In this approach, failure atomicity
requirement is defined by specifying a set of Accepted Termi-
nation States (ATS). A transaction is committed if it reaches
an accepted termination state, otherwise it is aborted. The fact
of proceeding so limits its application to database applications.

If the combination of reliability and flexibility is important
for EAI, it is essential in the context for Web services due
to the cross boundaries and lack of trust aspects. Thus, many
standards have emerged to address this problem by adapting
previous solutions to the context of Web services.

Emerging standards such as BTP [14], WS-transaction (WS-
AtomicTransaction [15], [16] define models to support a
two-phase coordination of web services. These proposals are
based on a set of extended transactional models to specify
coordinations between services. Participants agree to a specific
model before starting interactions. Then the corresponding co-
ordination layer technologies support the appropriate messages
exchange according to the chosen transactional model. These
propositions inherit the extended transactional models rigidity.
In addition, there is a potentiel problem of transactional
interoperability between services implemented with different
approaches. Our approach can complement these efforts and
overcome these two gaps. Indeed, our approach allows for
reliable, more complex, and more flexible compositions. In
addition, it can coordinate services implemented with different
technologies since we use only services transactional features
(and not interested in how they are implemented). So, we can
use our approach to specify flexible and reliable composite
services, while component services can be implemented by
one of the above technologies. Once a valid TCS is reached,
it can be considered as a coordination protocol and can be
plugged in one of the existing coordination technology to be
executed.

In our previous work [12], we propose an approach to
ensure reliable Web services compositions. We distinguish
between control flow and transactional flow of a TCS, but
we proceed differently. First, the designers have to define the
global composite service structure, and second, the designers
have to specify the required Accepted Termination States
(ATS) as a correctness criteria (like in [13]). Then, we use a
set of transactional rules to assist designers to compose a valid
TCS with regards to the specified ATS. However, specifying
ATS can be a non trivial and a trouble task. The new approach
presented in this paper shares the same purpose, but it tries
to be more practical. To avoid the painfull specification of the
ATS, this new approach encapsulates within a transactional
pattern a default ATS which takes into account some situations
like ”each service with effects need to be compensated when
the global execution aborts”. But to permit to new approach

to consider specific contexts, one can modify/adapt the trans-
actional behavior of a pattern. Thus, we keep the strengths of
the previous approach as we are taking into account the needs
of the designers.

VII. CONCLUSION

In this paper, we propose a solution to ensure reliable and
flexible a Web service composition. The main idea of our
approach is to combine workflow flexibility and transactional
processing reliability. We introduce an extension of workflow
patterns, the transactional patterns, which can be seen as a
convergence concept between workflow systems and transac-
tional models to easily define flexible and reliable composite
Web services. Then, we propose a set of rules in order to avoid
inconsistencies which can result from the composition of the
patterns.

REFERENCES

[1] A. Elmagarmid, Transaction Models for Advanced Database Applica-
tions. Morgan-Kaufmann, 1992.

[2] G. Alonso, D. Agrawal, and A. E. Abbadi, “Process Synchronisation
in Workflow Management Systems,” in 8th IEEE Symposium on Par-
allel and Distributed Processing (SPDS’97), New Orleans, Louisiana,
October 1996.

[3] N. Gioldasis and S. Christodoulakis, “Utml: Unified transaction mod-
eling language,” in Proceedings of the 3rd International Conference on
Web Information Systems Engineering. IEEE Computer Society, 2002,
pp. 115–126.

[4] W. M. P. van der Aalst and K. M. van Hee, Workflow Management: mod-
els, methods and tools, ser. Cooperative Information Systems, J. W. S.
M. Papazoglou and J. Mylopoulos, Eds. MIT Press, 2002.

[5] B. Medjahed, B. Benatallah, A. Bouguettaya, A. H. H. Ngu, and A. K.
Elmagarmid, “Business-to-business interactions: issues and enabling
technologies,” The VLDB Journal, vol. 12, no. 1, pp. 59–85, 2003.

[6] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weer-
awarana, “Unraveling the web services web: An introduction to soap,
wsdl, and uddi,” IEEE Internet Computing, vol. 6, no. 2, pp. 86–93,
2002.

[7] P. F. Pires, M. R. F. Benevides, and M. Mattoso, “Building reliable web
services compositions.” in Web, Web-Services, and Database Systems,
2002, pp. 59–72.

[8] S. Mehrotra, R. Rastogi, H. F. Korth, and A. Silberschatz, “A transaction
model for multidatabase systems.” in ICDCS, 1992, pp. 56–63.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlisside, Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Reading, Massachusetts:
Addison-Wesley, 1995.

[10] W. M. P. van der Aalst, P. Barthelmess, C. Ellis, and J. Wainer,
“Workflow Modeling using Proclets,” in 5th IFCIS Int. Conf. on
Cooperative Information Systems (CoopIS’00), ser. LNCS, O. Etzion
and P. Scheuermann, Eds., no. 1901. Eilat, Israel: Springer-Verlag,
September 6-8, 2000, pp. 198–209.

[11] W. M. P. van der Aalst and A. H. M. ter Hofstede, “Yawl: yet another
workflow language.” Inf. Syst., vol. 30, no. 4, pp. 245–275, 2005.

[12] S. Bhiri, O. Perrin, and C. Godart, “Ensuring required failure atomicity
of composite web services.” in Proceedings of the 14th international
conference on World Wide Web, WWW 2005, Chiba, Japan, May 10-14,
2005, 2005, pp. 138–147.

[13] M. Rusinkiewicz and A. Sheth, “Specification and Execution of Trans-
actional Workflows,” in Modern Database Systems, The Object Model
Interoperability and beyond, W. Kim, Ed. Addison Wesley, ACM Press,
1995, pp. 592–620.

[14] “Business Transaction Protocol, Version 1.0,” in OASIS Committee
Specification, 2002.

[15] D. Langworthy and al., “Web services atomic transaction (ws-
atomictransaction),” BEA, IBM, Microsoft, 2003.

[16] ——, “Web services business activity framework (ws-businessactivity),”
BEA, IBM, Microsoft, 2003.

Proceedings of the Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services (AICT/ICIW 2006)
0-7695-2522-9/06 $20.00 © 2006 IEEE

