UC Irvine
ICS Technical Reports

Title
Extensibility in programming language design

Permalink
https://escholarship.org/uc/item/51x8c453

Author
Standish, Thomas A.

Publication Date
1975

Peer reviewed

eScholarship.org

Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/51x8c453
https://escholarship.org
http://www.cdlib.org/

EXTENSIBILITY IN PROGRAMMING
LANGUAGE DESIGN

Thomas A. Standish

~

Notice: This Material
may be protected
by Copyright Law

(Title 17 U.S.C.)

Technical Report #60 - January 3, 1975

Invited Paper

Prepared for the 1975 National Computer Conference, May 19-22, 1975

IRVINE!: bEPARTMENT OF INFORMATION & COMPUTER SCIENCE

Extensibility in Programming Language Design
" Abstract

This paper assesses the value of including extensibility
as a feature of a programming language design. Extensibility
means permitting language users to define new language features.
Starting with a base language and using various definition facilities
an extensible language user can create new notations, new data
structures, new operations, and, sometimes, new regimes of control.
Given enough insight and craftsmanship, the extensible language
user can often create language extensions that are well-adapted to
given intended application areas and are useful for writing concise,
clear algorithms that are free from contamination with Low-level
detail. However, experience has revealed that this approach is not
as promising as was first hoped. The paper explores the various
types of extensibility that have been introduced in the extensible
language movement, and it attempts to assess the practical limitations
on the use of extensibility. It concludes that extensibility has
many more dimensions than was first expected and that extensibility
i8 not the revolutionary idea that some once hoped it would be.

[}

Extensibility in programming language design

by THOMAS A. STANDISH

University of California at Irvine
_ Irvine, California

INTRODUCTION

What is extensibility? What is it good for, if anything? Is it
worth bothering about when designing a programming
language? »
Simply put, extensibility permits programming language
users to define new languages features. Starting with a
base language and using various definition factlilies,! an
extensible language user can create new notations, new data
structures, new operations, and, sometimes, new regimes of
control. To a certain extent, extensibility permits a user to-
nodify the features of a language to suit his changing needs
ind purposes. Given enough insight and craftsmanship, the
iser can create language extensions which are well-adapted to
given intended application areas, and are useful for writing
oncise, clear algorithms free from contamindtion with low-
tevel detail. However, experience has revealed that this
-approach ‘is not as promising as was first hoped because of
certain practical limitations I shall try to expose in this
paper. : - :

WHAT WERE THE EARLY ASPIRATIONS?

One of the earliest expressions of an extensible language
philosophy was given by Brooker and Morris in 1960 in their™
classical paper on the Compiler-Compiler?.”

The system 1s exlendable and allows the user lo define’the
meaning of new formats in terms of exisling formals as well
as in terms of basic assembly instructions (whose meaning
ts bwilt in). -

- It is unlikely that every machine user will want lo write
his own autocode: what 1s more Likely 1s that he may wish
to extend one of the standard languages to include statements
sutted to his own problem area.

Mellroy scems to have had much the same idea in mind in
1960 when he explained his aim in introducing assembly
language macros:3-

It is our aim to show a limited set of functions readily
implemenled for a wide variely of programming systems
which constitute a powerful tool for extending source lan-
guages conveniently and at will.

- In May of 1969, at the Extensible Languages Symiibsium,

. Christensen’s chairman’s introduction characterized the

objectives of extensibility as follows:! v
: . : .o~ c w T
The ultimale and tdealized objective of extensible lan-
guages is sunple and altractive. A single universal program-
ming system is postulaled which is included in the software
supporl for every general purpose compuler. This program-
ming syslem is not kimited lo one particular programming
language such as PL/I. Rather, it includes a base lan-
guage and a meta-language. A program in this system
consisls of, first, stalzmenis in the mela-language which
expand, contracl, or aitherwise modify the definition of the
base language lo produce a derived language, and, second,
statements in the derived language which constitule the
execulable part of the progrum. ’
Thus the syslem vucludes facilities lo define and then lo
program in a limilless variely of programming languages——
languages which are wsed for business, scientific, or systems
applications, languages which may be simple or complex.

It seems fair to state that some of us were gripped by a
curious euphoria in thasze days. A number of us believed that
users would be able to extend the base of an extensible
language rapidly and eheaply to encompass the data, opera-
tions, notation, and eentrol natural to many diverse applica-
tion areas. In short, sve believed we could make it possible
for unsophisticated wusers to manufacture personalized
languages of reasonable efficiency and substantial utility
with great ease just by applying some easily learned exten-
sion techniques. These beliefs were probably a bit over-
ambitious.

EXTENSION TECIHIXNIQUES—A BRIEF CATALOGUE

There are apparcmily quite a few dimensions to exten-
sibility—more than we at first suspected. Let me give brief
examples to illustrate the diversity.

. Paraphrase

Paraphrase is a form of definition in which we define
something new by shewing how to exchange it for something

_whose meaning is knewn (or will become known after giving

further decfinitions). This is commonly used in natural
language to define the meaning of new words (e.g., thau-
miatology = the study or lore of miracles). Paraphrase is used
widely as an underlying technique in extensible languages,
and it takes many forms. As examples, consider the following:

(a) macros in assembly language. * E.g., .

MACDEF SUM A, B, C
LOAD A
ADD B
STORE C
ENDDEF

(b) procedure definitions in algehraic languages, 4 E.g.,

indeger procedure Factorial (N); tnleger N;
Factorial :=if N=0then 1 else N*Factorial (N-1)

(¢) synltaz macros *or grammatical extensions at the .
expression and statement level (as in reference 2),

E.g.,
smacro
while (b:boolean expression) do (s: compound
statement)= .

{create new label (Ll) in[
Ll: if b then begin s; go to 11 end]}

(d) data deﬁnitions.f-’:” Here the idea is to be able to
define new sorts of composite structured data starting
with atomic data (such as inlegers, characters, and
reals) or previously defined- composite data. I.g.,

Let a rational be a structure which has
& numerator which is an integer and has
a denominator which is an infeger
Let a Matriz be a row(1:N) with veclor elements -

(e) operator definitions, % E.g.,

Let-Max(A,B) = (if A>B then A else B)
Let 4 + be a left associative, binary operator with
meaning=Max and precedence > *“+""

(f) control struclure extensions, °!, Here one can use

" process definition facilities to confer attributes on
processes at the time of their definition. This is useful
for defining processes that act as co-routines, that
backtrack, that execute concurrently, which monitor
for the occurrence of certain events and seize control
when these events happen, and so forth.

Orthophrase

Orthophrase is a means of extension whercin we add
“orthogonal” features to a language. An orthogonal feature
is one which lies outside the space of features expressible by
paraphrase. Its defining expression eannot be composed in
the language. For example, suppose we are given a language
L in which definition facilitics (a)-(f) above are available
but which lacks I/O deviee control primitives. We might
not then be able to extend 7. by writing expressions in L

itself to specify programs for reading disk files or printing on
a line printer. Adding a file system, a real-time clock, a string
valued function giving today’s date, or adding call-by-refer-
ence parameter passing are four additional examples of the
sort of features that eannot usually be defined by paraphrase
if some basis for defining them is not already in the language.
To add an orthogonal feature, one must normally perform
surgery on the underlying guts of a language processor and
patch it in. (The adjective “orthogonal” seems to have been
borrowed by analogy to vector spaces, wherein & vector
orthogonal to each of the vectors in a given basis set is one
which can’t be expressed as a linear combination of the basis
set clements and which lies out51de the space “spanned” by
the basis elements). ~

Thus, orthophrase seems to be defined relalwe to a given
set of paraphrastic definition facilities. It is not an absolute
notion. Paraphrase facilitics find an associated base language
have a ‘“span”, so to speak, which consists of all possible
paraphrastic extensions of the base. Any feature lying outside
this “span” must be added by orthophrase, but a feature one
must add by orthophrase in one language may be reachable
by paraphrase in some stronger extensible language.

OGSO L I -

- .

Melaphrase

While paraphrase 2nd orthophrase add new capabilities,
they do not change what is there before. Melaphrase consists
of altering the interpretation rules of a language so that it
processes old expressions in new ways. Examples of meta-
phrase are changing scoping policiea for lifetimes or bindings
of variables, changing the meaning of parameter evaluation,
and changing the meaning of assignment and go o statements
to allow programs fw run backwards (useful perhaps in
debugging to locate the source of an error after notlcmg in-
correct program behavior). :

WHAT HAVE Wi LEARNED ABOUT EXTENSI- ;
BILITY? : '

By my latest count, 27 extensible languages have been
proposed by 55 people (see Reference 12 for examples).
Some of these proposed languages were implemented and,
in some cases, ¥ comsiderable experience has accumulated.
What did we learn?

As you might expiact, different categories of extensions
can require widely clifferent amounts of skill and labor.
Some are hard and swme are easy. W hich.kinds have which
properties?

Let’s first discussextensions that can be made with modest
amounts of labor by unsophisticated users. For example, in
8 well-designed extemsible language, .'%1t is straight-forward
to extend the real aud integer arithmetic available in the
base language to irclude rational, complex, or multi-pre-
cision arithmetic or to add matrix, vector, or formula mani-
pulation. While these: feats are easy, there is more in them
than at first meets the: eye.

For example, how do we arrange to share the syntax of
arithmetic cxpressions among all theso domains (so that

A+B*C could be used to specify operations on integers,
matrices or complex numbers where appropriate)? How can
‘we define arithmetic concisely on the huge space of mixed
sypes (such as “a rational” + “a complex” or “a real” * “a
matrix’’)? How do we augment the lexical analyzer to
recognize and translate new expression forms for constants
(such as “3-+4i” for a complex constant)? Can we scal off
the behaviors of underlying representations so users transact
only with data types in the extension (such as preventing
the user from tinkering with lower triangular arrays used as a
substrate to represent symmetric matrices in the surface
of the language)?

Other examples of extensions that can be done with a
modest amount of labor include adding strings, lists, balanced
binary trees and file records together with their appropriate
operations, behaviors and notations. The extensible language
experience ¥ has revealed that not only must we be able to

add typical combining, growth, and decay operators (such as

concatenation, insertion, and deletion) and to express them
using new or shared notations, we must also be able incre-
nentally to extend common background language functions
uch as printing, assignment, and sclection to handle special
chaviors required of each new type (e.g., reduction of
ational numbers to “least common terms” each time they
re assigned to variables, or printing halanced binary trees
1 two dimensions if they will fit on a printed page, ete.)

In each of these extensions the “style” of the base language

’.ends to be preserved unaltered. For example, none of these
extensions affect conventions for the presence or ahsence of
Wock structure, the preserce or absence of declarations, or
for the form of conditional and iterative expressions or for
parameter evaluation.

Examples of hard extensions are: trying to add block
structure to a language which doesn’t have it (as in attempt-
ing to extend BASIC or FORTRAN to become ALGOL 60),
adding declarations if they aren’t there beforehand, adding
backtracking or concurrent processing to the control structure
if they aren’t there already, or adding a real-time.clock or a
file system if they weren’t there previously.

In oversimplified terms, the easy extensions seem to be
those that use paraphrase to add new features, whereas the
hard extensions seem to be those that use orthophrase or
metaphrase to modify what was there before.

More preciscly, in the case of paraphrase, the space of
definitions users can give has been provided for explicitly
in the extensible language design. Such extensions often
specify independent additions to the base language and leave
all base language features constant.

In the cases of orthophrase and metaphrase, one normally
has to modify a description of the language processor. These
descriptions are usually complex and considerable knowledge
and sophistication are required of the user desirous of making

Iterations. It is often hard to add something new in an

on-injurious way, so it blends smoothly and doesn’t upset o

Jllection of mutually dependent hehaviors.

Here the extensible Janguage experience reinforces the
amiliar notion that complex systems are resistant to change.
“he more intricate they arve, the less easy it is to find out how
o alter them significantly. Not only does this seem character-

istic of the use of orthophrase and metaphrase, it also seems

characteristic of caseades of extensions constructed by

paraphrase—the more the intracacy of a set of extensions the |

more the difficulty of further extension.

These considerations seem to point to the conclusion that
each extensible language is surrounded by an envelope of
possible extensions reachable by modest amounts of labor .
by unsophisticated users. These easily reached extensions

tend characteristically to be those which add one layer of new
data and new operations and which perhaps make minor
additions to notation while leaving the conventions of the
base language invariant. Beyond this envelope, lie hard
extensions requiring surgery on the language processor,
major deformations of its conventions or style, or careful

consideration of how to modify collections of mutually

dependent extensions previously constructed. These seem
generally to require a level of knowledge and sophistication
heyond that of the casual user but perhaps attainable by the
interested and committed professional. The unsophisticated
user could no more likely add a file I/O facility to an ex-
tensible language not having one previously than he could
add a date window to his wristwatech—both cases require
a high level of investment in understanding complex des-
criptions and learning to use intricate tools. For all practical
purposes, then, extensitle languages seem only mildly exten-
sible by unsophisticated users.

A basic difficulty with the philosophy of extensible langua-
ges derives from the fact that it is basically a ‘“‘do-it-yourself-
kit” philosophy. As a user, you may not want to build your
own programming language any more than you may want
to build your own car. Building your own car requires large
investments of labor, knowledge, tools and time, and most
home-builts are not very elegant. Unless you are a hobbiest,
you are often willing to sacrifice control over form to obtain
the henefits of prefabricated labor, especially when there is
lots of choice in the marketplace. This is why most prefe1
to buy rather than build their cars.

So it is with extensible languages. It takes a huge dose of
labor to extend a simple base to the level of capability
represented by a high content language. Are users the right
people to make these extensions or can skilled professional
craftsman do a hetter job? Starting with a simple base and
powerful extension facilities one often leaves the labor of
building advanced features to those most likely to do an
unattractive and unskilled job of it—the users.

A final difficulty revealed by the extensible language
experience is that extending a simple base results often in
long, thin extension cascades that are often ugly and in-
efficient. Look at how LISP. [16] gets extended. One starts
with a diamond (EVALQUOTE) and progressively corrupts
it by adding warts (the PROG feature, SETQ, FUNARG,
etc.). After you arce finished, the extended LISP is far [rom
simple and harmonious and you might have obtained better
results by designing to meet the overall constraints all at once.

WIIAT THEN IS EXTINSIBILITY GOOD FOR?

It should be obvious that the extensible lanpuage move-
ment has sueceeded ondy partially in meeting the obiectives

i - »

stated by the carly explorers and that it did not crcate a
programming revolution. It probably did succced in clarify-
irg for us the amounts of labor and knowledge required to
produce several sorts of language variation, and in revealing
what sorts of extensions are reasonable to expect of un-
sophisticated users.

Irons ' probably put the matter in reasonable perspective
when he observed that extensibility bears the same relation
to high level languages as macros do to assembly languages.
Maybe you use macros, say, 10 pereent of the time or less, but
they can be very convenient when you need them. Not only
can you use them to suppress low level detail and promote
program conciscness and clarity—you can often use them
to mask irritating features of a language someone clse has
supplied. Ixtensibility seems worthwhile for analagous
reasons. If implementation resources and exccution space
permit, it is probably better to have extensibility than to do
without it.

REFERENCES

1. Christensen, C. and C. J. Shaw, eds., Proceedings of the Extensible
Languages Symposium, SIGPLAN Notires, August 1969.

2. Brooker, R. A, and D. Morris, “A General Translation Program for
Phrase Structure Languages,” JACM, January 1962, pp. 1-10.

3. Mcliroy, M. D., “Muacrn Instruction Ixtensions of (”()mpllor
_ Languages,” CACM; Apnl 1960, pp. 214-220.

4, Noaur, P, e al.,

< Algol 60, CACM, January 1963, pp. 1-17,

5. Leavenworth, 13. M., “Syntax Macras and Extended Translation,”
CACM, November 1966, pp. 790-793.

6. van Wijngaarden, A, ¢t al., “Report on the Algorithmic Language
Algol 68, Num, Math., 14, 1969, pp. 29-218.

7. Laudin, . J., “The Mechanical Evaluation of Expressions,”
Compuler Journal, January 1964, pp. 308-320.

8. Taft, Ii. A. and T. A, Standish, ’PL Uscr's Manual, Tech. Rept.,
Center for Research in Computmg Technology, Harvard Umversnty,
September 1970.

9. Galler, B. A. and A. J. Perlis, ““A Propnsal for Definitions i in Algol "
CACM, April 1967, pp. 204-219.

10. Fisher, D. A., Contral Struclures for Programming Languages,
Ph.D. Thesis, Carnegic-Mellon University, Department of Com-
puter Science, May 1970,

11. Prenner, C. I, Multi-Path Conltrol Struclures for Programming
Langnages, Ph.D. Thesis, Center for Research in Computing
Technology, Harvard University, June 1972.

12. Schuman, S., ed., Proccedings 'of the International Symposium on
Extensible Languages, SIGPLAN Nolices, December 1971.

13. Irons, 1%, T., “Experience with an Extensible Language,” CACAM!,
January 1970, pp. 31-40. '

14, Cheatham, T. L. and J. A. Townley, Some Applications of ECL,
Center for Research in Computmrf Technology, Harvard University,
1973.

15. Weghreit, B., ef al.,
1973.

16. McCarthy, J., et al., “Lisp 1.5 Progrnmmer s Manual,” 1IIT Press,
Cambridge, 1962. L

‘TRevised Report on the Algorithmic Language

ECL Programmer's Manual, Harvard Unlv.,

17, Trons, E. T, personnial communication, I‘ebruary 22, 1971.

