
UC Irvine
ICS Technical Reports

Title
Extensibility in programming language design

Permalink
https://escholarship.org/uc/item/51x8c453

Author
Standish, Thomas A.

Publication Date
1975

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/51x8c453
https://escholarship.org
http://www.cdlib.org/

JXTENSIBILITY IN PROGRAMMING
LANGUAGE DESIGN -
Thomas A. Standish

--- -:::: ~

Notice: i.I1ls Materlal
may be protected
by Copyright Law
(Title 17 U.S.C.)

Technical Report #60 - January 3, 1975

Invited Paper

Prepared for the 1975 National Computer Conference, May 19-22, 1975

, I

I.

IRVINE: DEPARTMENT OF INFORMATION & COMPUTER SCIENCE

Extensibi U ty in Frog.ramming Language Design

A b s t r a c t

.This paper assesses the value of including extensibility
as a feature of a progra:mming language design. Extensibility
means permitting language users to define new language features.
Starting with a base language and using various def-Z:ni tion facilities
an extensible language user can create new notations, new data
structures, new operations, and, sometimes, new regimes of control.
Given enough insight and craftsmanship, the extensible language
user can often create language extensions that are well-adapted to
given intended application areas and are useful for writing concise,
clear algorithms that are free from contamination with low-level
detail. However_, exp~rience has revealed that this approach is not
as promising as was first hoped. The paper explores the various
types of extensibility that have been introduced in the extensible
language movement, and it attempts to assess the practical limitations
on the use of extensibility. It concludes that extensibility has
many more dimensions than was first expected and that extensibility
is not the revolutionary idea that some once hoped it would be.

:.

Extensibility in programming language design

by THOMAS A. STANDISH
University of California at Irvine
Irvine, California

I!'\TRODUCTION

What is extensibility? What is it g~od for, if anything? Is it
worth . bothering _about when <lcsigning a programming
language?

Simply put, extensibility permits programming language
users to define new languages features. Starting with a
base language and using various definition f acilities,1 an
extensible language user can create new notations, new data
structures, new operations, and, sometimes, new regimes of
wntrol. To a certain extent, extensibility permits a user to.
nodify the features of a language to suit his changing needs
'md purposes. Given enough insight and craftsmanship, the
1ser can create language exten.sions which are well-adapted to

given intended application areas, and are useful for \\Titing
.l)oncise, clear algorithms free from contamination with low­
levcl detail. However, experience has revealed that this

·approach -is not as promising as \vas first hoped because of
~ertain practical limitations I shall -try to expose in this
paper.

~

WHAT WERE THE EARLY ASPIRATIONS?

One of the earliest expressions of an extensible language
philosophy was given by Brooker an<l l\Iorris in 1960 in their"
classical paper on the Compiler-Compiler:2 /

The system is extendable and allows the user to define"the
meaning of new for mats in terms of existing formats as well
as in terms of basic assembly instructions (whose meaning
is built ·in). ..,
· It is unlikely that every_ machine user will want to. write.

his own aulocode: what is more likely is that he may wish
to extend one of the standard languages to include statements
suited to his own problem .. area.

l\Icilroy seems to have had mueh the same idea in mind in
1960 when he explained his aim in introducing assembly
language macros :3· ·

It is our nim to show a limilecl set off unctions readily
implemented for a wide variety of wogrnmmi na sy.{)fcms
which constitute a 7wwerful tool for cxtcndi'.!i!J source lan­
guages conveniently and at will.

In May of 1969, at ·the Extensible. Languages Symposium,
Christensen's chairman's introduction characterized the
objectives of extensibility as follows:1

·. ,_
The ultimate and idealized objective of exlensiole lan­

giwges is simple and attractive. A s-ingle universal program­
ming system is post.ulaled which is included in the software
support for evenJ general purpose computer. This progtqni­
ming system is not l-imited to one particular prograrrrming
language such as PL/I. Rather, it inchldes a base Lm­
guagr, and a meta-language. A program in this eystem
consists of, first, slal,e.ments in the meta-language which
expand, contract, or otherwise mod1f y the defini'.tion of the
base language lo produce a derived language, and1 second,
statements in the de:rived language which constitute . the
executable parl of the program.

'Thus the sJsle1n i"llidudes facilities ta d~frne and then to
program, in a limilles.s variety of programming languages_!.­
languages which are· ttsed .for business, scient1fic, or systems
applications, languaat::s which may be "simple or complex.

It seems fair to state that some of us were gripped by a
curious euphoria in thc;::e days. A number of us believed that
users would be able. to extend the base of an extensibl_e
language rapidly and cheaply to encompass the data, opera~
tions, notation, un<l control natural to many diverse app1ic:l­
tion areas. In sho.rt" "rn believed we coulu make it possible
for unsophisticated ,u.sers to manufacture personalized
languages of rensomlll>le efficiency and substantial utility
with great ease ·just by applying some easily learned exl.en­
sion techniques. The·.:?e ·beliefs were probably a bit. over­
ambitious.

· EXTENSION TECII'.:~IQUES-A BRIEF CATALOGUB

There nre apparently quite a few dimensions to cxtcn~
Ribility-morc than '-'YO at first fiuspectcd. Let me give brief
examples to ilh~strate: the diversity.

. Paraphrase

Paraphrase is a· finrm of definition in which we define
something new by shlC1win~ how to exchange it for Bomething
whose_ meaning i~ kn.tm-n. (_o~·- 'Yi}l _~~~-ome_~n_own __..~f~~r_ ~i~ing

further definitions). This is commonly u~r<l m natural
language to define the meaning of new word::; (e.g., thau­
matology =the study or lore of miracles). Paraphrnse is usc<l
widely as an underlying technique in cxten~ihlc 1nng11ngrs,
:and it take.-; many forms. As examples, con~icler the following:

(a) macros in assembly language. :t E.g.,

MACDEF SUM A, B, C
1,0.AD A
ADD B
STORE C

END DEF

(b} procedure definitions in algebraic languages,-< E.g.,

integer procedure Factorial (N); integer N;
Factorial : =if N = 0 then 1 else X*Factorial (N-1)

(c} S1Jntax macros l''or grammatical extensions at the .
expression and statement level (as in reference 2),
E.g.,

tmZacro
while (b:boolean expression) do (s:compound
statement)=

{create new label ,(Ll) in[
LI: if b then. begin s; go to LI end] J

(d) data definitions .. ~·7/ Here the idea is to he able to
define new sorts of composite stmctmccl data starting
with atomic data (8uch as inlcuc:rs, characters, and
reals) or previously defined· composite data. E.g.,

Let a rational be a structure which has
a numerator which is an integer and has
a denominator which is nn integer

Let a Matrix be a row(J :N) with vector elements

(~) operator definitions, ~:~•:..E.g.,

Let·Max(A,B) = (if A>B then A else B)
Let + + be a lefl associalh:e, binary operator with

meaning= Max and precedence > "+"
(f) control strudure extensions, 10:11• · Here one can use

process definition facilities to confer attributes on
processes at the time of their definition. This is useful
for defining processes that act ns co-routines, that
backtrack, that execute concurrently, which monitor
for the occurrence of certain events nntl seize control
when these events happen, untl so forth.

Orthophrase

Orthophrase is a means qf extension wherein we n<ld
"orthogonal" fc[tturcs to a langungc. An orthogonal feature
is one which lies outside the sp:-ice of fcn.tmc:> cxprc:Ssible by
paraphrase. Its defining cxprrssion c:rnnot be composed in
the language. For example, Ruppn:-1c we nrc gi\·cn a language
L in which definition facilitie.-; (n)-(f) aho\·c nrc uvnilnble
Lut which lacks I/O dedcc control primitives. We might
not then be nble to extend L_ by writing cxprr~sions in L

itself to Rpecif.y programs for reading disk files or printing on
a line printer .. A<l<ling a file system·, a rcnl-time clock, a string
valued function giving today's date, or adding call-by-refer­
ence parnmeter passing arc four additional examples of the
sort of features that c.annot usually be defined by paraphra.se
if some basis for defining them is not already in the language.
To add an orthogonal feature, one must normally perform
surgery on the underlying guts of a language processor and
patch it in. (The adjective "orthogonal" seems to have been
borrowed by analogy to vector spaces, wherein a vector
orthogonal to each of the vectors in a given basis set, is one
which can't be expressed as a linear combination of the basis
set clements nnd which lies outside the space "spanned" by
the basis clements). ..._

Thus, orthophrase ~eer,ns to be defined relative to a given
set of paraphrastic definition facilities. It is not an absolute
notion. Paraphrase fad1itics hnd nn associated bnse language
have n. "span", so to speak, which consists of all possible
paraphrastic extensions of the base. Any feature lying outside
this "span" must be ndde<l by orthophrase, but a feature one
must a<ld by orthophrn.se in one language may be reachable
by paraphrase in some stronger extensible language.

Metaphrase

While paraphrase end orthophrase add new capn.bilities,
they do not change what is there Lefore. M claphrase consists
of altering the interpTctation rnles of a language so that it
processes old cxprcs:::i:ons in new ways. Examples of meta­
phrase are changing seoping policies for lifetimes or bindings
of variables, changing the meaning of parameter evaluation,
and changing the meaning of assignment and go to stat.ements
to allow programs to run backwards (useful perhaps in
debugging to locate the source of an error after noticing in­
correct program beh..'1.vior).

WHAT HAVE WI'~ LEARNED ABOUT EXTENS.I- -
BILI TY?

By my latest count, 27 extensible languages have been
proposed by 55 people (see Reference 12 for examples).
Some of these proposed languages were implemented and,
in some cases, 13 •14 c·oinsiclerable experience has accumulated.
What did 'vc learn?

As .you might expir>.ct, different categories of extensiong
can require widely dffferent amounts of skill and labor.
Some arc hard nnd s@me are easy. \Vhich. kinds have which
properties?

Let's fin;t discuss extensions that cnn be mncle with modest
amounts of labor by unsophi:->ticn.tc<l users. For example, in
a wcll-<lesigned extensible language, .1.:-v1t is straight-£ onvard I
to extend the real un<l integer arithmetic availnblc in the
base ln.nguagc to it.H_~Incle rational, complex, or multi-pre·~
cisinn nritl11nctic or to n<ld matrix, vector, or formu1a mn.ni­
puln.tion. While thc.w! feats nrc easy, there is more in them
than nt fin;t mcrts th:e eye.

For example, how do we nrrnnge to share the syntax of
nrithmetic cxprcssio.rn:-J among ull _~~1c:;~9?f!l~~~I~~ __ (s?. thn.t

A+ Bt:C coul<l he u~c<l to spceify operations on intcp;crs,
matrices or complex numbers \\"here approprinte)? How can
we define nrithmetic concisely on the huge spare of mixed
.~J'pPS (~mch as "a rational" + "a complex" or "a real" * "a
matrix")? How do \Ve augment the lexical analyzer to
recognize and tran~late new expression forn1s for constants
(such as "3+4i" for a complex constant)? Can we f;cal oIT
the behaviors of underlying reprrscntn.t.ions so uscr8 transact
only with data types in ihe cxtrnsion (s11r.h a~ prc\'cnting
the user from tinkering with lower tri:rng111ar arrays usc<l ns a
substrate to reprc:;ent symmetric matrices in the 1mrface
of the language)?

Other examples of extensions that r.an be done with a
modest amount of labor include adding strings, lists, balnnce<l
binary "trees a:n<l file records together ,dth their appropriate
operations, behavior:) and notations. The extensible language
experience 14 has revealed that not only mu:-Jt we be able to
add typical combining, grmvth, and decay operatorR (such as ·
concatenation, insertion, and deletion) an<l to express them
using new or shared notations, we _must also he ahlc incre­
nentally to extend common background language functions
:uch as printing, assignment, and Rclcction to handle special
1chaviors required of each new type (e.g., reduction of
ational numbers to "least commoIJ terms" each time they
re assigned to va:riables, or printing balanced binary trees

. l two dimensions if they will fit on a printed page, etc.)
In each of these extensions the "style" of the base language ·

'.-.mds to be preserved unaltered. For example, none of these
extensions affect conventions· for the presence or absence of
i-,lock structure, the preser;ce or absence of declarations, or
for the form of conditional and iterative expressions or for
parameter evaluation.

Examples of hard· extensions are: trying to add hlock
structure to a language which doesn't have it (as in attempt­
ing to extend BASIC or FORTRAX to become ALGOL GO),
adding declarations if they aren't there beforehand, adding
backtracking or concurrent processing to the control structure
if they aren't there already, or adding a real-time. clock or a
file system if they weren't there previously.

In oversimplified terms, the easy extensions seem to be
tho~e that use paraphrase to add new features, whereas the
hard extensions seem to be those that use orthophrasc or
metaphrase tO modify what wa~ there before.

More precisely, in the case of parnphrn.~e, the space of
definitions users can give has been prm·i<lcd for explicitly
in the extensible lan6ruage design. Such extensions oftc11
specify independent additions to the base language and leave
all base language features constant.

In the cases of orthophrnsc and metaphrnse, one normally
has to modify a description of the language processor. These
descriptions urc usunlly complex and considerable knowlcc.Jge
an<l sophistication arc required of the user dr.~irous of making
.Iterations. It is often har<l to add something new in an
on-injurious way, so it blends f;rnoothly anc.l doesn't upset a.
)llection of mutually dependent behnviors.
Herc the extensible Jn.np;ungc experience reinforces the

-tmiliar notion that complex systems nre rc;:;istant to change.
'he more irJtricnte they arc, the lc:::s easy it i:-; to find out how

,o nlt~r lhl'm ~;ig11ifirnnt ly. Kot. only dnc•s t hi~ ~C('lll rhnractcr-

istic of the use of orthophrase and metaphra.se, it also seerrt.3
characteristic ·or cascades of extensions constructed by
paraphrasc-.the more the intracncy of a set of extensions the
more the difficulty of further extension.

These considerations seem to point to the conclusion that '
each extensible language is surrounded by an enw:lope of ,
possible extensions reachable by modest amounts of labor
by unsophisticated users. These easily reached extensions
tend charnc~eristically to be those which add one layer of new
data an<l new operations and which perhaps make minor
ndditions to notation while leaving the conventions of the
base language invariant. Beyond this envelope, lie hard
extensions requiring surgery on the language processor,
major deformations of its conventions or style, or careful
consideration of how to· modify collections of mutually.
dependent extensions previously constructed. These seem .
generally to require a level of knowledge and sophistication
beyond that of the casual user but perhaps attainable by the
interested and committed professional. The unsophistieated
user could no more likely a<l<l a file I/O facility ·to rm ex­
tensible language not having one previously than he could
add a date window to his wristwatch-both caseB require
a high level of investment in understanding complex des­
criptions and learning to use intricate tools. For all practical
purposes, then, extensible languages seem only mildly exten­
sible by unsophisticated users.

A basic difficulty with the philosophy of extensible langua­
ges derives from the fact that it is basically a "do-it-yourself­
kit" philosophy. As a user, you may not want to build your
own programming language any more than you may want
to buil<l your own car. Building your own car requires farge
investments of labor, knowledge, tools and time, and most
home-builts arc not very elegant. Unless you are n hobbiest,
you arc Mten willing to sacrifice control over form to obtain
the benefits of prefabricated labor, especially when there is
lots of choice in the marketplace. This is why most prefer
to buy ra thcr than build their cars.

So it is with extensible languages. It takes a huge dose of
labor to extend a simple base to the level of capability
represented by a high content language. Are users the right
people to make these extensions or can skilled professional
craft~man do a better job? Starting with n simple base and
powerful extension facilities one often leaves the labor of
building a<lvnnccd features to those most likely to do an
tmattrnctivc and unskilled job of it-the users.

A final difficulty reYcaled by the extensible language
experience is that extending a simple base results often in
long, thin extension cascades that are often ugly and in­
efficient. Look at how· LlSP, [lGJ 'gets extended. One starts
with a diamond (EV A.LQUOTE) and progressively corrupts
it by a.cluing warts (the PROO feature, SETQ, FUNAHG,
etc.). After you arc finished, the cxtenclccl LISP is for from
simple ancl harmonious and you might have obtn.ined Letter
results by designi1}g to meet the overall constraints all at once.

WHAT THEN IS EXTENSIBILITY GOOD FOR?

It Rhould be oh\'iot1~; th~t t.hc cxtcnsil1le bn611.rngc move­
rnrnt }ins m1cccrdecl onl.,· partially in mcctin!! lhc ohiediw:;

i

I.

stated hy the early explorers nncl that it did not create n
programming revolution. It. prolinhly did surccrd in clnrify­
i';")g for us the amounts of labor and knowledge 1w111 irccl to
p1ro<lucc several sorts of lnnp;1rngc variation, and in rrvcaling
what sorts of extensions arc reasonable to expect of un­
sophisticated user:;.

Irons 17 probably put the matter in reasonable perspective
when he observed that extrnsibilit.y bear:-; the same relation
t-0 high level languages as macros <lo to assembly lnngungcs.
Maybe you use macros, say, 10 pcrc<mt of the time or less, but
they can be very convenient when you nC'cd them. X ot only
can you use them to suppress low lcrnl detail nnd promote
program conciseness an<l clarity-you cnn often w;c them
to mask irritating feat.mes of a 1nnguage someone else has
supplied. Extensibility ~ecms worthwhile for analagous
reasons. If implementation resources and· execution space
permit, it is probably better to have extensibility than to do
without it.

REFERENCES

1. Christensen, C. and C. J. Shaw, ed.'!., Proceedings of the Extensible
Languagf's Symposium, SJGPLA.\T NotirPs, .\u~ust 19GQ.

2. Brooker, IL A. anc..l D. ~forriR, "A r:~ncr:tl Tra11slat.ion Program for
Phrac;c 8trudurn Langua,l!;e:-l," J.A(,'Jf, January I01i2, pp. 1-10.

3. ::'\Idlrny, '.\L b. 1 ":\Iucro Instrudion Extr~nsions of Compiler
-··-- Languages,~ CA CJ! 1_ Apr_il _ 1 nr,o,_ pp._ 2 I 4_-220. __________ ---~--

·~·

4. Nnur, P. et al., ''Jlcvisr.c.l Hcport on the Algorithmic Language
Algol GO," C,1('.lf, January 10()3, pp. 1-17.

5. Lcnvr.11\\'orth, B. :\I., "Syntax :\larros nnd Extcndrd Translation,"
CAC.1f 1 ~o,·1·rnlier HlGG1 pp. 700-703.

CL van \\"ij1q.~aanlPn, A. ct al., "Hl'port. on the Algorithmic Language
Algol 08," Num, Math. 1 14, HHiD, pp. 20-218.

7. Landin, J>. J., "The :\1cchanical Evnluntion of Expressions,"
Compu!Pr Jotlrnal, January 1 DG-1, pp. 308-320.

8. Taft., .8. A. nnd T. A. Stnncli!'h, l'l'L User's Jfrznual, Tech. Rept.,
Center for Tiesearch in Computing Technology, Harvard University,
S<'ptcmhcr 1 n70.

9. Galler, B. A. nnci A. J. Pcrlis, "A Proposal for Definitions in Algol, 11

CA C.ll, .April JDG7, pp. 204-2In.
10. Fisher, 1>. A., Control Strurl11rcs for Pro(lrammin(l Lnngunges,

Ph.D. Tlac?:-;is, Camrgie-~ll'llon Fninrsity, Drpnrtmrnt of Com­
putr.r RcirtH'e, \lny Hl7Q.

11. Prenn<?r, C. .J., M iilt i-Palh Control Structures for Programming
Lana1wge:o:.1 Ph.D. Thesis, Center for Research in Computing
Technology, Harvard University, June 1972.

12. Schum:.rn, S., ed., Proceedings >or the International Symposium on
Extensiblt~ Languages, Sf GP LAN Notices, December 1071.

13. Irons, E. T.,_ "Experience with an Extensible Language," CAC!lf,
Jnnunry 1 n10, pp. 31·40.

14. Cheatham, T. K and J. A. Townley, Somr. Applications of ECL,
Center for Hc:search in Computing Technology, Harvard University,
1973.

15. Wegbreit, B., el al., ECL Programmer's Manual, Harvard Univ.,
1973.

16. :McCarthy, .J., Fl al., "Lisp 1.5 Progrnmmer's ~fonual," JJ IT Press,
Cnmhrid~n, I 9G2.

__ 17~_ Irons,!~~ _ _!., pc~~~~~~~l-~mmunication 1 February 22, 1971. -----

