
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

5-2017

Extensible Energy Planning Framework for Preemptive Tasks Extensible Energy Planning Framework for Preemptive Tasks

Jin Hyun Kim
University of Pennsylvania, jinhyun@seas.upenn.edu

Deepak Gangadharan
University of Pennsylvania, deepakg@seas.upenn.edu

Oleg Sokolsky
University of Pennsylvania, sokolsky@cis.upenn.edu

Axel Legay

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_papers

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation

Jin Hyun Kim, Deepak Gangadharan, Oleg Sokolsky, Axel Legay, and Insup Lee, "Extensible Energy

Planning Framework for Preemptive Tasks", 20th International Symposium on Real-Time Computing

(ISORC 2017) . May 2017.

20th International Symposium on Real-Time Computing (ISORC 2017), Toronto, Canada, May 16-18, 2017

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_papers/827
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_papers
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F827&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=repository.upenn.edu%2Fcis_papers%2F827&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fcis_papers%2F827&utm_medium=PDF&utm_campaign=PDFCoverPages
http://isorc2017.org/index.html
https://repository.upenn.edu/cis_papers/827
mailto:repository@pobox.upenn.edu

Extensible Energy Planning Framework for Preemptive Tasks Extensible Energy Planning Framework for Preemptive Tasks

Abstract Abstract
Cyber-physical systems (CSPs) are demanding energy-efficient design not only of hardware (HW), but
also of software (SW). Dynamic Voltage and and Frequency Scaling (DVFS) and Dynamic Power Manage
(DPM) are most popular techniques to improve the energy efficiency. However, contemporary complicated
HW and SW designs requires more elaborate and sophisticated energy management and efficiency
evaluation techniques. This paper is concerned about energy supply planning for real-time scheduling
systems (units) of which tasks need to meet deadlines. This paper presents a modelbased compositional
energy planning technique that computes a minimal ratio of processor frequency that preserves
schedulability of independent and preemptive tasks. The minimal ratio of processor frequency can be
used to plan the energy supply of real-time components. Our model-based technique is extensible by
refining our model with additional features so that energy management techniques and their energy
efficiency can be evaluated by model checking techniques. We exploit the compositional framework for
hierarchical scheduling systems and provide a new resource model for the frequency computation. As
results, our use-case for avionics software components shows that our new method outperforms the
classical real-time calculus (RTC) method, requiring 36.21% less frequency ratio on average for
scheduling units under RM than the RTC method.

Disciplines Disciplines
Computer Engineering | Computer Sciences

Comments Comments
20th International Symposium on Real-Time Computing (ISORC 2017), Toronto, Canada, May 16-18, 2017

This conference paper is available at ScholarlyCommons: https://repository.upenn.edu/cis_papers/827

http://isorc2017.org/index.html
https://repository.upenn.edu/cis_papers/827

Extensible Energy Planning Framework for

Preemptive Tasks

Jin Hyun Kim, Deepak Gangadharan,Oleg Sokolosky,

University of Pennsylvania, USA

{jinhyun,deepakg}@seas.upenn.edu,

sokolosky@cis.upenn.edu

Axel Legay

INRIA/IRISA, FRANCE

axel.legay@inria.fr

Insup Lee

University of Pennsylvania, USA

lee@cis.upenn.edu

Abstract—Cyber-physical systems (CSPs) are demanding
energy-efficient design not only of hardware (HW), but also
of software (SW). Dynamic Voltage and and Frequency Scal-
ing (DVFS) and Dynamic Power Manage (DPM) are most
popular techniques to improve the energy efficiency. However,
contemporary complicated HW and SW designs requires more
elaborate and sophisticated energy management and efficiency
evaluation techniques. This paper is concerned about energy
supply planning for real-time scheduling systems (units) of which
tasks need to meet deadlines. This paper presents a model-
based compositional energy planning technique that computes
a minimal ratio of processor frequency that preserves schedu-
lability of independent and preemptive tasks. The minimal
ratio of processor frequency can be used to plan the energy
supply of real-time components. Our model-based technique is
extensible by refining our model with additional features so
that energy management techniques and their energy efficiency
can be evaluated by model checking techniques. We exploit the
compositional framework for hierarchical scheduling systems and
provide a new resource model for the frequency computation.
As results, our use-case for avionics software components shows
that our new method outperforms the classical real-time calculus
(RTC) method, requiring 36.21% less frequency ratio on average
for scheduling units under RM than the RTC method.

I. INTRODUCTION

As many CPS devices are minimized and compact, the

energy efficient design of CPS gains more importance. For

last decade, various energy-aware scheduling algorithms uti-

lizing Dynamic Voltage and Frequency Scaling (DVFS) and

Dynamic Power Management (DPM) have been proposed

[2]. Energy-aware scheduling algorithms dynamically switch

processor’s voltage and frequency to minimize the energy

consumption according to tasks’ timing requirements, but

throttling the voltage and frequency of processors reduces

processor’s performance, resulting in delay of SW execution

time and missed deadline of real-time applications.

Moreover, it is significant to set up appropriate energy

supply plan for CPS real-time components that can maximize

the energy utilization. In particular, automotive software (SW)

components are being developed in a compositional way such

that heterogeneous SW components using different operating

environments are composed into a high-performance host

operating environment. In such a case, it is significant to

statically set up the energy supply plan, i.e., the baseline of

energy supply for individual components, prior to running

the guest real-time components using energy-aware scheduling

algorithms, so that no running component suffers the lack of

energy that leads tasks to miss the deadline.

CMOS (Complementary Metal Oxide Semiconductor) cir-

cuit used to operate at a supply voltage level much higher

than the threshold voltage, making dynamic power dissipation

dominant w.r.t. static power dissipation. As a result, DVFS

approaches, such as [1], [24], [25], are suitable for reducing

dynamic power dissipation. Contemporary nanometer scale

chips lower the supply voltage by shrinking the transistor

size and reduce dynamic power consumption. This leads to

a significant increase in the leakage consumption, because

the smaller gap, the higher the subthreshold dissipation. As

a result, the static power dissipation has become as important

as dynamic power consumption, and DPM approaches that

target reduction of the leakage power have recently gained

more popularity [2].

Mosse et al., [14] provided the first five computation tech-

niques to determine a minimal ratio of frequency of processors

that preserves schedulability of real-time tasks. However, those

techniques should limit all deadlines of tasks to a common

deadline. Bini et al., [4] presented sufficient conditions to

compute the minimum processor speed that satisfies EDF [17]

and RM tasks[15], [16]. However, they are limited to trivial

timing parameters of real-time components under EDF and

RM, thus they have the limitation in analyzing energy aspects

of emerging complicated real-time systems.

Energy efficiency evaluation has been more complicated as

the scheduling systems are becoming complicated, such as

OS hypervisor. Tchamgoue et al., [21] provides schedulability

conditions aware of energy consumption for the compositional

framework for OS hypervisor technology. The design trend

of CPS is leading to a need of more extensible and flexible

framework for planning energy consumption and evaluation

energy efficiency for real-time systems.

a) Problem Description: The problem that we address is

how to compute a minimal ratio of frequency of processors

requiring a minimal energy supply that schedule preemptive

tasks under RM and EDF scheduling algorithms. A component

is a scheduling unit, where each component can deploy various

scheduling mechanisms, EDF and RM, and set to a specific

static frequency that schedules tasks of the component. In

terms of CPU frequency, the component is compositional in

that the frequencies of each component can be composed

into a representative frequency that satisfies the composed

components. In short, we statically compute a minimal ratio of

frequency of each component in a compositional way, which

leads to all tasks being schedulable.
b) Approach and Contributions: This paper presents a

model-based technique to facilitate the selection of a minimal

ratio of frequency of processors for real-time components

under RM and EDF. Our technique is based on the schedu-

lability theory of the compositional framework. The minimal

frequency can be used to estimate the energy consumption of

real-time components, and set up an energy supply plan for

real-time components not to violate timing requirements. This

paper exploits the concept of interface in the compositional

framework [19]. An interface of real-time components in this

paper consists of timing requirements of a component and a

fraction of CPU’s cycles that executes tasks of a real-time

component.

An interface is a contract between a resource demander

and a resource supplier. Thus, it can be used as collective

timing requirements of resource-demanding component and as

a resource supply pattern of the supplier. A resource supply

pattern of suppliers is called resource model. For a given

resource, the schedulabilty of a real-time component can be

verified by comparing a resource demand pattern of a real-

time component and a resource supply pattern of the resource

supplier. That is, if a resource model satisfies an interface

of a real-time component, the component is schedulable.

A resource model can easily be represented as a simple

formula, but the demand pattern of a workload depending

on scheduling algorithms is not easy to be modeled as a

simple formula. In addition, this paper leverages a model-

based analysis technique to achieve extensibility and flexibility

of our framework for energy planning and efficiency evalu-

ation. A variety of software features required by customers

exponentially increases the complexity of CPS systems beyond

the capability of classical analysis techniques. This paper

adopts the model-based techniques of [5] to build a resource

model and its demand pattern of a given component and

presents a way to compute a minimal ratio of frequency of

a processor.

For the energy-aware design of CPS, this paper contributes

to:

• A new formal technique to derive a minimal ratio of fre-

quency of processors satisfying a minimal cycle demand

of a component consisting of preemptive tasks,

• An analysis framework based on model checking tech-

niques.

The rest of the paper is organized as follows: Section II

discusses the related work. Section III presents the background

theory of this work. Section IV presents a new resource

model and schedulability conditions to compute a minimal

frequency ratio. In addition, we present a Real-Time Calculus-

based technique to compute a minimal frequency ratio so

that frequency ratios computed by a new technique and the

RTC-based techniques can be compared to show individual

pessimism. In Section V, we provide a model-based technique,

based on the schedulability conditions based on the resource

model in Section IV. Section VI shows comparison results

of minimal frequency ratios computed by our mode-based

and RTC-based techniques and provide our observations. In

Section VII, we conclude this paper with the potential future

work.

II. RELATED WORK

For energy-aware scheduling techniques, early efforts, such

as [1], [10], [23], [24], [25], leveraged the performance slack

available in real-time applications such that reducing the

performance of a processor does not cause any applications

to miss their deadlines. They have developed scheduling

algorithms, exploiting the property of real-time tasks that the

actual task execution times are much less than the assumed

worst-case execution time, thus the remaining time to each

deadline is a guaranteed slack time where no higher priority

task would intervene. However, they are not extensible enough

for contemporary scheduling systems to instantly deal with

their complexity due to variety of real-time features from

costumers.

Lie et al., in [12], one of the researches comparable with

this work, presents a processor frequency selection technique

which is based on Real-Time Calculus (RTC). In this research,

a series of processing elements process inputs streams and

are represented by lower and upper bounds of their services.

The main contribution of this work is a computation of the

frequency range that needs to be supported by each processing

element in order to realize their service bounds. This paper

compares minimal frequencies computed by our model-based

technique with those computed by a RTC-based technique in

Section VI.

To compute a minimal ratio of frequency, we construct

our model based on our previous work [6]. The model of

[6] is extended with multi-core scheduling algorithms, and

various overhead features including interrupt handling time,

scheduling time and context switching time. However, in this

paper, we do not include the overhead parameters in our

analysis to fairly compare our model-based techniques with

RTC techniques. Furthermore, since we focus on SW-related

and energy-relevant features of the system, our model does

not incorporate HW aspects, such as pipelines, caches etc, in

this paper.

III. PRELIMINARIES

A. Power Model

Based on CMOS technology, the power consumption is

dominated by dynamic power dissipation Pd which is given

by Pd = αCefV
2
ddf+αVddIshort+VddIleak, where Cef is the

effective switched capacitance, α is the gate activity factor (i.e.

the probability of gate switching), Vdd is the supply voltage,

and f is a clock frequency, Ishort is the current between the

supply voltage and ground during gate switching, and Ileak
is the leakage current, which is independent of the actual

frequency and system activity [2].

2

The processor speed is almost linear with respect to the

voltage: f = k · (Vdd−Vth)
2

Vdd

where k is a constant and Vth is

the threshold voltage. Thus, the power Pd is almost cubically

related to the frequency f : Pd ≈ Cef · f3

k2 The computation

time ei is characterized by C
f

, where C is the number of

cycles to complete the execution of a task i. Then, the energy

consumption E of the task is E = Pd · ei ≈ C ·Cef ·
f2

k2 Both

the frequency and the supply voltage can be reduced together.

As a result, the processor power can be cubically reduced and

the energy expense can be quadratically saved.

In this paper, we utilize only the frequency as energy

efficiency evaluation parameter from the above power model,

assuming that the other parameters are constant.

B. Setting of the System

A scheduling system in this paper is defined as follows:

A scheduling unit is defined by C = (W,A), where a

workload W is a set of tasks {T1, T2, ..., Ti}, A is a scheduling

algorithm. A preemptive periodic task is characterized by

Ti = (pi, ei), where i is a task id, pi is a period, and ei
is the worst-case execution time. The deadline of tasks is

implicit throughout this paper, thus the period and the deadline

of a task are the same unless it is specified explicitly as if

Ti = (pi, ei, di). For generality, the unit of task’s real-time

parameters is a cycle, not a time. The energy consumption

of components is represented by a frequency of processors, a

fraction of CPU cycles, that satisfies the needs of individual

tasks in a component. The frequency of each component is

captured by an interface, which would be defined at Sec-

tion IV-B. The problem is how to compute a static minimal

frequency ratio for a given task set (workload) under a specific

scheduling algorithm.

C. Compositional Framework

The compositional framework in this paper is a schedula-

bility analysis framework for hierarchical scheduling systems

(HSS), where each component of real-time tasks is analyzed

in a compositional way. In this framework, a resource require-

ment of real-time tasks of components are introduced by an

interface, and a supply pattern of resources available to tasks

is represented by a resource model. The schedulability of tasks

is done by checking if an interface of a component is satisfied

by a resource model, i.e. the quantity of resources demanded

by tasks is always provided by a resource supply model.

For any time interval [0, t], the amount of resources de-

manded by a workload W , a set of real-time tasks, is modeled

by a demand bound function (dbf). Given a task set Ti, the dbf

under the scheduling policies EDF (Earliest Deadline First)

[18] is defined by:

dbfEDF (W, t) =
∑

Ti∈W

⌊

t

pi

⌋

· ei (1)

In the similar way, the dbf under the scheduling policies

RM (Rate Monotonic) [18] is defined by:

dbfRM (W, t, i) = ei +
∑

Tk∈HP (i)

⌈

t

pk

⌉

· ek (2)

where HP (i) is a set of tasks whose priorities are higher than

that of Ti.

For any time interval [0, t] and any resource model Γ,

the amount of resources supplied by a resource model is

mathematically modeled by a supply bound function (sbf).

For a given component C and a resource model Γ, the

schedulability condition is generally defined by:

∀tN≥0
dbfA(W, t) ≤ sbfΓ(t) (3)

where A is a scheduling algorithm of the component C.

An interface I representing a quantity of resources de-

manded collectively by tasks of C is mathematically com-

puted by the above inequality between dbf and sbf [19]. In

Section IV-B, we present a new supply bound function that is

used to check the schedulability and to compute an interface

that satisfies a given component.

D. Timed Automata and Model Checking

The formalism that we use for modeling scheduling systems

is Timed Automata (TA), particularly, Stopwatch Automata

(SWA)[7] which are a subclass of linear hybrid automata.

Basically, a stopwatch automaton is a regular timed automaton

augmented with stopwatches. A stopwatch is a continuous

variable (clock) that can stop and resume without necessarily

performing a reset. This is done by assigning to such clocks

a progress rate of 0 or 1, i.e., the derivative of the stopwatch

is assigned to a constant or an expression which evaluates to

0 or 1, so that the stopwatch progresses with the same rate as

logical time.

For requirement specifications, we use a subset of Compu-

tational Tree Logic. The grammar of this subset is

ϕ ::= A�P | A♦P | E�P | E♦P

where A and E are paths operators, meaning respectively

“for all the paths” and “there exists a path”. �and ♦are state

operators, meaning respectively “all the states of the path” and

“there exists a state in the path”. P is an atomic proposition

that is valid in some state. For example the formula “A� not

deadlock” specifies that in all the paths and all the states on

these paths we will never reach a deadlock state in which the

system is permanently blocked.

Fig. 1. Conceptual task in SWA

A conceptual task modeled by SWA is shown in Fig. 1,

where a task tid executes between BCET[tid] and WCET[tid]

time units every PRD[tid] time units (The initial location in

the model is Run with double-circle by UPPAAL syntax).

3

The execution time of tasks, the CPU-using time, is denoted

by et[tid], and its running time, the time that has elapsed

since its new period began, is denoted by rt[tid]. The task

joins the location Run when it synchronizes with the event

channel sched[tid]!, then the clock et[tid] makes progress.

However, if the task moves into the location Ready when it

synchronizes the event channel preempt!, then the clock et[tid]

stops progress by the invariant et[tid]’==0. In this way, the

preemption mechanism of scheduling systems is implemented.

UPPAAL [3] is a model checking tool suite which we

apply to our analysis. UPPAAL MC is an exhaustive analysis

technique that explores every state and transition to see if the

system satisfies properties. Meanwhile, UPPAAL SMC [8] is a

simulation-based technique that runs a given tasks numerous

times for a given simulation time, generates traces, and com-

putes out of the traces a probability that the system satisfies

properties with a specific certainty. In this paper, UPPAAL

MC is the primary analysis technique for the computation of

a minimal ratio of frequency and UPPAAL SMC is used to

simulate a given task set to validate the results.

In order to model the preemption between tasks, we use

SWA. However, it has the limitation in obtaining analysis

accuracy in a sense that UPPAAL may return a false positive

answer. Hence, even though the system in SWA models

satisfies a given property, UPPAAL may say that “property

may not be satisfied.”

IV. COMPOSITIONAL FRAMEWORK FOR

ENERGY-AWARENESS

This section describes the underlying idea that is the basis

of our analysis framework for the computation of a minimal

frequency ratio of processors.

A. Selection of A Minimal Frequency

The frequency of processors refers to clock cycles per

second. Basically, we view the frequency of a processor as

a periodic resource model that provides tasks of components

with a specific quantity of resources, e.g., execution cycles

per period. The reason why the frequency can be viewed as

a periodic resource is as follows: In principle, the execution

of a periodic task has a laxity interval where the task can

delay the execution as long as it does not miss the deadline,

as shown in Fig. 2(a). Namely, the execution of a periodic

task can be delayed the same as the laxity interval of the task.

The laxity interval of a task can be interpreted by a frequency

laxity which can throttle the processor frequency ratio, and

such a lowered frequency ratio inflates the execution of a task

as much as the laxity interval of a task, as shown in Fig. 2(b).

The compositional framework [19] allows computing the

amount of resources that a component requires every specific

time unit. The component may have one or more tasks running

under specific scheduling policy. That is, the compositional

framework computes an interface, a collective resource re-

quirement of a given component, by checking whether the

resource supply of a resource model for the component sat-

isfies the schedulability of all tasks in the component. For

(a) An execution of T1 = (3, 1)

(b) Inflated execution of T1 by the frequency ratio 1

3

(c) Regularly split execution of T1 by a periodic resource
model PRM=(1,0.33)

Fig. 2. Job executions

instance, Fig. 2(c) shows that T1 is satisfied by a periodic

resource model, PRM = (1, 0.333). The execution time of

the resource model, 0.333, can also be used as a frequency

ratio for running T1 that satisfies its deadline. Similarly with

the compositional framework, the laxity interval of a periodic

task in Fig. 2(a) can be split, where the split laxity and the

execution of the task can interleave, as shown Fig. 2(c). That

is, the execution of tasks can be regularly divided by uniformly

split laxity periods, as shown Fig.r̃effig:PeriodicExecution. For

instance, the execution of T1 = (3, 1) can be split by (1, 0.333)
which executes for 0.333 time units every time unit. In other

words, the execution of the task can be delayed at least for

0.666 every time unit. The execution time 0.333 of the task

is exactly the same as the number of necessary cycles for the

task.

The previous work, such as [18], [19], [20], discuss various

ways to find an optimal resource model for scheduling units.

In this paper, we apply the compositional framework to figure

out a minimal frequency ratio of processors by providing a

new resource model from the frequency perspective.

B. Supply Bound Function of Processor Frequency

To compute a minimal frequency ratio of processors for

a given component, the compositional framework requires a

resource model that simulates the worst-case supply of CPU

cycles for a given frequency ratio. Using the resource model, it

can be checked if all tasks of a given component are scheduled

by the CPU cycles per period supplied by the resource model.

A minimal frequency ratio can be found by identifying the

smallest frequency ratio that satisfies the schedulability of

components.

In the compositional framework, the interface of a com-

ponent captures resources needed by the component. The

interface should be compatible with a resource model in that

4

the resource supply pattern of a resource model satisfies the

resource requirement of an interface. In the following, we thus

introduce a new resource model that can be used to compute

a minimal frequency ratio of processor that leads to schedule

every task of a component.

First, we define a resource model, called Periodic Laxity

Resource Model (PLRM), that has the worst resource supply

pattern for a given frequency ratio. Periodic Laxity Resource

Model (PLRM) is a periodic resource model for processor

frequency ratio, and it is denoted by ΓPLRM = (Π,Θ,Λ)
where Π is a period, Θ is a number of resources, and Λ =
Π−Θ is a laxity, where Λ > 0. PLRM Γ = (Π,Θ,Λ) provides

the amount Θ of CPU cycles every Π time units under Λ time

unit of laxity.

Fig. 3. The worst-case resource supply of PLRM

Similary with PRM resource model of the compositional

framework, as shown in Fig. 2, the PLRM has the worst-case

resource supply pattern shown in Fig. 3. In this worst-case,

the resource supply Θ never starts before the laxity Λ elapses.

The worst-case resource supply happens when a new resource

demand occurs as soon as a new period begins.
For a given PLRM Γ = (Π,Θ,Λ), the supply bound

function sbfΓPLRM
(t) is defined by:

sbfΓPLRM (t) =

⌊

t

Π

⌋

·Θ+ ǫs (4)

ǫs = max

(

t−

⌊

t

Π

⌋

·Π− Λ, 0

)

(5)

where Λ = Π−Θ. For the conservative analysis, PLRM serves

the worst-case resource supply, where the least amount of

resource is computed depending on a PLRM Γ for any given

time interval t.
Lemma 1: A linear lsbf lower-bounds sbfΓPLRM

and it is
defined by:

lsbfΓPLRM =
(t− Λ)

Π
·Θ ≤ sbfΓPLRM

Proof: We consider two cases: 1) ǫs = 0 and 2) ǫs > 0.
Case 1) ǫs = 0. In this case,

t−

⌊

t

Π

⌋

·Π− Λ ≤ 0 (6)

From Eq. 6, we have

(t− Λ)

Π
·Θ ≤

⌊

t

Π

⌋

·Θ (7)

Then,

sbfΓPLRM − lsbfΓPLRM =

⌊

t

Π

⌋

·Θ−
(t− Λ)

Π
·Θ ≥ 0 (8)

by Eq. 7

Case 2) ǫs > 0. In this case,

t−

⌊

t

Π

⌋

·Π− Λ > 0 (9)

From Eq. 9, we have

t− Λ

Π
>

⌊

t

Π

⌋

(10)

Then,

sbfΓPLRM − lsbfΓPLRM

=

⌊

t

Π

⌋

·Θ+ t−

⌊

t

Π

⌋

·Π− Λ−
(t− Λ)

Π
·Θ

=

⌊

t

Π

⌋

·Θ−

⌊

t

Π

⌋

·Π+ t− Λ−
(t− Λ)

Π
·Θ

=

⌊

t

Π

⌋

· (Θ−Π) + (t− Λ) ·

(

1−
Θ

Π

)

=

⌊

t

Π

⌋

· (Θ−Π) + (t− Λ) ·

(

Π−Θ

Π

)

= −

⌊

t

Π

⌋

· Λ + (t− Λ) ·
Λ

Π

= Λ ·

(

t− Λ

Π
−

⌊

t

Π

⌋)

> 0

(11)

by Eq. 10 and Λ > 0 from its definition.

For a given PLRM Γ = (Π,Θ,Λ), the schedulability

conditions for EDF and RM [9] are as follows:
Theorem 1: A component C = 〈W = {T1 =

(p1, e1, d1), ..., Tn = (pn, en, dn)}, EDF 〉 is schedulable with
respect to the PLRM resource model Γ iff

∀0 < t ≤ LCMW + max
1≤i≤n

di dbfEDF (W, t) ≤ sbfΓPLRM (t) (12)

where t is a time interval, and LCMW is the least common

multiple of the periods of all the tasks Ti ∈ W .
Theorem 2: A component C = 〈W = {T1 =

(p1, e1, d1), ..., Tn = (pn, en, dn)}, RM〉 is schedulable with
respect to the PLRM resource model Γ iff

∀Ti, ∃ti ∈ [0, di] s.t dbfRM (W, ti, i) ≤ sbfΓPLRM (t) (13)

A minimal frequency ratio for a component can be com-

puted by finding a PLRM satisfying the set of tasks in the

component.

Example 1: As shown in Fig. 4(b), the set of tasks T =
{T1 = (3, 1), T2 = (5, 1)} under EDF is scheduled by the

PLRM ΓPLRM = (1.0, 0.55, 0.45). Conclusively, the satisfying

frequency ratio is 0.55. If the frequency of a given processor

is 1 MHz, a minimal frequency ratio satisfying the task set is

550 kHz.

C. Real-Time Calculus based Approach

This paper compares our technique with a Real-Time

Calculus-based technique. Real-Time Calculus (RTC) [22] is

a well known compositional analysis technique for embedded

systems that has its roots in Network Calculus [11]. In RTC,

the workload of a task Ti is captured in terms of the arrival

curves [αu
i (∆), αl

i(∆)]. These represent the upper (αu
i (∆))

and lower bound (αl
i(∆)) of the workload requirement (in

5

(a) The sbf and lsbf for ΓPLRM = (10, 6, 4)

(b) The sbf and lsbf for ΓPLRM = (1.0, 0.55, 0.45) and the
resources demand of a task set T = {T1 = (3, 1), T2 = (5, 1)}

Fig. 4. The sbf and lsbf of PLRM

terms of processor cycles) for the task in any time interval ∆.

Similarly, service curves [β
u

i (∆), β
l

i(∆)] are used in RTC to

capture the upper and lower bound on the service provided to

task Ti.

In order to compute a minimal frequency ratio, we only

need one quantity for each task in the workload set namely

αu
i (∆). This can be used to compute the lower bound on the

service requirement (β
l

i(∆)) for the task. The lower bound of

the frequency ratio that ensures schedulability can be found

using β
l

i(∆) for each task Ti. This is described in detail below.

For an implicit deadline periodic task Ti with period pi and

worst-case execution time (WCET) ei, the upper bound on

arrival curve αu
i (∆) can be found as follows.

αu
i (∆) =

⌈

∆

pi

⌉

× ei (14)

In order for the task to be schedulable, i.e., for execution of

each job of the task to finish before the deadline di, the service

required in case of EDF scheduling is given by β
l

i(∆) ≥

αu
i (∆− di). Hence, the lower bound on the service required

for schedulability of a single task is β
l

i(∆) = αu
i (∆ − di).

The lower bound on the service required for schedulability of

all the tasks is given by β
l
(∆) =

∑

∀i

αu
i (∆ − di). The lower

bound on frequency ratio can then be computed for EDF as

max
∀∆

(

β
l
(∆)
∆

)

.

Similarly, the lower bound on the service required for

task Ti in case of RM scheduling is given by β
l

i(∆) =
∑

∀k∈hp(i)

αu
k(∆) + αu

i (∆), where hp(i) is the set of tasks with

higher priority than task Ti. After finding β
l

i(∆) for all the

tasks, the lower bound on frequency ratio can be computed

for RM as max
∀i∀∆

(

(β
l

i
(∆))
∆

)

.

V. MODEL-BASED COMPOSITIONAL

FRAMEWORK

In the previous sections, we explained how to compute a

minimal processor frequency ratio by checking schedulability

of a component, a scheduling unit, against the resource model,

PLRM. However, this framework is limited to trivial settings

of components, so real-time tasks are generally characterized

by a period, an execution time, and a deadline under EDF

and RM. To make it more extensible, i.e., adaptable to more

complicated scheduling mechanisms, we capture scheduling

units and resource models as formal models and analyze

schedulablity of scheduling units using model checking tech-

niques. This section presents a formal component model

(CSWA) corresponding a scheduling unit under EDF and RM

of the compositional framework, and a formal resource model

of PLRM (PLRMSWA). So that a minimal frequency ratio

is identified by checking the component model against the

resource model. In order to analyze the pessimism of PLRM

resource model, we compare minimal frequencies computed

by using our formal models with the ones computed by a

similar RTC-based technique.

In this paper, the features of the scheduling unit in our

model-based approach are limited to the features of the com-

positional framework so as to fairly compare the gap between

our model-based technique and RTC-based technique. For this

reason, our formal model does not incorporate any complicated

feature of scheduling units in this paper.

The model-based compositional framework to check the

schedulability and compute a minimal frequency ratio of

processors is shown in Fig. 5, where the sbfΓPLRM
and dbfA for

Fig. 5. Our model-based framework

6

RM and EDF are modeled, respectively, by a PLRM resource

model and a scheduling unit model using SWA. Fig. 6(a)

shows a formal model of PLRM resource model in SWA.

The PLRM resource model controls the execution of a job by

a bool variable laxity[pid], which represents the enforcement of

laxity over a running job; a running job stops if laxity[pid] is 1,

and otherwise, the running job keep executing. When laxity[pid]

= 1, the current job stops for a given laxity laxity rate time

units (Λ). After the laxity time, the PLRM resource model

reaches the location AllowExecuting, and lets a running job to

execute for cycles time units (Θ). Then, it joins the location

PRDGoToEnd and does nothing until the end of the current

period. Fig. 6(b) describes the execution pattern of a PLRM

for Γ = (100, 30, 70) and shows the same execution pattern

with that of the worst-case execution pattern of PLRM in

Fig. 3.

(a) SWA PLRM model

(b) Simulation of PLRM (λ = (100, 30, , 70))

Fig. 6. SWA PLRM model and simulation

Given a CSWA and a PLRMSWA, the schedulability is

checked by checking the property A[] not error. The variable

error in the temporal logic happens when a running task

misses its deadline, i.e., the task model Fig. 8 stops on the

location DLMissed). If the model checker cannot find out

any counterexample against the property, a given task set is

proved schedulable. In other words, by checking the following

property:

(PLRMSWA||CSWA) ⊢ A[] not error

Then we prove the following property:

∀tN≥0
dbfA(W, t) ≤ sbfΓ(t)

We use this model to check the schedulability and identify

a minimal frequency ratio of a processor. Basically, this

computation consists in two steps: First, any frequency ratio

is set to the PLRM resource model for a given component;

Second it is proved that the component is schedulable by the

cycle supply of the resource model. We repeat the above steps

until the minimum frequency ratio is identified.

Fig. 7. Architecture of SWA models

A. SWA Scheduling Unit Model

Fig. 7 shows the structure of our SWA scheduling unit

model for multi-processor, however we limit the number of

core running tasks to 1 in our experiments. It is structured in

a similar way with a real-time operating system. Interrupt

Handler in Fig. 7 handles interrupts from HW/SW compo-

nents and requests a scheduler to instantiate and schedule jobs.

Once Interrupt Handler is invoked by HW Interrupter, it

inserts the relevant task identity (id) to Core Scheduling

Queue so that a job of the id is created, and then re-

quests a scheduling for the inserted job. Global Scheduler

schedules jobs in Core Scheduling Queue according to

a scheduling policy and sets the highest priority job to an

available processor. If the running job has a lower priority

than a new job, it is switched out but resides in the ready

queue. Once Global Scheduler finishes the scheduling, it

acknowledges Interrupt Handler to enable interrupts. A

job occupying a processor can execute as long as it is the

highest priority task in Core Scheduling Queue. If a job

of Task completes, it releases the processor and executes

scheduling again to assign the next highest-priority job to the

released processor.

B. Task Model

A task we consider in this paper is characterized by the

parameters shown in Listing 1. This parameters are instantiated

by the structure variable tcb[tid] where tid is a task identity (id).

The SWA Task model of Fig. 8 captures the behavior of a

preemptive job. It starts with synchronizing the event channel

dispatch job[tid] with Interrupt Handler. The progress of

a running job stops when it is preempted by a higher priority

task, and stops when the cycle of the associated processor are

not provided. The progress of a running job is captured by a

stopwatch clock t et[tid], of which progress stops when it is

set to 0 and resumes when it set to 1. If a job is preempted by

a higher priority task, the task model moves from the location

Executing to the location Ready, then the clock t et[tid] is set

to 0 and the progress of job’s execution stops. Even if a job

is occupying a CPU, its progress can stops at the location

7

Listing 1. Task Cotrol Block✞
1 typedef struct {
2 pid a pid ; // Processor ID assigned to job ,
3 prio t prio ; // Priority ,
4 time t ioffset ; // Initial offseet ,
5 time t prd; // Period ,
6 time t dl ; // Deadline,
7 time t bcet ; // Best−case execution time,
8 time t wcet; // Worst−case execution time,
9 bool preemptive; // Preemptability

10 task stat t stat ; // Job status
11 } os tcb t ;
12

13 os tcb t tcb [tid t]; // Task Control Block
✝

Fig. 8. SWA model of task

Executing when the stopwatch t et[tid] is set to 0 by the

function VMFS(tcb[tid].pid) which returns 0 if a cycle supplier

is not running. Otherwise, the stopwatch is set to 1 and the

progress of the job runs.

VI. COMPARISON OF MINIMAL FREQUENCY RATIOS

Now, we compare minimal frequencies computed by the

model-based technique with the ones computed by RTC-based

technique.

Table I shows 3 analysis cases, where the configuration of

individual experiments has the same task set but depends on a

scheduling policy, EDF or RM. Checking each sample repeats

by reducing the amount of cycles, the second parameter of

Γ, until we identify a minimal frequency that satisfies the

schedulability; In those experiments, the CPU utilization is

set to 56%. As results, the frequency ratios which satisfy the

set of tasks are 0.626, 0.667, and 0.57, respectively, for RM,

RM with non-preemption, and EDF.

TABLE I
PLRM INTERFACES AND FREQUENCY.

Cid A Tasks PLRM Freq. Ratio

C1 RM

T1(25,5)

Γ(1, 0.626, 0.374) 0.626
T2(45,10)
T3(75,10)

C1

RM*
T1(25,5)

Γ(1, 0.667, 0.333) 0.667
T2(45,10)
T3(75,10)

C1 EDF

T1(25,5)

Γ(1, 0.57, 0.43) 0.57
T2(45,10)
T3(75,10)

*a non-preemptive scheduling unit

TABLE II
AVIONICS SOFTWARE REAL-TIME COMPONENTS [13]

Ref. Comp. ID (P,E)
CPU New New RTC RTC
Util. (RM) (EDF) (RM) (EDF)

1 Comp3
(40,1)

0.085 0.088 0.086 0.124 0.085(80,2)
(200,2)

2 Comp4

(40,1)

0.18 0.181 0.181 0.342 0.18
(40,2)
(40,4)

(200,1)

3 Comp5
(200,1)

0.015 0.016 0.016 0.025 0.015(200,1)
(400,2)

4 Comp6
(100,7)

0.085 0.086 0.086 0.139 0.085
(400,6)

5 Comp8
(52,6)

0.231 0.241 0.241 0.453 0.231(52,6)
-

6 Comp9
(52,8)

0.164 0.171 0.171 0.302 0.1649(200,1)
(200,1)

7 Comp11
(200,1)

0.007 0.008 0.008 0.01 0.007
(1000,2)

8 Comp12
(40,1)

0.060 0.063 0.061 0.098 0.060(40,1)
(100,1)

9 Comp14
(100,1)

0.015 0.016 0.016 0.023 0.015
(400,2)

10 Comp15
(100,3)

0.040 0.041 0.041 0.065 0.040
(200,2)

11 Comp16
(200,1)

0.023 0.024 0.023 0.036 0.023(800,10)
(1000,5)

A. Observations from Use-cases

We applied our method to a use-case of avionics software

components [13], where 34 tasks are grouped into 17 compo-

nents, and each component consists at most 4 tasks scheduled

by RM or EDF. 11 components of 17 components, excluding

Fig. 9. Improvements of new methods against the RTC method

8

(a) Frequency variation by variation of CPU utiliation

(b) Frequency variation by the number of tasks

Fig. 10. Variation of minimal frequency ratios

single-task components, are analyzed by the model-based

technique and RTC-based technique in Section IV-C. Fig. 9

shows that our new method outperforms the classical RTC

technique, requiring the average 36.21% less frequency ratio

for scheduling units under RM. However, the RTC technique

outperforms the new method in the case of EDF.

Notice that the RTC-based technique returns the minimal

frequencies of the task sets using EDF that are the same as

the corresponding CPU utilizations, that is consistent with

[4]. Meanwhile, the minimal frequencies of the same cases

computed by the model-based method are bigger than the cor-

responding CPU utilizations. We used UPPAAL SMC to check

those task sets again and could see that the task sets using

EDF are scheduled with the frequency ratio that is the same

as its CPU utilization too. We believe that the reason is due

to the over-approximation computation by UPPAAL MC when

handling stopwatch clock mechanism. As a conclusion, for the

task sets using RM, our new method returns a more optimized

frequency ratio than the RTC-based technique. The RTC-based

technique shows that the task set using EDF is schedulable

with the frequency ratio that is the same as the corresponding

CPU utilization. The over-approximation analysis of UPPAAL

does not always impose pessimism upon the analysis results,

and it depends on complexity of a given model. For this reason,

the results of RM show lower frequencies than the RTC-based

method.

For the RM cases, Fig 10(a) compares the deviations of

minimal frequencies from the CPU utilizations of given task

sets computed by our model-based technique and the RTC-

based technique. Fig. 10(b) the variation of frequencies by the

number of tasks (from 2 to 7). Using the same CPU utilization

(50%), the frequency ratio satisfying the the components

increases by the number of tasks in our method, but the RTC-

based technique is sensitive to the number of tasks.

B. Scalability of Model-Based Method

Compared with RTC-technique, the model-based technique

is not scalable in that model-checking technique is often

subject to the state-explosion since it explores all possible

states exhaustively. Our model-based framework is also prone

to the state-explosion issue.

Fig. 11 shows the variation of UPPAAL MC verification time

using our models by the number of tasks. The scalability of

our model-based framework is impacted by two major factors:

the number of tasks and the complexity of task properties. As

Fig. 11. Verification times of UPPAAL MC

the number of underlying tasks increases, the verification time

increases exponentially. In addition, the complexity of task

properties, such as execution times and periods, impacts on the

scalability. For instance, task properties in the prime numbers

impacts on the verification time. Our experiment environment

is as follows:

• Processor: Intel Core i7-3520M CPU @ 2.90GHz ×4
• Memory: 7.5 GiB

• OS: Ubuntu 64-Bit

VII. CONCLUSION

The static power dissipation is more important than ever as

dynamic power dissipation reduce by the advance of CMOS

technologies. Moreover, parameters of real-time components

to consider for real-time guarantee are so diverse that the clas-

sical energy management and efficiency analysis techniques

shows a lot of limitations.

This paper presents a novel model-based technique based

on the schedulability theory of the compositional framework

9

to compute a static minimal frequency ratio of processors.

To the end, this paper presented a new supply bound function

depending on a periodic resource model, PLRM, that provides

a minimal CPU cycles to a given task set in the worst-case.

Using the periodic model, a real-time component is verified

schedulable for a given frequency ratio.

In addition, using the new periodic resource model for

frequency ratio, we presented schedulability conditions for

preemptive task set limited by a minimal frequency ratio of

a processor. To enlarge the extensibility of our framework,

we captured scheduling units under EDF and RM and the

PLRM resource model in formal models of UPPAAL so that

more various resource demand can be represented by the

scheduling unit model in automaton models and analyzed

against the resource model given in the same formalism. In

the comparison with a RTC-based method, we showed that

our method requires the average 36.21% less frequency ratio

for the task sets under RM than the comparable RTC method

does.

In the future work, we will study an automated computation

technique for a frequency interface for a given component

based on our new schedulability conditions and apply this ap-

proach to energy-aware composition of hierarchical scheduling

systems.

REFERENCES

[1] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez. Dynamic and
aggressive scheduling techniques for power-aware real-time systems. In
Real-Time Systems Symposium, 2001. (RTSS 2001). Proceedings. 22nd

IEEE, pages 95–105, Dec 2001.
[2] M. Bambagini, M. Marinoni, H. Aydin, and G. Buttazzo. Energy-

aware scheduling for real-time systems: a survey. ACM Transactions

on Embedded Computing Systems (TECS), 15(1):7, 2016.
[3] G. Behrmann, A. David, and K. G. Larsen. A tutorial on UPPAAL. In

M. Bernardo and F. Corradini, editors, Formal Methods for the Design

of Real-Time Systems: 4th International School on Formal Methods

for the Design of Computer, Communication, and Software Systems,

SFM-RT 2004, number 3185 in LNCS, pages 200–236. Springer–Verlag,
September 2004.

[4] E. Bini, G. Buttazzo, and G. Lipari. Minimizing cpu energy in real-
time systems with discrete speed management. ACM Transactions on

Embedded Computing Systems (TECS), 8(4):31, 2009.
[5] A. Boudjadar, A. David, J. H. Kim, K. G. Larsen, M. Mikucionis,

U. Nyman, and A. Skou. Widening the schedulability of hierarchical
scheduling systems. In I. Lanese and E. Madelaine, editors, 11th FACS

2014, Bertinoro, Italy, September 10-12, 2014, Revised Selected Papers,
volume 8997 of Lecture Notes in Computer Science, pages 209–227.
Springer, 2014.

[6] A. Boudjadar, A. David, J. H. Kim, K. G. Larsen, M. Mikučionis,
U. Nyman, and A. Skou. A reconfigurable framework for compositional
schedulability and power analysis of hierarchical scheduling systems
with frequency scaling. Science of Computer Programming, 113:236–
260, 2015.

[7] F. Cassez and K. G. Larsen. The impressive power of stopwatches.
In C. Palamidessi, editor, CONCUR, volume 1877 of Lecture Notes in

Computer Science, pages 138–152. Springer, 2000.
[8] A. David, K. G. Larsen, A. Legay, M. Mikučionis, and D. B. Poulsen.

Uppaal smc tutorial. International Journal on Software Tools for

Technology Transfer, 17(4):397–415, 2015.
[9] A. Easwaran, M. Anand, and I. Lee. Compositional analysis framework

using edp resource models. In Real-Time Systems Symposium, 2007.

RTSS 2007. 28th IEEE International, pages 129–138, Dec 2007.
[10] T. Ishihara and H. Yasuura. Voltage scheduling problem for dynamically

variable voltage processors. In Low Power Electronics and Design, 1998.

Proceedings. 1998 International Symposium on, pages 197–202, Aug
1998.

[11] J.-Y. Le Boudec and P. Thiran. Network calculus: a theory of determin-

istic queuing systems for the internet, volume 2050. Springer Science
& Business Media, 2001.

[12] Y. Liu, A. Maxiaguine, S. Chakraborty, and W. T. Ooi. Processor fre-
quency selection for soc platforms for multimedia applications. In Real-

Time Systems Symposium, 2004. Proceedings. 25th IEEE International,
pages 336–345, Dec 2004.

[13] D. Locke, L. Lucas, and J. Goodenough. Generic avionics software spec-
ification. Technical Report CMU/SEI-90-TR-008, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA, 1990.

[14] D. Mosse, H. Aydin, B. Childers, and R. Melhem. Compiler-assisted
dynamic power-aware scheduling for real-time applications. In In

Workshop on Compilers and Operating Systems for Low Power, 2000.
[15] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for

low-power embedded operating systems. In ACM SIGOPS Operating

Systems Review, volume 35, pages 89–102. ACM, 2001.
[16] S. Saewong and R. Rajkumar. Practical voltage-scaling for fixed-priority

rt-systems. In Real-Time and Embedded Technology and Applications

Symposium, 2003. Proceedings. The 9th IEEE, pages 106–114. IEEE,
2003.

[17] K. Seth, A. Anantaraman, F. Mueller, and E. Rotenberg. Fast:
Frequency-aware static timing analysis. ACM Transactions on Embedded

Computing Systems (TECS), 5(1):200–224, 2006.
[18] I. Shin, A. Easwaran, and I. Lee. Hierarchical scheduling framework for

virtual clustering of multiprocessors. In ECRTS, pages 181–190. IEEE
Computer Society, 2008.

[19] I. Shin and I. Lee. Periodic resource model for compositional real-time
guarantees. In RTSS, pages 2–13, 2003.

[20] I. Shin and I. Lee. Compositional real-time scheduling framework with
periodic model. ACM Trans. Embedded Comput. Syst., 7(3), 2008.

[21] G. M. Tchamgoue, J. Seo, K. H. Kim, and Y.-K. Jun. Compositional
power-aware real-time scheduling with discrete frequency levels. Jour-

nal of Systems Architecture, 61(7):269–281, 2015.
[22] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for

scheduling hard real-time systems. In Proceedings of IEEE International

Symposium on Circuits and Systems, volume 4, pages 101–104. IEEE,
2000.

[23] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for
reduced cpu energy. In Proceedings of the 1st USENIX Conference

on Operating Systems Design and Implementation, OSDI ’94, Berkeley,
CA, USA, 1994. USENIX Association.

[24] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced
cpu energy. In Foundations of Computer Science, 1995. Proceedings.,

36th Annual Symposium on, pages 374–382, Oct 1995.
[25] D. Zhu, R. Melhem, and B. R. Childers. Scheduling with dynamic

voltage/speed adjustment using slack reclamation in multiprocessor real-
time systems. IEEE Transactions on Parallel and Distributed Systems,
14(7):686–700, July 2003.

10

	Extensible Energy Planning Framework for Preemptive Tasks
	Recommended Citation

	Extensible Energy Planning Framework for Preemptive Tasks
	Abstract
	Disciplines
	Comments

	Introduction
	Related Work
	Preliminaries
	Power Model
	Setting of the System
	Compositional Framework
	Timed Automata and Model Checking

	Compositional Framework for Energy-Awareness
	Selection of A Minimal Frequency
	Supply Bound Function of Processor Frequency
	Real-Time Calculus based Approach

	Model-based Compositional Framework
	SWA Scheduling Unit Model
	Task Model

	Comparison of Minimal Frequency Ratios
	Observations from Use-cases
	Scalability of Model-Based Method

	Conclusion
	References

