
Journal of Artificial Intelligence Research 10 (1999) 399-434 Submitted 10/98; published 6/99

Extensible Knowledge Representation: the Case of
Description Reasoners

Alex Borgida borgida@cs.rutgers.edu

Dept. of Computer Science
Rutgers University
New Brunswick, NJ 08904 USA

Abstract

This paper offers an approach to extensible knowledge representation and reasoning for
the Description Logic family of formalisms. The approach is based on the notion of adding
new concept constructors, and includes a heuristic methodology for specifying the desired
extensions, as well as a modularized software architecture that supports implementing
extensions. The architecture detailed here falls in the normalize-compared paradigm, and
supports both intentional reasoning (subsumption) involving concepts, and extensional
reasoning involving individuals after incremental updates to the knowledge base.

The resulting approach can be used to extend the reasoner with specialized notions
that are motivated by specific problems or application areas, such as reasoning about
dates, plans, etc. In addition, it provides an opportunity to implement constructors that
are not currently yet sufficiently well understood theoretically, but are needed in practice.
Also, for constructors that are provably hard to reason with (e.g., ones whose presence
would lead to undecidability), it allows the implementation of incomplete reasoners where
the incompleteness is tailored to be acceptable for the application at hand.

1. Introduction and Motivation

Description Logics (DLs) are a family of object-centered formalisms for representing knowl-
edge about and reasoning with individuals grouped into classes (here called concepts) and
related by binary relations (here called roles). Descriptions usually have a term-like no-
tation that uses concept constructors and identifiers to build definitions of more complex
concepts from simpler ones. For example, the description in Figure 1 is supposed to capture
the noun phrase “A collection of objects that are books and that are written by two or more
authors, who are all Venusians”.

and(
BOOK
at-least(2,authoredBy)
all(authoredBy, VENUSIAN))

Figure 1: An example description.

This is accomplished by using the concept constructor and to conjoin terms that represent
component notions:

c©1999 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

Borgida

BOOK: objects that are books — a concept declared elsewhere, probably as a primitive;

at-least(2,authoredBy): objects that are related to at least 2 other objects by the au-
thoredBy role; the concept constructor is at-least here;

all(authoredBy, VENUSIAN): objects that are related by the authoredBy role only to ob-
jects that are in the concept VENUSIAN; the concept constructor here is all.

The concept VENUSIAN might itself be defined as a being whose address includes the planet
value Venus: and(BEING, all(address, fills(planet, Venus))). (Note that descriptions
can be nested.) A more precise introduction to DLs is presented in Section 2.

Description logics reason both about intensional notions such as concepts, and about
extensional aspects having to do with individuals that can be ascribed descriptions and
participate in specific relationships. DLs have found a variety of applications in areas
such as data management (Borgida, 1995), software engineering (Devanbu & Jones, 1997),
configuration management (Wright et al., 1993), as well as general AI.

A particular description language is characterized, among others, by the choice of term
constructors in it, and the significant features of DLs are clear, precise semantics and ter-
minating reasoning algorithms for tasks such as determining whether a concept is coherent,
or whether it is more general than another one.

A common difficulty faced both by designers and users of knowledge-base management
systems (KBMSs) based on DLs (or any other logic, for that matter) is that many appli-
cations need to keep information about specialized kinds of data, including strings, dates,
pictures, sequences of values of various kinds, etc., and it is practically impossible to antic-
ipate all of these as part of language design.

A related problem is that if reasoning is to be complete and efficient, or even decidable,
then what can be expressed in the language must be limited. For example, if in Figure 1 we
also wanted to say that the authors speak the language in which the book is written, there
is a concept constructor already discussed in the literature, called subset-of, with which
one could express such a constraint as subset-of([writtenIn] [authoredBy,speaks]).
Unfortunately, reasoning in a language that supports constructors and, all and subset-of is
known to be undecidable (Schmidt-Schauss, 1989). This means that the selection of concept
constructors in the language is a matter of very careful consideration for the system designer,
who is faced with several choices: (a) Select a particular subset of constructors for which
a sound and complete reasoning algorithm is known; if the language is sufficiently limited,
this procedure is guaranteed to be “fast” (e.g., in polynomial time); otherwise, its worst case
complexity is non-polynomial, though in practice the algorithm may behave well. Living
with “limited languages” is however not always easy (Doyle & Patil, 1991). (b) Choose
a larger set of constructors (possibly one which is even undecidable), and implement an
incomplete reasoner; this however requires having to explain to the user which inferences will
or will not be made. Both alternatives have different shortcomings, but, from our viewpoint,
a significant common problem is that in all cases it is the designer of the DL system who
makes these decisions ahead of time, leaving the user to sort out the consequences later on.

We propose to attack the above problems by starting with a relatively small, kernel
language and system, and then providing facilities to extend it by adding new concept con-
structors. Such extensions are not to be undertaken lightly, since they provide opportunities

400

Extensible DL Representation and Reasoning

for errors. Some of the extensions will be standard DL constructors for which complete rea-
soning can be implemented. Such extensions could be readily available in a library1 . Other
extensions will involve standard DL constructors which are known to be hard to reason
with, and for which only an incomplete reasoning algorithm is provided, because, for ex-
ample, the problem is undecidable or because the only algorithms currently known involve
combinatorial search. In this second case, consultation with the user may help determine
which inferences the implementation should make. For example, in classic, for the sake
of a clearer semantics the system designers chose to draw no inferences about an individual
based on its presence in a concept (Borgida & Patel-Schneider, 1994), although some of
these inferences are not hard to implement. Finally, new concept constructors can be added
for notions that are either domain specific (e,g,. plans, time), or which are of great practi-
cal utility but whose interaction with the full spectrum of DL constructors is not yet fully
understood theoretically; such notions include keys/unique identifiers (Borgida & Weddell,
1997) and part-whole relationships (Padgham & Lambrix, 1994).

To support this, we develop a well-modularized architecture for DL-KBMSs that are
implemented using the “normalize-compare” approach (see Section 2.4); this architecture
expects a set of procedures to be filled in for each new concept constructor extending the
original language. In addition, we propose methodological heuristics for specifying what
these procedures need to do. Note that our goal is to obtain close to the same efficiency as
would have been offered by a custom-built DL reasoner.

Of course, the approach presented here is not a panacea for knowledge representation
and reasoning. First of all, to the extent that normalize-compare algorithms are unable to
reason in a complete manner with DL constructors involving incomplete knowledge such as
disjunction, the present system is also likely to suffer the same deficiencies. Second, the
present work has not yet addressed DL notions such as role constructors, recursive concepts,
and general constraints (to be described later). Finally, there are many other notions in
knowledge representation, such as the full spectrum of epistemic and other non-monotonic
reasoning, abduction, case-based reasoning, etc., which are likely to require a thorough
overhaul of the entire reasoning architecture, and hence are likely not to be accommodated
properly by the present approach.

The outline of the rest of the paper is as follows: Section 2 provides an introduction to
DLs, their syntax and semantic description, and the services provided by KBMSs concerning
reasoning with concepts, especially the “subsumption” relationship. Section 3 introduces
the architecture of the proposed protodl approach to DL reasoning, provides an overview
of the methodology for extending it, and illustrates it with constructors involving dates; it
terminates by discussing successes and limitations of the proposed protodl approach to
extension, an its relationship to one particular other approach that is directly relevant.

In Sections 4 and 5 we repeat the above process, but considering this time reasoning
about individuals, and focusing on how to support efficiently incremental updates to the
knowledge base.

We conclude by discussing relevant related work and summarizing the contributions and
limitations of the protodl approach.

1. It is important to clarify from the beginning that the addition of constructors is often not a simple
incremental process: some constructors may behave well independently, but cause problems when brought
into the same language.

401

Borgida

2. Description Logics: An Introduction

DLs are used to describe situations using various kinds of individuals, related by roles, and
grouped into concepts. Roles that are restricted to be (partial) functions are distinguished,
and are called attributes.

In this section we present the syntax and semantics of DLs, as well as outlining the
interaction with a typical DL-based KBMS, and some implementation strategies.

2.1 Syntax and Semantics

As illustrated in Figure 1, DLs provide a compositional and structured language for
talking about these kinds of things. Composite concepts are obtained according to the
syntax presented in Table 1, which includes the concept constructors mentioned in this
paper. The meta-symbols have the following referents: CN is a concept name, p is an
atomic role (including an attribute), f is an attribute, C and D are general concepts, b is
an individual, while n is an integer; subscripts may occasionally be added to the above.

RoleChain ::= [p1, . . . , pn]
AttributeChain ::= [f1, . . . , fn]
C ::= thing | nothing | CN

| and(C1, . . . , Cn) | at-least(n,p) | at-most(n,p)
| all(p,C) | some(p,C) | fills(p,b) | one-of(b1, . . . bn)
| same-as(AttributeChain1, AttributeChain2)
| subset-of(RoleChain1, RoleChain2)

Table 1: Syntax of Concept Constructors Used.

To give meaning to the above syntactic terms, one can give descriptions a denotational
semantics using an interpretation I=(∆I ,·I). I starts by assigning to each concept name
a subset of the domain ∆I, to each role a subset of ∆I× ∆I , to each attribute an element
of ∆I × ∆I restricted to be functional, and to each individual some element of ∆I . The
interpretation is then extended to composite terms as follows. First, role chains (resp.
attribute chains) are interpreted as mappings resulting from relation composition:

[p1, · · · , pn]I = {x 7→ Sx | Sx = {y | ∃z1, ..., zn+1. z1 = x ∧ zn+1 = y ∧
n∧
i=1

(zi, zi+1) ∈ pIi }}

Table 2 then presents the interpretation of complex terms using the interpretation of their
components.

Alternatively, by noting that concepts are like unary predicates, and roles are like binary
predicates, we can offer translation schemes from descriptions to Predicate Calculus. For
example, and(AMERICAN,OLD) corresponds to the formula AMERICAN(γ)∧OLD(γ), where γ is
a free variable, while all(authoredBy,VENUSIAN) corresponds to ∀y.authoredBy(γ, y)⇒
VENUSIAN(y).

The connection between these two kinds of specifications is that interpretations can be
applied to both predicate calculus formulas as well as concepts (Baader, 1996; Borgida,

402

Extensible DL Representation and Reasoning

TERM INTERPRETATION
thing ∆I

nothing ∅
and(C1, . . . , Cn) CI1 ∩ . . .∩CIn
at-least(n, p) { d ∈ ∆I | |pI(d)| ≥ n }
at-most(n, p) { d ∈ ∆I | |pI(d)| ≤ n }
all(p, C) { d ∈ ∆I | pI(d) ⊆ CI }
some(p, C) { d ∈ ∆I | pI(d) ∩ CI 6= ∅ }
fills(p, b) { d ∈ ∆I | bI ∈ pI(d) }
one-of(b1,...,bm) { bI1 , . . . , bIm }
same-as(FC1, FC2) { d ∈ ∆I | FCI1 (d) = FCI2 (d) ∧ FCI1 (d) 6= ∅ }
subset-of(RC1, RC2) { d ∈ ∆I | RCI1 (d) ⊆ RCI2 (d) }

Table 2: Interpretation of DL Constructors.

1996): given a description C, with corresponding logical formula ΨC(γ), and an interpreta-
tion I, the denotation CI is identical to the set of values d ∈ ∆I for which ΨC(γ)I is true,
when I is extended to map γ to d.

Finally, we remark that many DLs also allow role constructors; for example, isAuthorOf
can be defined as the converse of the authoredBy relation, by writing inverse(authoredBy).
In this paper we do not consider role constructors (hence equating roles with role names).

2.2 Subsumption Reasoning with Concepts

The real significance of DLs is that one can reason about descriptions. Traditionally, the
standard question one asks is whether one description is more general than (subsumes)
another. For example, we would expect that the description in Figure 1 subsumes the
following description, which requires in addition that the books be published in at most the
four countries enumerated, and that there be at least three (rather than two) authors, who
are to be married to earthlings:

and(
BOOK
all(publishedIn, one-of(Usa,France,Germany,Italy))
at-least(3,authoredBy)
all(authoredBy, and(VENUSIAN,

all(marriedTo, TERRESTRIAL)))
)

Formally, subsumption between concepts C and D, written as C =⇒ D, holds iff CI ⊆ DI
for all interpretations I . In addition, we say that a description C is incoherent iff its
denotation CI is the empty set in all interpretations I. Note that this is the case iff
C =⇒ nothing.

The semantics of concept constructors, and especially the deductions performed by a
particular system can also be specified using proof theory. A proof-theoretic specification in

403

Borgida

the “natural semantics” style (Borgida, 1992a), would indicate, among others, that greater
bounds on the number of role fillers for role p lead to more specialized concepts:

m ≥ n
at-least(m, p) =⇒ at-least(n, p)

This rule can be paraphrased as “IF one can prove m ≥ n THEN one can write as the next
line of a proof that at-least(m, p) =⇒ at-least(n, p).” Such a rule allows us to prove that
at-least(2,authoredBy) =⇒ at-least(1,authoredBy).

As usual, it is possible (and desirable) to demonstrate that the rules of inference are
sound and complete with respect to the denotational semantics. Rules of inference are useful
in characterizing reasoners that are incomplete with respect to the standard denotational
semantics, by describing either the inferences performed, or the ones missing. Also, as
we shall argue below, rules of inference can form a good starting point for developing
implementations.

2.3 DL Concept KBMS

A concept knowledge base CKB (also known as a T-box) records constraints on concept
names, including definitions (such as the concept VENUSIAN mentioned in our examples) and
necessary conditions for primitive concepts (e.g., a BOOK would be required to have at least
one author). In some DLs it is possible to state general subsumption constraints between
arbitrary descriptions, but this will not be permitted in this paper.

Formally, CKB is a tuple (R,F , C,O,N ,D) where R,F , C,O are respectively the sets
of role, attribute, concept and individual object identifiers declared. Concept names are
either primitive/atomic concept names, PN , which have associated a necessary condition
PN ≤̇ C in the set N of necessary conditions; or defined concept names, DN , which have
associated a definition DN .= C in the set D of definitions. An interpretation I is a model
of PN ≤̇ C iff PNI ⊆ CI , and is a model of DN .= C iff DNI = CI . An interpretation is
a model of CKB if it is a model of all conditions in N and D.

C is said to subsume D in the presence of a knowledge base CKB (written CKB
|= C =⇒ D), iff CI ⊆ DI for all models I of CKB.

In this paper we are restricting ourselves to non-recursive knowledge bases, where def-
initions and necessary conditions are given at the same time as the name is declared, and
they can only involve previously declared identifiers.

A DL-based knowledge base management system supports certain update operations,
which affect the CKB (R,F , C,O,N ,D) as follows:

Operation Effect
declare-primitive-role(p) p is added to R
declare-primitive-attribute(f) f is added to F
declare-individual(b) b is added to O
declare-primitive-concept(PN ,D) PN is added to C, and PN ≤̇D to N
declare-defined-concept(CN ,D) CN is added to C, and CN .= D to D

In return, we expect the KBMS to respond to inquiries, which include retrieving the decla-
rations entered and at least the following operations:

404

Extensible DL Representation and Reasoning

Question Answer type Response
ask-subsumes?(C,D) Boolean true iff CKB |=C =⇒ D

ask-ancestors(C) SET(ConceptName) {CN ∈C | CKB |=C =⇒ CN}
ask-is-incoherent?(C) Boolean true iff CKB |=C =⇒ nothing

A number of other operations on concepts have been found to be useful, including
(i) computing the least common subsumer of two concepts (Cohen, Borgida, & Hirsh,
1992) (useful for machine learning), (ii) matching concepts against patterns (Borgida &
McGuinness, 1996) (useful in large KBs for viewing only relevant aspects of concepts), (iii)
finding what additional information has been deduced about a concept or especially an
individual given the information in the KB (see Section 4.2).

To facilitate answering the above questions, and others like them, the DL-KBMS almost
always performs concept classification: named concepts (“classes”) are organized into the
so-called IsA hierarchy, finding for each class the most specific other classes that subsume
it. The classification algorithm relies on the =⇒ relationships, treating it as a subroutine,
and as such is largely DL-independent. Interesting previous work in this area has been
reported by Baader et al (Baader et al., 1994).

The KBMS is also charged with a number of clerical tasks, including keeping a symbol
table of the declarations, maintaining and accessing efficiently the precomputed IsA hierar-
chy, signaling definitions/declarations that are redundant (i.e., a concept which is equivalent
to a previously defined one) or are incoherent.

DL-KBMS perform inferences on individuals, as well as concepts. The operations in-
volved will be described in Section 5.

2.4 Reasoning Strategies

There are two general approaches to answering the fundamental subsumption question
underlying the DL-KBMS operations.

One approach is based on theorem proving techniques specially adapted for descriptions,
particularly variants of tableau techniques that determine the subsumption A =⇒ B by
checking for the unsatisfiability of A∧¬B; systems such as kris (Baader et al., 1994),crack

(Bresciani, Franconi, & Tessaris, 1995), FaCT (Horrocks, 1998) and DLP (Patel-Schneider,
1998) follow this approach. Such systems have the advantage of being provably complete.
Although the worst-case complexity bounds of the subsumption problems are sometimes
quite high (EXPTIME complete), recent empirical evidence shows that their performance
for computing subsumption on large realistic KBs is quite effective (Horrocks & Patel-
Schneider, 1998).

All the implemented DL KBMS systems that have had wide distribution and use, such
as back (von Luck et al., 1987), classic (Borgida et al., 1989), and loom (MacGre-
gor, 1986), follow a so-called “normalize-compare” paradigm, where most of the reasoning
work is performed in an initial “normalization” phase, whose goal is to find a normal
form for concepts which explicates implicit facts, eliminates redundancies and detects in-
coherencies. Once this is done, when, for example, it comes to comparing two concepts for
subsumption, it is often (but not always) a matter of comparing only “structurally simi-
lar” elements – ones built with the same constructor. For example, since the descriptions

405

Borgida

all(pet,nothing) and at-most(0,pet) are equivalent (subsume each other), in a nor-
mal form both would appear, so that subsumption comparison with all(pet,DOG) would
only require looking at all(pet,nothing), while comparison with at-most(3,pet) would
locate at-most(0,pet).

The present work was carried out over a period of several years within this “normalize-
compare” paradigm. The original reasons for this choice included the following features,
which were only available for this paradigm: having a sizable user base; supporting addi-
tional KBMS operations, such as least common subsumer, pattern matching, explanation;
reasoning with large knowledge bases of individuals, and especially doing so incrementally
in an environment where one needs the “logical completion” of an individual.

We remark that the tableau technology has recently become competitive on sizable
knowledge bases of concepts. The promise of provably complete and effective reasoners for
expressive languages is very enticing, and therefore the study of extensibility in tableaux
approaches (Baader & Hanschke, 1991; Bresciani et al., 1995) is of great interest.

3. Concept Reasoning in protodl

Our approach to extensible KBMSs is based on the idea that in a case when the current
KBMS does not meet the users’ representation and reasoning needs, one can extend it
by adding one or more new description constructors – what would be considered logical
connectives.

Although this approach is clearly restrictive, it has the advantage of being very specific
and directed; it allows us to develop an implementation architecture and accompanying
methodology to support the process of extension. The approach is also supported by em-
pirical evidence from the use of the classic system in many applications: the test-defined
concepts of classic have been crucial in escaping the expressive limitations of the basic
language, and each such test function acts essentially as a new concept constructor2.

3.1 The Modularized Implementation Architecture

As previously described, the concept reasoning services of our DL-KBMS are delivered by
operations which rely on the =⇒ relationship, to be computed by the function Subsumes?.
In our implementation paradigm, this function takes as arguments two normalized concepts.
Hence we need some way to take input and convert it into normalized concepts. This means
parsing the concept (function Parse) and normalizing it (function Normalize).

Because of the uniform prefix nature of DL syntax, parsing is easily performed by recur-
sive descent with a single token look-ahead; so we associate with every concept constructor
Q, a function Q::Parse.

After examining earlier implementations and applications, a key decision underlying the
protodl implementation is that a normalized concept is viewed as the conjunction of a
collection of component concepts, which are either concept identifiers or are normalized
terms built with concept constructors Q other than and. Therefore, it is possible to view
a normalized concept as a data abstraction that encapsulates the way in which the various

2. Note however that reasoning with test-concepts in classic was minimal: no subsumption reasoning
other than identity checking was performed, and individual reasoning was limited to recognition.

406

Extensible DL Representation and Reasoning

components are stored and accessed thru a set of functions put Q(value) and get Q() —
one for each concept constructor Q. For example, the put one-of operation stores a set of
individuals S, while get one-of returns this set3. On the other hand, for the constructor
fills, the (normalized) value stored is a set of terms of type <Role × SET(Individual)>,
since for each role, we need to store the set of current fillers. For constructors such as
fills, which are associated with a single role, we overload the put and get functions so
they accept a separate role argument, allowing us to access each value independently (e.g.,
get fills(p:<Role>) returns <SET(Individual)>). In fact, for such constructors it is
more efficient to group them by the role identifier, but to simplify the exposition we shall
not pursue this distinction in the rest of this section.

As mentioned earlier, the ideal normalized concept would have the property that sub-
sumption could be determined by comparing, using Q::Subsumes?, only components built
with the same constructor. In other words, Subsumes? would have the pseudo-code

Subsumes?(hiNC, lowNC: <NormalizedConcept>) returns <Bool>
;; structural subsumption
{For every Q(T) in getComponents(hiNC) do

{ lowComponent := get Q(lowNC);
if not Q::Subsumes?(T,lowComponent)

return false; }
return true; }

As we shall see in Section 3.3, this is too restrictive however, so we will pass as parameter
the entire normalized lower concept, lowNC, rather than just the lowComponent. Therefore,
for every constructor Q we expect a function

Q::Subsumes?(<NormalizedQ-term>,<NormalizedConcept>) .
In order to normalize a concept, we will normalize each component separately, and then
combine them. Since a normalized concept represents a conjunction, the combinator func-
tion will be named Conjoin. Here are then the remaining functions that are provided ahead
of time by the core implementation:

Normalize(pC : <ParsedConcept>) returns <NormalizedConcept>
throws IncoherentExn;

/* Start ND to be a data structure having no constraints – i.e.like thing */
ND := copy of NormalFormthing;

{ /* Normalize each component and conjoin it onto ND */
For every Q(T) in pC do {

T norm := Q::Normalize(T);
Q::Conjoin(T norm,ND); }

/* Replace concept ids by normalized form (saved by declare) */
For every concept identifier N in pC do {

N norm := look up normalized form of N;
Conjoin(N norm,ND); }

3. The type of a parameter will be indicated by enclosing it in angle-brackets. Thus, we would have referred
to put one-of(s: <SET(Individual)>).

407

Borgida

/* if any Normalize or Conjoin detects an incoherence, propagate it up,
since the whole conjunct is incoherent. */

} catch IncoherentExn { throw IncoherentExn }
return ND;

Conjoin(fromNC, ontoNC: <NormalizedConcept>) throws IncoherentExn
/* Take each component of fromNC and conjoin it to ontoNC;

modifies ontoNC. */
{For every Q(T) in getComponents(fromNC) do

{Q::Conjoin(T, ontoNC)
} catch IncoherentExn {throw IncoherentExn }

}

Therefore, for every constructor Q, we also expect corresponding functions Q::Normalize

and Q::Conjoin . Note that the software architecture treats incoherent concepts (ones
equivalent to nothing) in a special manner: whenever they are encountered, a special ex-
ception IncoherentExn is raised. Conjunction propagates these exceptions, but other con-
structors may trap them and handle them in their own way. For example, all::Normalize
accepts the restriction being incoherent, but must ensure that at-most(0) is also added to
the normalized concept for the same role.

In retrospect, the above three functions (Subsumes?, Normalize and Conjoin) really
represent the semantics of the constructor and (and hence can be appropriately called
and::Subsumes?, etc.) as well as the expansion of necessary conditions/definitions for
named concepts (“inheritance”), and parts of the meaning of the built-in concepts noth-

ing and thing. To make this more complete, we can add to the beginning of the Subsumes?
function the statement: if equal(hiNC,NormalFormthing)or equal(lowNC,NormalFormnoth-

ing) then return true;
In this sense, protodl starts from a minimal, core language specified by the syntax

C ::= thing | nothing | CN | (and C1, . . . , Cn)

This is not to say that everyone must start from this minimalist language, which is hardly
useful. But it will have the advantage that all constructors (even the most useful ones,
like all, at-least, etc.) will be implemented as extensions, according to the same uniform
paradigm as the more esoteric extensions. This will be essential if we are to be able to
easily modify the implementation of standard constructors (like all) when called upon to
implement non-standard ones (like dates), which may interact with them.

3.2 An Overview of the Process of Extension.

Suppose we want to extend the system at some particular stage with a new concept con-
structor. The following is a suggested methodology for accomplishing this, illustrated with
a familiar concept constructor, all.

408

Extensible DL Representation and Reasoning

(1) Determine a syntax for the extension. If concepts will have a LISP-like syntax (as in
classic and loom), the constructor all might be given the syntax (:all Role Concept).
The terms following the constructor are called its arguments, and a version of them will
eventually be stored in the internal representation of our normalized concepts. One can
now implement the function all::Parse, which in this case would invoke Role::parse and
Concept::parse.
(2) Determine a semantics for the new concept constructor.
First, this requires settling on a domain of values from which its denotation will come. This
might be the set of ordinary objects with unique intrinsic identity — instances of a special
class any-object, which is a built-in direct subclass of thing. The denotation might also
be some new kind of value (e.g., triples for dates, or lists of objects), in which case it is
necessary to introduce (possibly as a new concept constructor, which takes no argument) a
top class for these kinds of values (e.g., any-date for dates).

It is now time to clarify the intended meaning of the new constructors. One alternative,
not explored here, is to express the semantics using First Order Predicate Calculus. Another
is to assign a denotation of values to concepts built with the new constructor. For all, this
is just the usual interpretation

all(p, C)I = { d ∈ ∆I | pI(d) ⊆ CI }

Rather than move on to implementation right away, our experience indicates that it is
easier to first describe the deductions to be performed in a more concise manner: through
rules of inference. Based on empirical evidence, we see these rules of inference as being
naturally grouped into several categories4

• Rules dealing with just one constructor, Q.

– Normalizing the arguments of Q, if these are themselves composite objects.

C ≡ D
all(p, C) ≡ all(p,D)

– Reasoning only with concepts of the form Q(args).

∗ When is such a concept incoherent by itself?

all(p, C) is never incoherent.

∗ When is such a concept equivalent to the entire domain of values?

all(p, thing) ≡ any-object

∗ When does Q(arg1) subsume Q(arg2) in terms of arg1 and arg2? (The so-
called structural subsumption relationship.)

C =⇒ D
all(p, C) =⇒ all(p,D)

4. In each case, we give a general description of what is desired for a new constructor Q, and then illustrate
it with the specific constructor all.

409

Borgida

∗ When does Q(arg) entail some description built with some other constructor?

all(p,nothing) ≡ at-most(0, p)

– Reasoning with conjunctions of descriptions built with Q only. This usually
results in a normal-form that either combines the arguments into a single one,
or keeps the arguments as a list, set or multi-set.

and(all(p, C), all(p,D)) ≡ all(p, and(C,D))

• Rules of inference dealing with combinations of several concept constructors. These
rules can be grouped into similar families as above, except that they will involve two
or more kinds of constructors.

Since there is no such rule involving all, we offer an alternative example:

and(at-most(n, p), at-least(m, p)) ≡ nothing if n<m

The augmented set of inference rules should be proven sound and complete with respect
to the semantics specified earlier. As with any logic, soundness is relatively easy to show, but
completeness is much harder. Royer and Quantz propose one approach (Royer & Quantz,
1992) for generating inference rules that are complete, based on translation to First Order
Logic, but the technique is not easy to apply.
(3) Extend the implementation. This requires first determining an appropriate normal
form for the argument of constructor Q, declaring a data structure to hold the information,
and completing the put Q and get Q procedures to access them from a normalized concept.
For simplicity, we will not address detailed data structure issues here; instead, we use a
simple notation based on terms in the style of Prolog to represent data structures. In the
case of all, the representation is just a pair all(<Role>,<NormalizedConcept>). We
note that if we wanted to keep track of the original form of the concept (so it can be printed
out to users as entered), this could be added as an extra field of the data structure. We
emphasize that the normalized form of the description (e.g., a finite automaton) might not
even resemble the original syntax (e.g., a regular expression), though in our examples this
will not be the case.

Next, we need to implement the three procedures: Q::Normalize,Q::Conjoin, and
Q::Subsumes?, whose invocation is orchestrated by the corresponding functions for the
and constructor.

By analyzing the normalization algorithms for numerous constructors, we have arrived at
a more refined understanding of the prototypical Q::Conjoin procedure. This is presented
in the Appendix A as Figure 3, and uses the following other, smaller functions

Q::Universal? , Q::Incoherent? , Q::SubsumesSame? , Q::ConjoinToSame ,

Q::IncoherentWDifferent? , Q::SubsumesDifferent? , Q::ConjoinToDifferent ,

Q::FindOtherImplications .
These functions correspond to the categories of inference rules we have mentioned above.
When this decomposition can be applied, it provides two advantages: improved chances of
correct implementation by making smaller, specialized modules; and independent reuse, as
in

410

Extensible DL Representation and Reasoning

Q::Subsumes?(T:<NormalizedQ-Term>, lower:<NormalizedConcept>)
returns <Bool>

{if not Q::SubsumesSame?(T,get Q(lower)) then return false;
if not Q::SubsumesDifferent?(T,lower) then return false;
return true; }

Of course, if a specific constructor does not need to implement some of these sub-
procedures, the corresponding lines from the generic implementations are omitted, in order
to avoid the cost of useless function invocations.

For our simple example, when Q=all, all::Normalize(all(role,vr)) returns
all(role, and::Normalize(vr)).

If the only other constructor is at-most, the following functions used by all:Conjoin
and all::Subsumes? are needed:

• Q::Universal?(T): Is T equivalent to the top of the hierarchy for that set of values?
all::Universal?(all(role,vr)) returns true when vr is NormalFormthing.

• Q::SubsumesSame?(T,OldTs): Is T implied by the Q-constructed terms already seen
in oldTs? This is basically the “structural subsumption” algorithm.
all::SubsumesSame?(all(role,vr1),all(role,vr2)) would return true iff
and::Subsumes?(vr1,vr2) returns true.

• Q::ConjoinToSame(T,OldTs): Merge T with any preceding terms built with Q.
all::ConjoinToSame(all(role,vr1),all(role,vr2)) returns
all(role,and::Conjoin(vr1,vr2)).

• Q::FindOtherImplications(T,This,ImplicationsToDoList): If any additional
constructors have to be added because of Q, put them onto the ImplicationsToDoList.
all::FindOtherImplications adds to ImplicationsToDoList the description
at-most(0,role) if its first argument is all(role,nothing).

Once the Conjoin, Normalize and Subsumes? functions are implemented for the new
constructor Q, the corresponding functions for and need to have lines added to invoke
them according to the pattern presented in the preceding section (unless the programming
language is highly polymorphic).

Next, we use reasoning about dates, an extension desired in some classic applications,
to give a more complex example of the methodology for building extensions of protodl.

3.3 Dates: An Example Concept-Level Extension

We imagine an application where there will be individual dates as values of attributes or
even roles, and that concepts will describe collections of dates, specified in various ways
(e.g., as ranges or periods).

To begin with, it is important to clarify what the individuals look like about which
information will be kept. In the case of dates, we know that we wish to treat them as
temporal points, which have associated information about the year, month and day when
that date occurs. Given a date d, the above components will be referred to as year(d),

411

Borgida

month(d), day(d). There are two different ways of thinking of a date: as an abstract
mathematical value (e.g., a triple of integers) or as an individual object with attributes for
year, month, day. The last approach has the disadvantage that we need to develop a
separate theory of identity for dates (two dates are supposed to be identical if they have
the same components), although it has the advantage of allowing incomplete information
about the exact occurrence of a time point. Since this feature is not desired, we will adopt
the first approach, for convenience writing date individuals as 1996/7/25. In addition, we
will have the usual total (reflexive) order � on dates, as well as two special date constants,
BeginTime and EndTime, such that BeginTime � d � EndTime for all dates d.

We are now ready to introduce concept-forming operators for dates which are useful for
our application. First, when introducing a new kind of value, it is useful to define a top
concept, which will contain all such values. In our case, let us call it any-date.

One obvious grouping of dates is by ranges: “between June 1st and August 31, 1996”.
We might thus propose a concept constructor dateRange, which takes as argument a pair of
dates, denoting the ends of the range, e.g., dateRange(1996/6/1,1996/8/31). But since
the base language does not support disjunction, and we want to allow descriptions such as
“the summers of 1995 and 1996”, we will in fact have dateRange take as argument a set
of date pairs, as in dateRange({(1995/6/1,1995/8/31) , (1996/6/1,1996/8/31)}).

Having established the syntax of the concept constructors, and then implemented date-
Range::Parse, we present its denotational semantics:

dateRange(SD)I = { d | ∃b, e.(b, e) ∈ SD such that b � d � e }

Next, we look for inference rules describing the desired reasoning for dateRange. Fol-
lowing the heuristics in Section 3.2, we come up with Table 3.

To implement the inferences for dateRange, we must find a normal form and write func-
tions dateRange::Normalize, dateRange::Conjoin and dateRange::Subsumes?, or
their components.

It is useful to determine first the structural subsumption function, dateRange::-
SubsumesSame?, since this drives the requirements for the others. In our case, the obvious
representation works fine: a date is some data structure, such as a list of three values or
a record with three fields; a single date-pair is a list of two values or a record with two
fields; and the set of date-pairs making up the disjunction is just a list of date-pairs. It is
best to encapsulate the above implementation choices using abstract data types for Date,
DatePair and DateRange, with appropriate accessor functions and constructors. We must
also extend the representation of normalized concepts to implement put dateRange and
get dateRange.

Returning to dateRange::SubsumesSame?, this function now simply implements the
subsumption inference rules above

dateRange::SubsumesSame?(high,low : <SET(Date×Date)>): returns <Bool>
{for every (b,e) in low

find (b’,e’) in high such that b’ � b � e � e’;
}

412

Extensible DL Representation and Reasoning

Universal dateRange({(BeginTime,EndTime)}) ≡ any-date

Incoherent dateRange({}) ≡ nothing

Subsumption b1 � b2 � e2 � e1
dateRange({(b2,e2)}) =⇒ dateRange({(b1,e1)})

dateRange(α1) =⇒ dateRange(α2)
dateRange(β1) =⇒ dateRange(β2)

dateRange(α1∪ β1) =⇒ dateRange(α2∪ β2)

Conjunction
and(dateRange({(b2,e2)}), dateRange({(b1,e1)})) ≡
dateRange({ (max(b1,b2),min(e1,e2))})

and(dateRange(α),dateRange(β1)) ≡ dateRange(γ1)
and(dateRange(α),dateRange(β2)) ≡ dateRange(γ2)

and(dateRange(α), dateRange(β1 ∪ β2)) ≡ dateRange(γ1∪ γ2)

Normalize
e � (b + 1 day)

dateRange({(b,e),α}) ≡ dateRange({α})

b1 � b2 � (e1 + 1 day) � e2
dateRange({(b1,e1),(b2,e2)}) ≡ dateRange({(b1,e2)})

Table 3: Inference rules for dateRange.

dateRange::Normalize verifies (if not already done so) that the dates b and e in
each pair (b,e) are valid according to our usual calendar, and that b � e. Any pairs not
satisfying these conditions are eliminated. It also needs to merge overlapping or adjacent
intervals into maximally long ones, since otherwise the above subsumption algorithm will not
recognize that dateRange({(1996/1/2,1996/1/4), (1996/1/5,1996/1/6)}) subsumes
dateRange({1996/1/2, 1996/1/6}).

The function dateRange::Conjoin has the standard implementation (see Appendix
A), but only functions dateRange::Universal?, dateRange::Incoherent?, dateRange-
::ConjoinToSame and dateRange::SubsumesSame? need to be implemented, performing
exactly the actions specified by the rules of inference.

Consider now adding another concept constructor for dates, to help represent periodic
time, such as “every summer” or “every Christmas”. A single period is just a range con-
straint on the possible values for the components of a date, other than year. So, “summer
days” would be represented by [(6 . 8) (1 . 31)], while “Christmas” would be [(12 . 12)
(25 . 25)]. For the sake of brevity, this new period constructor will take as argument
only a single period (rather than a set of them, interpreted disjunctively) and we will only
sketch the implementation extensions. Also not presented here, is a very useful extension to

413

Borgida

Universal period([(1 . 12) (1 . 31)]) ≡ any-date

Incoherent
not(bm ≤ em and bd ≤ ed)

period([(bm.em) (bd.ed)]) ≡ nothing

Subsumption bm1 ≤ bm2 ≤ em2 ≤ em1 and bd1 ≤ bd2 ≤ ed2 ≤ ed1
period([(bm2.em2)(bd2.ed2)]) =⇒ period([(bm1.em1)(bd1.ed1)])

Conjunction

and(period([(bm1.em1)(bd1.ed1)]), period([(bm2.em2)(bd2.ed2)]))
≡

period([(max(bm1,bm2) . min(em1,em2))
(max(bd1,bd2) . min(ed1,ed2))])

Table 4: Inference rules for period.

periods allowing constraints on the days of the week, such as “every Saturday to Sunday”,
or even “every 3rd Sunday”.

The denotation of period terms is also quite simple:

period([(m1.m2)(d1.d2)])I = {e | m1 ≤ month(e) ≤ m2, d1 ≤ day(e) ≤ d2}

The rules of inference for reasoning about period concepts alone, presented in Table 4
are also straightforward. The implementation of most functions follows immediately from
the rules of inference.

The interesting reasoning involves the conjunction of ranges with periods. These rules,
appearing in Figure 5, can be expressed most succinctly by showing how certain periods
are either eliminated or retained unchanged, and then relying on the dateRange normal-
ization rule, applied in reverse, to cut up a range into appropriate strips. These inference
rules imply that we need to also implement period::ConjoinToDifferent (p:<Period>,
other:<NormalizedConcept>), which basically uses the period as a “cookie cutter” to
create the sub-interval ranges that satisfy the period’s restriction. Of course, this will
be done procedurally in a manner more efficient than suggested by the rules of inference.
Moreover, we must now revisit the implementation of dateRange, to put in a similar dat-
eRange::ConjoinToDifferent function, since a concept with a range may be conjoined
onto one that already has a period in it.

Finally, in the presence of both dateRange and period constructors, structural sub-
sumption is not enough, since we want period([(4 . 4) (1 . 31)]) to subsume dat-
eRange((1988/4/1, 1988/4/21)), but not dateRange((1990/4/1, 1992/4/1)), and
there is no finite normal form which would list all the ranges satisfying a period. So we need
to also write the function period::Subsumes Different?(p:<Period>, lower:<Norma-
lizedConcept>), which checks every interval (b,e) in get dateRange(lower) to make
sure that year(b)=year(e) and that the month and day meet the conditions of the period.

An interesting complication arises because dates are discrete, and hence one can count
the number of dates in a dateRange. If dateRange can appear as the value restriction

414

Extensible DL Representation and Reasoning

and(dateRange(α ∪ β),period(δ))
≡

and(and(dateRange(α),period(δ)), and(dateRange(β),period(δ)))

bm ≤ month(dt1) = month(dt2) ≤ em and
bd ≤ day(dt1) ≤ day(dt2) ≤ ed

and(dateRange({ (dt1,dt2) }) , period([(bm.em),(bd.ed)]))
≡

dateRange({ (dt1,dt2) })
month(dt1)=month(dt2) and
not (bm ≤ month(dt1) ≤ em and bd ≤ day(dt1) ≤ day(dt2) ≤ ed)

and(dateRange({(dt1,dt2)}) , period([(bm.em),(bd.ed)])) ≡ nothing

Table 5: Inference rules for conjoining period and dateRange.

of general roles, as in all(freeForMeeting, dateRange({(1995/6/1,1996/6/5)})) at-
tributes, there is no problem. Otherwise, we can however infer cardinality constraints on
the number of fillers: dateRange({(1995/6/1,1996/6/5)}) allows only 5 different val-
ues. In a language that supports constructor at-most, we would therefore have to conclude
at-most(5,freeForMeeting). The implementation achieves this by introducing a helper
function dateRange::countDays, which can be applied to a normalized dateRange ob-
ject; then, function all::FindOtherImplications needs to be modified, so that it invokes
dateRange::countDays on its value restriction if it is of date type, and a normalized
at-most restriction is posted for that role on the ImplicationsToDoList. Later process-
ing of that list will remove the at-most constraint and conjoin it onto the concept.

3.4 Experience with Extensions

As part of the development of the above architecture, we have considered extending the
original core with the constructors of classic (all, at-least, at-most, fills, one-of, integer
ranges), as well as primitive concept negation, and the negation of fills. In these cases we
have reproduced the inferences of classic and almost exactly the internal actions of the
classic implementation; i.e., we perform only a few more checks despite the fact that our
implementation is made up of “standard” modules for each constructor.

Two kinds of concept constructors seem difficult to add to a normalize-compare algo-
rithm in a way that preserves completeness of reasoning and the architecture of the system.
Disjunction would most naturally be handled if there was a disjunctive normal form, where
each disjunct is purely conjunctive. This is difficult to achieve with nested disjunctions
(inside all restrictions say). Note that we had no problem with the one-level disjunction in
dateRange.

A second kind of construct that is difficult to add efficiently and completely is same-as.
The reason here is that same-as interacts with all in a way that generates a potentially in-
finite number of all restrictions; therefore, the implementation of same-as is best combined

415

Borgida

with that of all, resulting in a non-tree data structure (Borgida & Patel-Schneider, 1994).
A speculative way to preserve structural subsumption might be to allow all to apply to
chains of a attributes represented by regular expressions. (In general, the complications of
implementing same-as are the reason it does not appear in C-classic and neo-classic.)

Finally, as mentioned earlier, we do not currently cover role constructors and recursive
concept constraints. Furthermore, constructors that require entirely new deductive mech-
anism (e.g., epistemic reasoning, defaults, forward-chaining rules) will also have difficulty
being integrated properly into this framework.

On the positive side, we have considered extensions supporting strings (Borgida, Isbell,
& McGuinness, 1996), and most elaborately, a reconstruction of the clasp reasoner about
actions and plans (Borgida, 1992b). To summarize this “success” briefly, clasp (Devanbu &
Litman, 1996) was a system built on top of classic for reasoning about actions (which were
represented in propositional STRIPS-style, having concepts for pre- and post-conditions, as
well as add and delete lists); plans were represented by regular expressions of actions, as
illustrated below. Our goal was to apply the protodl approach to clasp, hoping to
be able to reproduce the original, custom-made implementation discussed by Devanbu and
Litman (Devanbu & Litman, 1996). First, we introduced a concept constructor for actions,
act(PreC, PostC, AddC,DeleteC), with the expected logical properties expressed as rules
of inference in the various categories (e.g., if PreC was incoherent, then the action was also
incoherent). The implementation then followed immediately.

The more interesting problem was dealing with plans. The constructors single, seq,
loop, and altern can be used to build complex plans from actions, as in seq(single(DIAL),
loop(single(RING))). These plans denote sequences of action instances (e.g., in the above
example, a dialing action followed by any number of rings). Although we provided rules
of inference for plans too, it turns out that there is no normal form for regular expres-
sions! Instead, in the implementation, Normalize for seq, altern and loop built a non-
deterministic finite automaton, which then had to be made deterministic, and in which
certain chains of arcs had to be removed (if the post-condition of the action on the in-
coming edge was inconsistent with the pre-condition of the action on the outgoing edge).
Moreover, the containment algorithm for these finite automata had to take into account
the fact that actions on transitions (e.g., MOVE) may represent generalizations of oth-
ers (e.g., MOVE-FAST). This implementation was achieved in protodl by introducing a
“hidden” concept constructor, top-plan-exp, which enclosed the top plan. It was then
top-plan-exp::Normalize that made the automaton deterministic and removed some
transitions, and top-plan-exp::Subsumes? that implemented the special subsumption al-
gorithm. Moreover, the requirement to implement top-plan-exp::Conjoin, which was not
present in the original clasp system, made us realize that without this, clasp plans could
not appear in other concepts, because expressions like and(all(p,PLAN1), all(p,PLAN2))
could not be normalized. As a result we believe we reconstructed and improved the original
clasp proposal, by characterizing the inferences performed through rules of inference, and
by allowing plans to be first-class values, which could appear in ordinary roles.

416

Extensible DL Representation and Reasoning

3.5 Relationship to “Concrete Domain” Extensions

Although we shall address general work on extensible KR&R in the conclusion, there is
one specific approach involving description logics that deserves closer scrutiny at this stage,
while the details of the present work are still fresh.

Baader and Hanschke’s proposal (Baader & Hanschke, 1991) for extending DLs with
“concrete domains” allows concepts to consist of arbitrary predicates involving values from
some domain other than ordinary objects (i.e., other than elements of ∆I), as long as
these values are fillers of attributes of ordinary objects. For example, suppose the concrete
domain is that of dates; as above, we have predicates like BEFORE, corresponding to
� ; then, if we had two date-valued attributes arrival and departure, we could define

the concept BEFORE(arrival,departure), denoting ordinary objects (not sets of dates!)
whose attributes have appropriately related date values.

In order to keep reasoning decidable, this mechanism requires the concrete domain to
be “admissible”: (i) there must be a predicate denoting the universe of all values in that
concrete domain; (ii) the set of predicates must be closed under negation; and (iii) it must
be possible to decide the satisfiability of any finite conjunction of such predicates. It is
interesting to note that these requirements match in part our heuristics for new concept
constructors: we also argued for the need to add a top concept to the hierarchy of new values
(and its negation, the bottom of this hierarchy), and for the need to be able to compute
the conjunction of descriptions.

The admissibility of a concrete domain ensures that the protodl approach can im-
plement any such extension as follows: Syntactically, a domain corresponds to a concept
constructor. Therefore, a concept like BEFORE(arrival,departure) in the domain DATE,
would be represented in protodl as DATE(’BEFORE’,arrival,departure). Then, the
necessary protodl functions are programmed as follows: DATE::Normalize tests that
the predication is satisfiable (otherwise signaling IncoherentExn), and creates a singleton
list containing the predication; DATE::Conjoin concatenates the list of predications of
its arguments, checking for the consistency of their conjunction; DATE::Subsumes?(C,D)
creates the conjunction of all the predicates in C, and their negation in D, and returns true
if the result is unsatisfiable.

Conversely, Baader and Hanschke’s approach could well be applied to date ranges, since
these are essentially closed under negation. And since it is offered in the context of the
tableau theorem-proving technique mentioned in Section 2.4, this continues to have the
advantages of elegance and complete reasoning, as long as the concrete domain reasoner is
proven complete. In our case, the entire system would have to be proven complete.

We believe though that protodl is somewhat more general, since it allows concrete
domains to be value of roles, not just attributes (see our earlier discussion of dates as values
of roles). Also, there is some advantage to being able to deal with non-admissible domains
in cases when negation is not absolutely needed, but its addition would cause an increase in
computational complexity; for example, adding negation/complement to regular expressions
makes the containment problem non-elementary (Stockmeyer, 1974).

417

Borgida

4. Processing of Individuals in DLs: An Introduction

Concept descriptions, as introduced above, are intensional objects, suited for capturing
generic information about a domain, such as the ontology of terms. DL-KBMSs must also
manage extensional/factual information about individual objects — the so-called A-box5.

4.1 Inferences Involving Individuals

Normally, one can assert information such as the fact that some object Anni is known to
be an instance of a concept CHILD (written as Anni:CHILD), or that it has some other
object, Lego as a filler for its hasToys role (written as (Anni,Lego):hasToys). Based
on this information, the KBMS can deduce information about the individual’s member-
ship in other descriptions (written using −→); for example, in this case we know Anni
−→ at-least(1,hasToys). Because DL-KBMS usually do not make the closed-world as-

sumption, it is also necessary to record when some set of fillers is complete for an individual’s
role. This is done using an (auto-epistemic) assertion like
Anni:allFillersKnown(hasToys,{Lego,Barbie}). As a result of such an assertion, we
can then deduce that Anni −→ at-most(2,hasToys). (Note that we have distinguished
the three kinds of assertions in A, namely b : C, (b, e) : p, b : allFillersKnown(p, S), from
the corresponding judgements that can be deduced in the logic: b −→ C, b −→ fills(p,e),
b −→ closedFillers(p,S).)

Information about fillers and roles being closed (i.e., all fillers being known) can also be
deduced, as in the case of the KB that contains A={Lori:all(hasToys,one-of(Lego45)),
Lori:at-least(1, hasToys)}, from which we can conclude that Lego45 is a toy owned by
Lori (written as Lori −→ fills(hasToys,Lego45)) and that the complete set of fillers for
hasToys is { Lego45 } (written as Lori −→ closedFillers(hasToys,{ Lego45 })). We
note that an elegant formalization of these notions has been obtained by adding an epistemic
modal constructor K to DLs (Donini et al., 1998). This constructor has a number of other
uses, but to shorten the presentation we have not introduced it here explicitly.

Formally, we define a knowledge base KB to be a concept knowledge base CKB, extended
with a set A of assertions of the form b : C, (b, e) : p and b : allFillersKnown(p, S),
where S is some set of individuals. An interpretation I is said to be a model for b : C if
bI ∈ CI , a model for (b, e) : p if eI ∈ pI(bI), and a model for b : allFillersKnown(p, S) if
(eI ∈ pI(bI) ⇐⇒ e ∈ S)6.

The judgment KB |= b −→ C holds iff for every model I of KB, bI ∈ CI ; the judge-
ment KB |= b −→ fills(p, e) holds iff for every model I of KB, (bI, eI) ∈ pI ; finally,
KB |= b −→ closedFillers(p, S) holds iff KB |= b −→ fills(p, bi) for every bi ∈ S, and
for every other individual e not in S, there is some interpretation I of KB such that
6 KB |= b −→ fills(p, e) . Because our concept language may not have negation, and because
we have the open world assumption, we also need to be able to talk about non-membership
in a concept: b 6−→ C; naturally, KB |= b 6−→ C iff for some model I of KB, bI 6∈ CI . As
usual, a KB will be called inconsistent iff it has no models.

5. The most thorough theoretical investigation of individual reasoning has been presented in Andrea
Schaerf’s PhD thesis and derived publications (Schaerf, 1994). We note however that for some of the
most expressive DLs proposed recently, individual reasoning has not yet been addressed.

6. As usual, we make the unique-name assumption, and in fact include named individuals in the domain

418

Extensible DL Representation and Reasoning

The specification of reasoning about individuals can again be represented by inference
rules (Borgida, 1992a). For example, for the constructor all, we proffer the following three
rules of inference, which describe the “structural membership/non-membership” rules, as
well as a kind of inference called “propagation”, where information about some individual
b results in new information being deduced about another individual e:

KB ` b −→ closedFillers(p,S) KB ` bi −→ C
KB ` b −→ all(p,C) S = {b1, · · · , bn}, n ≥ 0

KB ` b −→ fills(p,e) KB ` e 6−→ C
KB ` b 6−→ all(p,C)

KB ` b −→ all(p,C) KB ` b −→ fills(p,e)
KB ` e −→ C

Note that for an inconsistent KB, we can have KB ` b −→ nothing, or we can deduce
information from fillers (e.g., KB ` b −→ at-least(3,pets)) that contradicts information
asserted or deduced from descriptors (e.g., KB ` b −→ at-most(2,pets)).

4.2 DL-KBMS Operations on Individuals

The point of living with the open-world assumption is to allow information to be accumu-
lated incrementally, as in the case of designing some artifact (one of the most successful
applications of classic).

From the functional point of view, the DL-KBMS therefore supports the following up-
date operations for incrementally adding information about individuals:

Operation Effect
assert-member(b, C) b : C is added to A
assert-fills(b, p, b1) (b, b1) : p is added to A

assert-closed(b, p)
b:allFillersKnown(p,S) is added to A, where S is
the set of individuals returned in the current KB by the
operation ask-for-fillers(b, p), defined below.

If as a result of the update, the KB is inconsistent, then the update is rejected and the
state of the KB is supposed to remain unchanged.

At any point, the KBMS is able to respond to inquiry operations about relationships
involving individuals:

Question Answer type Response
ask-member?(b, C) Boolean true iff KB |= b −→ C

ask-non-member?(b, C) Boolean true iff KB |= b 6−→ C

ask-for-fillers(b, p) SET(Individual) { e | KB |= b −→ fills(p, e) }

ask-closed?(b, p) Boolean
true iff for some set S
KB |= b −→ closedFillers(p, S)

As with concepts, many DL-KBMS pre-compute the b −→ C judgment, for all individual
and concept names, by finding the most specific named descriptions to which the individual
b provably belongs. Similarly, the DL-KBMS pre-computes and caches the fillers and closed

419

Borgida

information for each individual’s roles. This is done in order to detect inconsistencies at the
time of the update, to decrease the amortized cost in case queries are much more frequent
than updates, and to support queries of the form “What additional information can you
deduce about v?”. The utility of such queries has been shown, among others, in applications
involving information discovery in software development (Devanbu, 1994).

5. Individuals in protodl

Reasoning about individuals The goal of our implementation is to support efficiently the
update operations, which are incremental, so that most of the inferences are precomputed:
for each individual, we know the least classes it is an instance of, all the fillers it can have
for each role, and whether the role is closed or not for that individual. The architecture
below describes an extension and rationalization of the individual processing that is usually
carried out in normalize-compare DL-KBMS such as classic. The novelty will be the
systematic separation of the interaction between various kinds of updates and various kinds
of inferences, and the concomitant use of truth-maintenance links.

5.1 The Basic Architecture of Individual Reasoning

In some systems, one can try to reduce individual reasoning to concept reasoning by asso-
ciating some single, maximally complete description with each individual. However, this is
not always possible, as shown by Schaerf (Schaerf, 1994).

Instead, our data structure for every individual includes both a concept description (to
be called Descriptor), which may be an existing class or an unnamed complex descrip-
tion, and individual role-filler information recording the specific values assigned so far, and
whether the role is closed or not. (This information is accessed with built-in functions
add filler, put closed, get fillers and is closed?.)

In processing an update about some individual b, we must therefore resort to two
kinds of reasoning: (i) subsumption/incoherence reasoning involving only the description
Descriptor(b) and other concepts; (ii) reasoning specific to the individual and especially
its role fillers.

The former kind of reasoning is motivated by general inference rules connecting mem-
bership and subsumption (e.g., if b −→ C and C =⇒D then b −→ D). Since subsumption
and its extensibility has been described in the preceding section, henceforth we concentrate
on the second aspect of individual reasoning.

To understand the tasks involved, let us illustrate what kinds of reasoning need to be
performed whenever any fact is asserted (or inferred) about an individual b

• The KB may become inconsistent, because of a conflict between the individual de-
scriptor and the filler information either on b or some other individual. For example,
more fillers might be added to a role than permitted by an at-most restriction. This
requires the entire update to be rejected. Note that an update may result in several
individuals with inconsistent information on them. The system is only required to
detect one of them, before rejecting the update.

420

Extensible DL Representation and Reasoning

• The individual b may end up being re-classified. In a monotonic system, such as the
present one, this means that the individual may now belong to some more specialized
class(es) in the hierarchy.

• New information about the roles of individual b can be inferred. For example, learning
that a role is closed allows us to now count its fillers and hence obtain an exact upper
bound recordable by at-most.

• New assertions can be inferred about other individuals, usually ones related to b via
roles. For example, if an all(friends,HAPPY) description applies to some individual
x, and now y is asserted to be a friends-filler for x, then we can infer that y is an
instance of HAPPY.

To support the first task above, protodl might use the function ConsistentW?7, which
returns true to indicate that information to be added to an individual is consistent. For
the second task, we use function Recognizes?. For the third and fourth tasks, which
involve individuals other than the one on which the update has occured, we use function
InferFrom.

These functions are used to implement the various assert KBMS operations, as well
as the ClassifyIndividual function, which is used by protodl to find the lowest classes
in the hierarchy to which this individual belongs.

As in the case of concept reasoning, we use the and constructor to drive the processing,
and we modularize the implementation so each kind of constructor Q has its own set of func-
tions: Q::Recognizes? , Q::ConsistentW? , Q::InferFrom . It now becomes more
important to distinguish constructors, like all and at-most, that have an associated single
role, in contrast to generic constructors such as one-of (which has no roles associated) and
same-as (which has many roles, none of which is special). For the former, so called branch
constructors, the above functions will have arguments that include not just the individual
and the normalized representation of Q-terms, but also the fillers and closed information
about the role. (This is done to prevent repeated retrieval of these values by each such
constructor.) Therefore, the general form of and::Recognizes?, provided in protodl, is

and::Recognizes?(b:<Individual>,NC:<NormalizedConcept>)returns <Bool>
{ For every Q(T) in getNonbranchComponents(NC) do

if not Q::Recognizes?(b,Q(T)) then return false;

For every role p in getRestrictedRoles(NC) do
{F:= get fillers(b,p);
clsd? := is closed?(b,p);
For every Q(T) in getBranchComponents(NC,p)
{if not Q::Recognizes?(b,Q(T),F,clsd?)
then return false};};

return true; }

7. Later, when we introduce incremental reasoning, we will identify a number of variants of this function.

421

Borgida

The functions and::ConsistentW? and and::InferFrom are similar in structure, and
are not presented due to space limitations. It is important to note that the ConsistentW?
functions return false only to indicate that they are unable to prove conclusively that the
individual is consistent or inconsistent; if an inconsistency is found, an InconsistentExcn
is raised. Also, after an update there may be several individuals about which incompatible
information will be asserted. The system only guarantees to find one such case, and then
rejects the update.

The following is an example of a specialized function for the case Q=all, which imple-
ments the first inference rule presented earlier

all::Recognizes?(b:<Individual>, all(r:<Role>,vr:<NormalizedConcept>),
fillers:<SET(Individual)>, clsd?:<Bool>) returns <Bool>

{if not clsd? then return false /*More fillers might come later*/
else for every f in fillers do

{if not and::Recognizes?(f,vr)
then return false;}

return true }

5.2 Reasoning with Incremental Updates

Since updates to individuals are incremental in nature, in order to improve efficiency we
want to take into account the fact that the KBMS had already performed all the inferences
up to, but not including, the current update. For example, if some individual Tintin has
been asserted to be an instance of all(pet,DOG), and already has pet-fillers d1 and d2, then
if the current update is assert-fills(Tintin,pet,Fido), then we only need to propagate
the information that pet-fillers are DOGs to Fido, since the others would have been processed
earlier. And, if the current update is assert-closed(Tintin,pet), then no new role-filler
information can be inferred from this because of the all restriction, so we should not even
bother calling all::InferFrom. We will therefore distinguish the following three variants
of Q::InferFrom:

Q::InferFromFilling(<Individual>,<NormalizedQ-term>,<Role>,<Individual>)

Q::InferFromClosing(<Individual>,<NormalizedQ-term>,<Role>) , and

Q::InferFromAsserting(<Individual>,<NormalizedQ-Term>)

plus similar variants of Q::ConsistentW?. For example

• all:ConsistentWFilling?(ind, all(r,vr), r, newfiller) invokes and::Consis-
tentWAsserting?(newfiller,vr) to check that the new filler does not contradict the
role restriction vr;

• all::ConsistentWClosing?(ind,all(r,vr),r) just returns true, and hence is hope-
fully eliminated by the compiler;

422

Extensible DL Representation and Reasoning

• all::ConsistentWAsserting?(ind,all(r,vr)) verifies that all r-fillers y of ind are
consistent with vr by invoking and::ConsistentWAsserting?(y,vr).

One might also consider variants of Q::Recognizes?, but, as we shall see, in our case
these are of limited use since we do not propose to keep information on which parts of the
recognition test had succeeded already, and therefore we need to start from the beginning.

5.3 Dependency Links

Clearly, the results of function calls, such as Recognizes?, on some individual Bob might
change after an update to Bob itself. However, the membership of Bob in a class or Bob’s
consistency may depend on facts asserted about other individuals in the database. For
example, if all of Bob’s friends are known (i.e., the role friends is closed), and all but
one of them was MARRIED, and now that holdout, Larry, is also asserted or inferred to be
MARRIED, then Bob itself can be reclassified as an instance of all(friends,MARRIED).

This means that without some special data structure, after every update of some indi-
vidual an unsophisticated implementation has to reconsider every other individual in the
KB.

One alternative, used in loom (MacGregor, 1986), is to keep track of all questions asked
about an individual as part of the previous processing (“hits” and “misses”), and if answers
to these do not change as a result of the update then no re-processing is needed. Another
alternative is to use an elaborate truth-maintenance system (as available in kl-two (Vilain,
1985)), for each kind of judgment. In our opinion, both these approaches might however
become very expensive in terms of space and often computation time, because they maintain
too many details.

We follow an intermediate stance, first suggested by Peter Patel-Schneider for the clas-

sic implementation, which is intended to reduce needless re-testing while incurring rela-
tively less “dependency maintenance” overhead. Essentially, we have a “coarse-grained”
dependency structure, where one individual e may point to another, b, if the result of
a decision about the latter may change as a result of some (unspecified) additional in-
formation being added to the former. For example, in the presence of the definition
CanineLover

.=all(pet,DOG), if Tintin has Fido as a pet filler, and neither Recog-
nizes?(Fido,DOG) nor not ConsistentW?(Fido,DOG) return true, then we add a link
of the form: Fido −−−−−−−−−−−−→RecognizeDependsOnMe Tintin. Thereafter, any change of status of Fido will
cause Tintin’s classification (with respect to CanineLover, as well as other pending classes)
to be re-done. Similarly, we will have −−−−−−−−−−−−→ConsistentDependsOnMe and −−−−−−−−−→InferDependsOnMe links between
objects.

Note that when following such dependency links back, we do know that only properties
of the fillers of some role might have changed, so that once again we could have variants
and::RecheckConsistentW? and and::RedoInferFrom, which perform less work by omit-
ting the checks involving constructors that are known not to be affected by such aspects
(e.g., at-most only cares about the count of the fillers, not their properties).

In order to set dependency links, every function such as Q::Recognizes? needs to
keep track of the list of individuals whose modification might change the result of the
function. These values must eventually be appropriately linked with dependencies either
by the functions themselves or by the calling environment.

423

Borgida

5.4 Coordinating the Components

As should be clear from the above examples, the task of the top-level KBMS update oper-
ations (asserts) will include not just invoking the appropriate functions on the individual
being updated, but also setting appropriate dependency links, gathering into queues other
objects whose dependency links have been “tickled” by the latest update, and then repeat-
ing these operations on the other individuals brought into focus by inferences or dependency
links.

An appropriate software architecture for representing this processing seems to be a
blackboard model, where we have 5 lists to which functions can post tasks to be carried
out:

• Two lists, ToRecheckConsistencyList, ToRedoInferFromList, for objects that are
reached from individual x via a corresponding kind of dependency link as a result of
a change to x.

• A list, ToPerformUpdateList, which collects the additional inferences to be made that
are found by the InferFrom and RedoInferFrom function calls. For simplicity, these
are recorded as additional calls to versions of the three kinds of assert functions.

• A list, ToReclassifyList, which receives objects that need to be checked in case
they can be classified further down the hierarchy; these objects come not just from
dependency links but also from any additional asserts that had been triggered.

• Finally, a list ToAddDependencyList, that keeps track of dependency links that need
to be added to the knowledge base; this list is augmented by the various functions, as
mentioned in the previous section.

Because, for example, re-classification may cause new inferences, which may cause re-
classification due to some other constructor, there is no linear order in which these lists
can be processed. We may therefore have a loop where a “demon” removes an arbitrary
object from a list, invokes the required function, and then repeat the process. The only
requirement is that dependencies on ToAddDependencyList be also considered as having
been installed, whenever chasing objects that may have been affected by an update. Note
that, not surprisingly, it is hard to make any general statements about the termination of
the above algorithm skeleton, since the various functions, especially InferFrom. are free to
do whatever they want, including increasingly longer descriptions..

Several policies can help the performance of the system:

• In all cases, it is helpful to eliminate duplicates from the lists.

• Locality of context may improve performance; therefore grouping together operations
to be performed on one object is advisable (e.g., gather together all the dependencies
from object y on ToAddDependencyList).

• If we expect inconsistencies to arise infrequently, then the ToRecheckConsisten-
cyList can be processed at the end.

424

Extensible DL Representation and Reasoning

assert-fills(ind, role, filler)

{if redundant information then signal RedundantExn;

add filler(ind,role,filler); /* this may be rolled back by an error */

initialize the blackboard lists to empty;

ind-descr := Descriptor(ind);

/* deal with consistency issues involving ind */
and::ConsistentWFilling?(ind, ind-descr, role, filler);

/* the preceding function will post dependencies if
the answer is not a definite TRUE */

ToRecheckConsistencyList += getConsistentDependsOnMe(ind);

/* this puts up for reconsideration objects
dependent on ind */

/* check for inferences */
and::InferFromFilling(ind,ind-descr,role,filler);

/* this may post new updates and/or dependencies */
ToRedoInferFromList += getInferDependsOnMe(ind)

/* reclassify at least this individual */
Reclassify(ind);

ToReclassifyList += getRecognizeDependsOnMe(ind);

/* Process tasks left on the blackboard */
ProcessBlackBoard;

}
catch InconsistentExcn

{roll back update; print error msg; }

Figure 2: protodl pseudo-code for assert-fills.

Figure 2 contains the pseudo-code for assert-fills, which is offered by protodl. Notice
the advantage in the above program of using exception handling and propagation up the
dynamic function call hierarchy as a way of dealing with inconsistency: wherever it is
detected by ConsistentW?, the exception passes up through levels of function calls, all of
which are interrupted, until a handler is encountered — usually by an external or internal
assert operation; this issues appropriate error messages, resets local changes made, and
then re-raises/propagates the exception further up, until the top level is reached.

5.5 Extending Individual Reasoning – An Example

Let us consider the extensions needed for a rather complex new concept constructor:
same-as. The semantics of same-as([f1, · · · , fn],[g1, · · · , gm]), as introduced earlier, is
that it denotes individuals for which the two attribute chains [f1, · · · , fn] and [g1, · · · , gm]
have the same known filler. (The attributes must each have exactly one filler.)

This constructor is very useful in representing the relationship between actions and sub-
actions. For example, suppose we try to define the action of BUYing in terms of two GIVEs:

425

Borgida

we would assert that BUY is subsumed by and(all(giving1,GIVE),all(giving2,GIVE)),
and then add further constraints about the attributes of BUY (such as buyer and seller)
and those of GIVE (such as giver and receiver), including same-as([buyer],[giving1
giver]) and same-as([seller],[giving1 receiver]).

The procedures that need to be written to extend the implementation are: same-as::-
Recognize, same-as::InferFromFilling, same-as::InferFromClosing, same-as::-
InferFromAsserting, same-as::ConsistentWFilling?, same-as::ConsistentW Clos-
ing?, and same-as::ConsistentWAsserting?. In addition, some previously written pro-
cedures may need to be augmented.

Rules of inference for −→ and 6−→ can be presented as a way of describing the tasks
performed by the above functions. However, in this case, the functions also need to worry
about dependency pointers, so the mapping is less direct.

The following inference rule describes the standard recognition procedure for individuals
(there are additional rules for subsumption of course):

KB ` b −→ fills([f1, · · · , fn], e)
KB ` b −→ fills([g1, · · · , gm], e)

KB ` b −→ same-as([f1, · · · , fn], [g1, · · · , gm])

If the recognition function can only follow a chain up to an individual e, which is missing
the filler of the next attribute in the chain, then a dependency from e must be recorded.

same-as::Recognizes?(b, same-as(chain1,chain2))
{ (e1,p’) := follow chain1 from b, returning the furthest

individual e1 reached, and the remainder of the chain p’
which was not possible to follow;

if not(p’=nil)
then { post dependency e1 −−−−−−−−−−−−→RecognizeDependsOnMe b; return false;}

(e2,q’) := follow chain2 from b, as above;
if not(q’=nil)

then { post dependency e2 −−−−−−−−−−−−→RecognizeDependsOnMe b; return false;}
if (e1=e2) & p’=q’ then return true else return false.
}

This function will be called from inside and::Recognizes?(b,C) as follows:
...

for every same-as(chn1,chn2) in get sameas(C)
if not same-as::Subsumes?(same-as(chn1,chn2), Descriptor(b))
then if not same-as::Recognizes?(b,same-as(chn1,chn2))

then return false.
...

Reasoning with same-as concerning individuals is actually more complex, because there
are additional rule of inference, such as

KB ` b −→ fills(chain1, e)
KB ` b −→ same-as(chain1, chain2)
KB ` e −→ same-as(chain3, chain4)

KB ` b −→ same-as(chain1 ◦ chain3, chain2 ◦ chain4)

426

Extensible DL Representation and Reasoning

Applying this rule straightforwardly to verify whether some b −→ same-as([f1, · · · , fn],
[g1, · · · , gm]) requires one to try all possible ways of dividing up the chain [f1, · · · , fn] into
subchains, and for each, one needs to try to derive the subchain equalities alternately from
individual fillers along the chain, or from explicit assertions of same-as descriptions on
individuals. In this cases, the implementor, in consultation with the knowledge engineer
who is to use the extended system, would make a judgment on the necessity of implementing
this more expensive inference. The rules of inference can be used to describe the deductions
that have been implemented and those that have not.

In order to check consistency, we need to consider the three kinds of updates: assertions,
fillers, and closings. When an equality is first asserted of an individual, we would invoke:

same-as:: ConsistentWAsserting?(ind, same-as(chain1,chain2))
{ (e1,p’) := follow chain1 from ind;

if not(p’=nil)
then { post dependency e1 −−−−−−−−−−−−→ConsistentDependsOnMe ind; return true;}

(e2,q’) := follow chain2 from ind;
if not(q’=nil)

then { post dependency e2 −−−−−−−−−−−−→ConsistentDependsOnMe ind; return true;}
if e1=e2 then return true else signal InconsistentExcn;
}

Since the attributes can have at most one value, these attributes get closed automatically
when a filler is provided, so there is usually no explicit closing of the role that can affect
same-as, and there is no need for same-as::ConsistentWClosing?.

Finally, if C includes as a conjunct same-as(chain1,chain2), then and::ConsistentW-
Filling?(ind,C,p,newfiller) will have to invoke

same-as::ConsistentWFilling?(ind,same-as(chain1,chain2),p,newfiller)
{if (member(p,chain1) OR member(p,chain2))
then same-as:ConsistentWAsserting?(ind,same-as(chain1,chain2))}

Equalities can lead to inferences when one of the chains is completely known, and all
values but that of the last attribute on the second chain are known, as illustrated by the
following example:

{ a : same-as([q] , [p, r]), (a, e) : q, (a, b) : p } |= b −→ fills(r, e)

This inference requires us to set up −−−−−−−−−→InferDependsOnMe links to watch for cases when we have
sufficient information to make the inference.

We point out that same-as presents one example of a situation where a performance
penalty is paid for separating out consistency checking, recognition and inference: each of
these functions attempts to traverse the individuals along the two chains of the equality in
an effort to reach the ends. This price is negligible if there are relatively few individuals with
same-as conditions attached, or if the chains are usually only one or two attributes long, as
is the case for the application of same-as illustrated earlier. Otherwise, we can introduce

427

Borgida

caching to speed up the code: associate with every equality and individual b two pairs (e1,r1)
and (e2,r2) representing the ends ei reached on each chain, and the remainder of the chains
ri left to be traversed. (So if the chain is completely known, r = nil.) A final alternative is
to add the code for same-as::InferFrom into same-as::ConsistentW? function, so the
latter performs all the deductions involving same-as. The disadvantage of this approach,
as of many optimizations, is the loss of modularity.

Finally, we mention that other extensions of reasoning at the individual level that we
have considered include “database aggregate functions” like sum (e.g., sum([departments
budget], totalBudget) can be used to model that totalBudget is the sum of the values
for budget fillers for all department fillers); and epistemic constructors that allow one to
query the state of knowledge (Donini et al., 1998) (e.g., known-all(friends, known-
at-most(1,pets)) recognizes individuals all of whose known friend fillers have at most
one pet recorded in the KB, without having to have the roles be closed).

6. Conclusions

We began from the hypothesis that no “perfect” DL will ever be built, because of the
need for application-specific reasoning, and potential incompleteness of reasoning due to
the expressiveness-(tractability/decidability) trade-off. We argued that some of these issues
are best attacked on a per-application basis. To resolve this problem, we proposed the use
of an extensible DL-KBMS, where one tries to go as far as possible with an initial set of well-
understood concept constructors, and then, when encountering unsolvable expressiveness
problems (Doyle & Patil, 1991), add new concept constructors to overcome them.

We have also pointed out the limitations of this approach, which include not being
conducive to including new forms of reasoning such as abduction, contexts, etc., and having
difficulties with complete inferences for useful concept constructors that require reasoning
by contradiction, and are best handled in the alternative DL reasoning paradigm – tableaux.

6.1 Implementation Status

Prototype implementations of aspects of both concept and individual reasoning in protodl

have been carried out at Rutgers. However, experience with all fielded systems indicates
that there is an order of magnitude more work to be done in making a system usable by
others than their developers. For this reason, our goal is to add the results of the protodl

research to an existing DL-reasoner. In fact, several ideas have been transfered, with the
collaboration of Charles Isbell, to the newest version of the classic system released by
AT&T Research. In particular, classic supports test-defined concepts – ones which allow
the recognition of individuals through the use of an arbitrary LISP function. (This function
can be seen as the combination of the Recognizes? and ConsistentW? functions discussed
in the present paper.) In the newest version of classic, one can simulate the addition of
new concept constructors by using them after the keyword test-c. For example, the concept
all(vacation,dateRange(1996/6/1,1996/8/31)) would be represented as

(test-concept dateRange vacation ’((1996 6 1) (1996 8 31)))

428

Extensible DL Representation and Reasoning

Although not all aspects of the protodl system have been implemented, the current
extensions (Borgida et al., 1996) allow significant subsumption reasoning to be done for test
extensions, and thus provide classic with the bases for extensible reasoning.

6.2 Related Work

In order to incorporate new concept constructors into a reasoner, we need to extend the
implementation. One approach to this would be to offer some form of “declarative descrip-
tion” of the inferences to be performed, and then have a meta-interpreter which executes
them. In fact, such approaches have been tried in the past for other kinds of represen-
tation formalisms (Greiner & Lenat, 1980; Genesereth, 1983). Except for cycl (Lenat &
Guha, 1990), which allows the addition of new forms of inference rule schemas in First
Order Predicate Calculus, we see little evidence that such a meta-interpreter has a chance
of being nearly as efficient as custom-built implementations, so we have opted for a different
approach.

Joshua (Rowley, Shrobe, & Cassels, 1986) is also an effort at providing extensible reason-
ing, which allows the user (knowledge system engineer) the ability to change at compile-time
the implementation of any or all of the elements of the protocol of inference, which describes
the reasoning of the system. Joshua is close in spirit to our work in the sense that it tries to
maintain a uniform “knowledge level” view of the system, and because it identifies, in the
“protocol of inference”, the specific aspects of the system that can be customized through
(re)programming of Lisp functions. Our efforts differ from Joshua in that we are interested
in DLs (Joshua’s protocol was concerned mostly with rule triggering and truth mainte-
nance), we wish to support incrementing the syntax of the knowledge-level interface, and
we also care about the semantics of the extension.

Gaines has also advocated the utility of a declarative specification and of a clean, exten-
sible modularization for a DL-reasoner (Gaines, 1993). At the concept level, one difference
between our approaches seems to be that protodl only assumes that the concepts will
form an upper-semilattice (the and constructor is built-in), so that a wider variety of infer-
ences can be implemented for new constructors. At the individual-reasoning level, protodl

starts from a much more restricted basis, and uses its extensibility to deal with such aspects
as “propagations” (e.g., our example dealing with same-as reasoning appears to be built-in
in KRSn). On the other hand, KRSn has built-in support for rules and exceptions to them,
which are an important component for any knowledge-based environment.

Finally, it has been suggested that the tableau-based approach, such as that of crack,
is essentially extensible through the addition of new “completion” rules (Bresciani et al.,
1995), which are traditionally used to build a model of a certain knowledge base, or prove its
inconsistency. These tableau completion rules can also implement incomplete reasoners by
using only a subset of the inferences. As with concrete domain extensions (Section 3.5), the
advantages of extensible tableau techniques lie in a clean formalism that can lead to complete
reasoning, while the disadvantages involve language extensions that do not have negation
(e.g., clasp – see Section 3.4), and, for the moment, the lack of experience with large
A-boxes and incremental updates. One of the most exciting (though very likely difficult)
future prospects is combining the two implementation paradigms, and their extensibility
features.

429

Borgida

6.3 Summary

We have advocated an approach to extensible DL reasoning and implementation, for the
normalize-compare paradigm, which has two components: a declarative specification and
a modularized implementation framework. The specification is offered using rules of
inference in the “natural semantics” style, and a heuristic methodology suggests various
categories of rules to be looked for. These rules often correlate well with the implemen-
tations of the various functions, but protodl offers the implementor the opportunity to
use a very different implementation. The later is needed in the case of constructors whose
argument is for example some regular expression – as in the case of plans or strings, when
the implementation needs to use some kind of finite automaton representation, since regular
expressions have no “normal form”.

We have modularized the software architecture of protodl reasoner, so that for every
new concept constructor added to the language, there is a well-defined set of functions that
need to be implemented. These, in turn, sometime have detailed skeletons composed of
other, smaller functions, which we have abstracted after analyzing a variety of implementa-
tions. The invocation of these functions is organized by the built-in functions of protodl,
usually involving the constructor and. We have paid particular attention to supporting
efficient implementations, by offering the implementor quite a lot of freedom within the
confines of our major functions. For individual reasoning, this is the first paper to consider
the need to be efficient in the face of incremental updates of DL-KBMSs, which live with
the open-world assumption, and which use concept descriptions to infer new properties,
rather than just verify the correctness of individual facts. Our solutions involved proposing
function variants based on the form of the update, and the use of various kinds of associated
dependency links.

The major open areas involve adding to this framework role constructors, epistemic
rules (like those in classic, characterized by Donini et al (Donini et al., 1998)), the ability
to express at least simple recursive declarations for primitive concepts (e.g., “the parents
of a person are persons”), and connections with the tableau-based implementations for DL
reasoning.

Acknowledgements

I am very grateful to Ron Brachman, who, among others, joined me in the initial explo-
rations of the protodl idea; to Daniel Kudenko, who implemented a significant part of
the individual reasoning; to Charles Isbell, who implemented the extensibility features of
classic 2.3; and to Peter Patel-Schneider, for years of discussion on the subtleties of the
classic language and implementation. Extremely useful comments on the presentation
and organization were provided by Peter Clark and the anonymous reviewers.

This work was supported in part by NSF grants IRI-91-19310 and IRI-9619979.

Appendix A. A Generic Conjunction Function.

The following pseudo-code for Q::Conjoin shows how one can construct this function from
several, smaller functions.

430

Extensible DL Representation and Reasoning

/* Conjoin the new term Q(T) onto the already-normalized description This*/

Q::Conjoin(T:<NormalizedQ-term>,This:<NormalizedConcept>){

old := get Q(This) /* find the part of This dealing with constructor Q*/
if not(old=nil)
then if Q::SubsumesSame?(T,old)

then signal RedundantExn;
T := Q::ConjoinToSame(T,old); /* combine T with old*/

if Q::SubsumesDifferent?(T,This) /* T is implied by other constructors */
then signal RedundantExn;

T:= Q::ConjoinToDifferent(T,This) /* obtain a possibly stronger T*/
if (type(T) 6= Q) /* the stronger description might use another constructor*/

then {post T to ImplicationsToDoList; /* for later processing*/
return; }

Q::ConsistentWithDifferent?(T,This) /* Check if T is coherent with the rest
of This; if not, an exception is raised.*/

put Q(T,This) /* add the description to the normalized descriptor This*/
Q::FindOtherImplications(T,This,ImplicationsToDoList)

/* add any additional constructors implied by T and This */

Figure 3: Pseudo-code of a generic conjunction function.

Before we consider the individual functions introduced above, we remark that if the con-
structor Q implies terms built with other constructors (i.e., it adds entries to the Implica-
tionsToDoList), then the and::Conjoin function needs to be augmented with a loop at
the end, which conjoins to ontoNC all the normalized terms on the ImplicationsToDoList:

while notEmpty(ImplicationsToDoList)
{ another := removeAnElement(ImplicationsToDoList);

suppose type(another)=Q;
Q::conjoin(another,ontoNC)

Note that this processing may itself add new entries to the ImplicationsToDoList. In
the case that there are many additions being done to the ImplicationsToDoList, a useful
optimization might be to test for and remove redundancies from ImplicationsToDoList. If
there are very few constructors making additions, a different optimization might be applied:
add the above code only to the end of the corresponding constructor’s Conjoin program.

The following is the intended purpose of the component functions used in the
Q::Conjoin function in Figure 3. Note that for any particular constructor (e.g., all),
not every such function needs to be implemented. When using a good optimizing compiler,
default programs for these could be provided, which return constant values. Otherwise,
Conjoin itself should be edited.

431

Borgida

• Q::Universal?(T): Is T equivalent to the top of the hierarchy for that set of
values? For example, at-least::Universal? returns true when processing
at-least(0,players). This is used to eliminate unnecessary constructs from the
normal form.

• Q::Incoherent?(T): Is T incoherent by itself?
For example, some(players ,nothing) is incoherent since nothing has no in-
stances.

• Q::IncoherentWithDifferent(T,This): Is there an inconsistency if we consider
conjoining with other constructors? For example, when Q=at-least, conjoining
at-least(3,players) to a concept already containing at-most(1,players) would
lead to inconsistency.

• Q::SubsumesSame?(T,oldTs): Is T implied by the Q-constructed terms already seen
in oldTs? This is basically the “structural subsumption” part. For example, if
Q=at-least, and oldTs has at-least(4,players), then at-least(3,players) is re-
dundant

• Q::SubsumesDifferent?(T,This): Is T implied by other constructors? For example,
at-least(1,players) is implied by some(players, OLD).

• Q::ConjoinToSame(T,OldTs): Merge T with any preceding terms built with K. For
example, when we combine all(players,GENTLEMAN)with all(players,SCHOLAR),
we obtain all(players,and(GENTLEMAN, SCHOLAR)).

• Q::ConjoinToDifferent(T,This): Produce a stronger T by using information from
other constructors. For example, if we are processing some(player, TALL),then if
the concept This already has all(player,OLD), then some::ConjoinToDifferent
returns the description of some(players,and(TALL,OLD)).

• Q::FindOtherImplications(T,This,ImplicationsToDoList): Add constructors
which are implied because of Q(T), possibly in conjunction with the rest of
the concept, This. For example, when adding all(players,TALL) to a
concept with at-least(3,players), all::FindOtherImplications would add
some(players,TALL) to the list of constructors to be conjoined to This.

References

Baader, F. (1996). A formal definition for the expressive power of terminological knowledge
representation languages. J. of Logic and Computation, 6, 33–54.

Baader, F., & Hanschke, P. (1991). A scheme for integrating concrete domains into concept
languages. In Proceedings of IJCAI’91.

Baader, F., Hollunder, B., Nebel, B., Profitlich, H.-J., & Franconi, E. (1994). An empirical
analysis of optimization techniques for terminological representation systems - or -
making kris get a move on. Applied Intelligence, 4, 109–132.

432

Extensible DL Representation and Reasoning

Borgida, A. (1992a). From type systems to knowledge representation: Natural semantics
specifications for description logics. Int. J. of Intelligent and Cooperative Information
Systems, 1, 259–269.

Borgida, A. (1992b). Towards the systematic development of terminological reasoners:
clasp reconstructed. In Proceedings of KR’92.

Borgida, A. (1995). Description logics in data management. IEEE Trans. on Knowledge
and Data Engineering, 7, 671–682.

Borgida, A. (1996). On the relative expressiveness of description logics and predicate logics.
Artificial Intelligence, 82, 353–367.

Borgida, A., Brachman, R. J., McGuinness, D. L., & Resnick, L. A. (1989). classic: A
structural data model for objects. In Proceedings of SIGMOD’89.

Borgida, A., Isbell, C., & McGuinness, D. (1996). Reasoning with black boxes: Handling
test concepts in Classic. In Proceedings of Intern. Workshop on Description Logics
(DL’96).

Borgida, A., & McGuinness, D. L. (1996). Asking queries about frames. In Proceedings of
KR’96.

Borgida, A., & Patel-Schneider, P. F. (1994). A semantics and complete algorithm for sub-
sumption in the classic description logic. Journal of Artificial Intelligence Research,
1, 277–308.

Borgida, A., & Weddell, G. (1997). Uniqueness constraints in description logics. In Pro-
ceedings of Conf. on Deductive and Object-Oriented Databases (DOOD’97).

Bresciani, P., Franconi, E., & Tessaris, S. (1995). Implementing and testing expressive
description logics: a preliminary report. In Proceedings of KRUSE’95 Symposium.

Cohen, W., Borgida, A., & Hirsh, H. (1992). Computing least common subsumers in
description logics. In Proceedings of AAAI’92.

Devanbu, P. (1994). Software Information Systems. Ph.D. thesis, Rutgers University, New
Brunswick, NJ, USA.

Devanbu, P., & Jones, M. (1997). The use of description logics in kbse systems. ACM
Transactions on Software Engineering and Methodology, 6.

Devanbu, P., & Litman, D. (1996). Taxonomic plan reasoning. Artificial Intelligence, 84,
1–35.

Donini, F., Lenzerini, M., Nardi, D., Nutt, W., & Schaerf, A. (1998). An epistemic operator
for description logics. Artificial Intelligence, 100, 225–274.

Doyle, J., & Patil, R. (1991). Two theses of knowledge representation: language restric-
tions, taxonomic classification, and the utility of representation services. Artificial
Intelligence, 48, 261–298.

433

Borgida

Gaines, B. (1993). A class library implementation of a principled open architecture knowl-
edge representation server with plug-in data types. In Proceedings of IJCAI’93.

Genesereth, M. (1983). An overview of meta-level architecture. In Proceedings of AAAI’83.

Greiner, R., & Lenat, D. (1980). rll: A representation language language. In Proceedings
of KR’94.

Horrocks, I. (1998). Using an expressive description logic: Fact or fiction?. In Proceedings
of KR’98.

Horrocks, I., & Patel-Schneider, P. (1998). DL systems comparison. In Proceedings of of
the International Workshop on Description Logics - DL’98.

Lenat, D., & Guha, R. (1990). Building Large Knowledge-Based Systems. Addison Wesley.

MacGregor, R. (1986). A deductive pattern matcher. In Proceedings of AAAI’86.

Padgham, L., & Lambrix, P. (1994). A framework for part-of hierarchies in terminological
logics. In Proceedings of KR’94.

Patel-Schneider, P. (1998). dlp system description. In Proceedings of of the International
Workshop on Description Logics (DL’98).

Rowley, S., Shrobe, H., & Cassels, R. (1986). Joshua: Uniform access to heterogeneous
knowledge structures. In Proc AAAI’86.

Royer, V., & Quantz, J. (1992). Deriving inference rules for terminological logics. In
Proceedings of JELIA’92.

Schaerf, A. (1994). Reasoning with individuals in concept languages. Data and Knowledge
Engineering, 12, 141–176.

Schmidt-Schauss, M. (1989). Subsumption in KL-ONE is undecidable. In Proceedings of
KR’89.

Stockmeyer, L. (1974). The Complexity of Decision Problems in Automata Theory and
Logic. Ph.D. thesis, MIT, Cambridge, MA. Project MAC TR 138.

Vilain, M. (1985). The restricted language architecture of a hybrid representation system.
In Proceedings of IJCAI’85.

von Luck, K., Nebel, B., Peltason, C., & Schmiedel, A. (1987). The anatomy of the back

system. KIT 41, Technical University of Berlin, Berlin, Germany.

Wright, J., Weixelbaum, E., Vesonder, G., Brown, K., Palmer, S., Berman, J., & Moore, H.
(1993). A knowledge-based configurator that supports sales, engineering, and manu-
facturing at AT&T network systems. AI Magazine, 14, 69–80.

434

