
Extensible Query Processing in Starburst

Laura M. Haas, J.C. Freytag 1, G.M. Lohman, and H. Pirahesh

IBM Almaden Research Center, San Jose, CA 95120

Abstract

Today’s DBMSs are unable to support the increasing de-

mands of the various applications that would like to use a

DBMS. Each kind of application poses new requirements

for the DBMS. The Starburst project at IBM’s Almaden

Research Center aims to extend relational DBMS technology
to bridge this gap between applications and the DBMS.

While providing a full function relational system to enable

sharing across applications, Starburst will also allow (sophis-
ticated) programmers to add many kinds of extensions to

the base system’s capabilities, including language extensions

(e.g., new datatypes and operations), data management ex-
tensions (e.g., new access and storage methods) and internal

processing extensions (e.g., new join methods and new query

transformations). To support these features, the database
query language processor must be very powerful and highly

extensible. Starburst’s language processor features a powerful

query language, rule-based optimization and query rewrite,
and an execution system based on an extended relational

algebra. In this paper, we describe the design of Starburst’s

query language processor and discuss the ways in which the
language processor can be extended to achieve Starburst’s

goals.

1. Introduction

As relational DBMSs have become more widely used, they

have attracted applications beyond those for which they

were originally designed. Engineering, office and geographic
applications (among others) have attempted to use relational

databases to store their data. However, each of these kinds

of applications has requirements that standard relational
systems are unable to satisfy. All have data that is structured

in (sometimes) complex ways, and functions that manipulate

that data. But the demands of each kind of application for
new data types and functions are different.

For applications such as these, using a relational DBMS

can be frustrating. While relational systems offer functionality

that these applications need (e.g., the ability to relate arbitrary

pieces of information, easy storage for basic facts, high level

query language with automatic optimization, concurrency

control, recovery), they do not provide sufficient support for
the functions and data types needed by the applications.

Thus, to derive any benefit from a relational system, the

application itself must build the additional function it needs,

on top of the DBMS. In particular, it must map its types
to DBMS types, and it must evaluate all functions, even

those in predicates, that are not built into the DBMS. This

leads to complex and inefficient applications: complex, be-
cause the applications must each perform this extra work,

and inefficient, because much data must be returned to the

application for processing and predicate evaluation, and be-
cause there can be little or no internal DBMS support of

the data for fast access (e.g., no specialized access paths or
storage management).

The Starburst project at IBM’s Almaden Research Center
[SCHWS6] aims to bridge this gap between relational DBMSs

and the applications that would like to use them. Starburst

will serve as a testbed for research in relational database
technology and database applications, as well as extended

database support for applications, hardware architectures

and devices. Extensibility, or the ability to tailor the DBMS
code to support particular applications or hardware, is the

key to achieving these goals. Thus Starburst provides support

for adding new storage methods for tables, new types of
access methods and integrity constraints, new data types,

functions, and new operations on tables. In most cases,

these extensions will be made by knowledgeable database
implementers, whom we will call database customizers

(DBCs), and not by end-users or even skilled application

programmers.

Starburst has two major components, the query language
processor, Corona, and the data manager, Core, correspond-

ing roughly to the RDS and RSS of System R [ASTR76].

Corona is responsible for compiling the user’s query into an

efftciently interpretable form. Thus its duties include parsing

the query, semantic analysis, choosing an execution strategy,

and producing the set of operators to implement the execution
strategy (the Query Evaluation Plan). It also drives the

execution, by interpreting the Query Evaluation Plan, and

controls the data definition process (when tables, access
methods, etc. are created and destroyed). During each of

these activities Corona invokes the data manager’s servi,ces

as needed. Among the services provided by Core are record

management (locating, retrieving, and storing records), buffer

management, access path management, concurrency control

and recovery.

One aspect of Core deserves further description, as it puts

demands on the capabilities of Corona. This is Core’s data

management extension architecture [LIND87]. This archi-

tecture allows a DBC to add new kinds of attachments

1 Author’s current address: ECRC, Arabellastrasse 17, D-8000 Munich, F.R. Germany
Permission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date appear, and notice is
given that copying is by pemksion of the Association for Computing Machinery.
To copy otherwise, or to republish, requires a fee and/or specific permission.
0 1989 ACM O-89791-317-5/89/0005/0377 $1.50 377

(access methods and integrity constraints) and new storage

managers to Starburst. For example, a DBC could define

a new storage manager which handles fixed-length records

only -- but extremely efficiently. Corona must ensure that

the correct storage manager is invoked when a table is

accessed. Likewise, a DBC could define a new type of
access method, e.g., an R-tree [GUTT84]. Corona must
recognize when this access method is useful for a query and

when to invoke it. Thus the language processor must ac-

commodate these extensions to the data manager’s capabil-
ities.

The Starburst prototype runs under AIX on IBM PC/RT

workstations, and is being implemented in C to increase

portability. Starburst is still in the early prototype phase of
implementation. The design is essentially complete and ini-

tial implementations exist for each of the components de-
scribed below, with varying degrees of robustness. Some

components, such as the parser, are complete and have been

thoroughly tested; others have complete functionality but

have not been integrated. We are in the process of integrating

these components to make a coherent, usable system.

Many other systems ‘provide facilities similar to those of
Starburst. DASDBS [PAUL87], Exodus [CARE86], Genesis

[BAT086], Postgres [STON86], Probe [DAYA86], and

SABRE [ABIT86] are all extensible systems. Exodus and
Genesis are distinguished by following what has been called

the “toolkit” approach: both allow the database implementer

to mix-and-match a set of components and then generate a
DBMS from these components, so that the DBMS is tine-

tuned for a particular application. By contrast, our approach

in Starburst allows the DBMS to be, extended in multiple
directions, which promotes data integration across applica-

tions. DASDBS, Postgres and SABRE are based on the

relational data model, and DASDBS allows nested relations.

The other systems are based on functional data models.

There are also several “object-oriented” systems with similar

goals, including Orion [BANE87, KIM871 and Gemstone
(MAIE861. We chose to stay with the relational model be-

cause of its great power and simplicity, as well as its current

popularity in the commercial realm. We hope to show that

we can give users the support they need for their objects

through extensions, while preserving the advantages of a

relational DBMS.

Language processing has two components, one for data

definition statements and one for data manipulation state-

ments. In this paper we will focus on the handling of data

manipulation statements in Starburst. An overview of data

definition in Starburst can be found in [HAAS88]. In the

next section we discuss Starburst’s query language. Section

3 gives an overview of how a data manipulation statement

is processed. Section 4 describes the internal representation

of a query. This representation is critical to achieving ex-

tensibility. We then discuss the optimization of queries: first,

a semantic, “rewrite” optimization in section 5, and then

cost-based optimization in section 6. Section 7 describes the

query execution component. Finally, we summarize our

experiences with the implementation, describe its current

status, and discuss some of the challenges that lie ahead for

Starburst and for extensible systems in general.

2. Language

Starburst’s language, Hydrogen, is based on SQL [IBM87].

As in SQL, queries are expressed in an English-like syntax

(SELECT...FROM...WHERE...). Hydrogen includes and
generalizes most SQL features, allowing aggregation, set op-

erations and nested subqueries, in addition to the standard

operators of the relational calculus. It expands on SQL in
two important respects. First, it generalizes the SQL gram-

mar to make the language more orthogonal [DATE84].
Second, it allows DBC’s to add new functionality to the
language, that is, Hydrogen itself is extensible.

The generalization of SQL takes two forms: many of the

implementation-dependent constraints of SQL are relaxed,

and a new construct is added to increase the orthogonality
of the language. SQL has many constraints on where par-

ticular constructs may appear. Those constraints pertaining

to views and the use of set operations (UNION, etc.) are
particularly noticeable. For example, in SQL, if a view

performs an aggregation, it cannot be used in a query in

which it is joined to another table or view. This forces the
user of the view to be aware of the view definition. In

Hydrogen, by contrast, views can appear anywhere a base

table can be used in a select statement, as well as in many
update statements. Update through views will be allowed

when the update is unambiguous; otherwise an error will be

returned. Likewise, queries with set operations may appear
wherever a select statement can be used -- in view definitions,

subqueries, etc. The goal in Hydrogen is complete

orthogonality: any operation on tables produces a table, and
can be used wherever a table would normally be allowed.

To achieve this goal, table expressions [DATE841 have been

introduced, and can appear anywhere a view or table can.

Table expressions are expressions (usually queries) which
produce a table as output. The output table can be named

and referred to later in the same query. Table expressions

add considerable power to the language. They allow users
to modularize their queries by factoring out common

subexpressions. While similar to views, they are more pow-

erful, as they may contain references to host language vari-
ables, or be correlated with other parts of the query.

One important use of table expressions is for expressing

recursion. Recursion can be expressed by forming cyclic

references to named table expressions. Hydrogen can be
used for logic programming by mapping rules to table ex-

pressions. Recursive queries may contain relational calculus

operations, aggregation, and even externally defined functions

(see below). As a result, one can also express path algebra
computations [ROSE86, CARR79] in Hydrogen. Thus Hy-

drogen can be used as an integrated language for logic

programming and database access. This allows the scope

of optimization to include both the rules and the database

queries, providing the opportunity to obtain a globally op-

timized execution plan.

378

DBCs can extend Hydrogen in several ways. They can

define new functions on columns, new operations on tables,

and new data types for columns. Several types of functions

can be defined. Scalar functions (e.g., Area(Width, Length))
take one or more field values from a single (possibly com-

posite) tuple, and return a single value. Scalar functions can

be used anywhere a column can be referenced. Aggregate

functions (e.g., StandardDeviation(Salary)) range over many

tuples of a table and return a single (aggregated) value.

Externally defined aggregate functions can be used in place
of built-in aggregates. Both types of functions can be invoked

by Starburst at low levels of the system to allow more effi-

cient handling of the data. For example, by invoking func-
tions in the predicate evaluator, Starburst can reduce the

amount of irrelevant data that is returned to the user.

New set predicate functions may also be defined. Set pred-
icate functions take as input a set (of tuples) and a predicate.

In SQL the built-in set predicate functions include ALL and

ANY, whose operands are a simple predicate (e.g., Tl.cl
= T2.cl) and a subquery that defines the set of tuples over

which that predicate should range (e.g., SELECT T2:cl

FROM T2 WHERE T2.c2=5). The function returns true
if the predicate holds for all (any) elements of the set. In

Hydrogen, a DBC could define a new set predicate function,

e.g., MAJORITY, which would return true if the predicate
is true for the majority of the elements of the set.

A fourth kind of function in Hydrogen is the table function.

These functions take one or more tables (or table expressions)
and possibly other parameters as their input, and produce

a new table as output. For example, the function SAM-

PLE(table, int) might produce a new table consisting of int
rows of table. Table functions can appear anywhere a table

or table expression can. They may be used to define new

operations on tables to supplement the relational calculus
operations supported by the base system. For example, a

DBC might add outer join or relational divide, or an oper-

ation for solving simultaneous equations. Although syntac-
tically a new operation looks like a function call, table func-

tions require sophisticated processing internally (see “4. The

Query Graph Model”).

Delinition of new data types for columns has more impact
on the DDL than the DML. However, they are extremely

useful to the user writing DML queries, as they allow type-

checking to better reflect the user’s semantic intent, and
enable better structuring of the user’s data. Starburst will

allow the definition of almost any type. Columns whose type

is externally defined can appear anywhere a column with
built-in type can appear, and functions can be defined on

them. An overview of our approach to externally defined

types appears in [WILM88].

With its increased orthogonality and extensibility, Hydrogen
can express very complex queries. This is necessary for

achieving Starburst’s goal of supporting nontraditional ap-
plications, such as logic programming. As in SQL, Hydrogen

has a relatively small number of built-in constructs. This

keeps the grammar small and compact, and perhaps makes

the language easier to learn. However, it creates two diffi-

culties. First, while complex queries can be expressed, their

representation in Hydrogen is usually quite complex as well.

This could make Hydrogen very hard to read and write,

making application development more difficult. Some “syn-
tactic sugar” may be needed on top of Hydrogen to make
Starburst sufficiently easy to use. In addition, even with a

small number of constructs, there are frequently several ways
of expressing the same query. In SQL, for example, the

standard query asking for all employees who make more

than their manager can be expressed either as a subquery
or as a join [KIM82], with several variations on predicate

order, etc. In Hydrogen, it could also be expressed several

different ways using table expressions. Whenever feasible,
the performance of a query should depend on its meaning

rather than on its expression; this increases nonprocedurality.

Identifying equivalent expressions for a query poses a sig-
nificant challenge for optimization.

Overall, we are pleased with the expressiveness of Hydrogen,

despite potential difficulties. We are experimenting with a

powerful architecture for rewriting queries (see “5. Query
Rewrite”) to address the optimization issue. We will be

better able to address the complexity issue when we have

some experience developing applications for Starburst.

3. Overview of Language Processing

As in System R and R*, processing of the data manipulation

language (DML) consists of two stages: first, compilation of
the query, and then, execution [CHAM81]. These two stages
may be separated in time, since the result of the compilation

stage can be stored for future use. The different phases of

query processing are shown in Figure 1. The query is first
broken into tokens, then parsed into its internal representa-

tion, the Query Graph Model (QGM). Semantic analysis of

the query is also done during parsing, so the QGM produced
is guaranteed to be valid. The query rewrite phase transforms

the QGM representation of the query into an equivalent

QGM for better performance. This phase could be bypassed
for faster query compilation at the expense of potentially

lower runtime performance. The plan optimizer chooses an

execution strategy (Query Evaluation Plan, or QEP) for the
query based on estimated cost, and this strategy is then

refined (Plan Refmcment) for efficient interpretation by the

Query Evaluation System at runtime.

4. The Query Graph Model

Starburst must be able to accommodate many types of ex-

tensions, including language extensions, data management

extensions and language processing extensions. For many

of these extensions, the DBC may wish to influence Corona’s

basic internal processing. For example, a DBC providing

an outer join operation may wish to tell the system when

predicates on the join can be “pushed down” to (applied to)

the individual tables. The rules for predicate push-down for

outer join are different than those for regular join (ROSE841.

At the same time, many base system functions (e.g., catalog

379

Compile-Time
I
I Run--ri-
I

Optimhed
Plan

1

i
i
i -

Figure 1: Phases of Query Processing

interface) can frequently be used by the extension. Ideally,

the DBC’s extensions should be able to invoke Corona’s

code for these common functions without altering them.

In Starburst we meet both goals, allowing the DBC to use
as much of Corona’s function as he oan and to write the

rest himself, by dctining a generic internal representation for

queries and giving the DBC access to this representation.
We call this representation the Query Graph Model (QGM).

QGM can be regarded as the schema for a main memory

database storing information about a query. This database

is the main interface between different phases of query com-

pilation (Figure l), and between Corona and any extensions.

We do not have space in this paper for a formal description

of QGM semantics [PIRA89]. Instead, we will use the fol-
lowing query and its corresponding QGM (Figure 2(a)) to

illustrate the most important QGM constructs:

SELECT partno, price, order-qty

FROM quotations Ql

WHERE Ql.partno IN

(SELECT partno

FROM inventory Q3

WHERE QJ.onhand-qty < Ql.order-qty

AND QJ.type = ‘CPU’)

This query returns the part number, price and order amount

corresponding to each quotation for a cpu part that is in

inventory, and for which the supply on hand is low.

In QGM, queries are represented as a series of high level

operations on tables. These operations include: SELECT,

which performs selection, projection and join; GROUP BY,

2 For simplicity, we show only the column names in Figure 2

Plan
‘inen

Plan
stwage

which forms equivalence classes (groups) from tuples of the

input table and applies aggregate functions to each group;

INSERT; UPDATE; DELETE; UNION; INTERSEC-
TION; and so on. Our query involves two SELECT oper-

ations, one for each SELECT...FROM...WHERE. These

are shown as two separate boxes in Figure 2(a). Each
operation has a head that describes its output table (the

column names and datatypes*) and a body that represents

the operation graphically. In this query, the outer SELECT
consists of an access to the quotations table and a predicate

over the result of a subquery. The inner SELECT contains

an access to inventory, and a predicate with two conjuncts.
Each access to either a stored or a derived table (one pro-

duced by another operation) is represented in the QGM by

a vertex and a dotted line (range edge) connecting the vertex
to the table or operation being accessed. Each conjunct of

a predicate is represented by a rectangle on a solid line

(qualifier edge) connecting one or more vertices (loops rep-

resent single table predicates). Thus in our query’s QGM,

Ql represents the access to the quotations table (stored ta-

bles are shown as dotted boxes, to distinguish them from

derived tables), 42 the access to the result of the lower

SELECT operation, and 43 the access to inventory. There

is a qualifier edge between Ql and Q2 representing the

predicate over the subquery result (the “IN” predicate), an

edge between Ql and Q3 representing the first conjunct of

the lower SELECT’s predicate (Q3.onhand-qty <

Ql.order-qty), and a loop from Q3 to itself, representing

“Q3.type = ‘CPU’“.

Vertices represent iterators, which may be either setformers

or quantifiers. A setformer, such as vertex Ql or 43, creates
a new table (set) from its input tables (essentially by projec-

380

‘artno, price, order-qty Tl OPl Partno, price, order,qty 1 Tl OPl
1

-;1....“?..-”

---j

f

!

Quotations ”
I

i

j Inventory

-.. .-J (al !-...“.-_.-.----

Q3(
Ol.aartna - 03.aortno

I I Ql.order-qty > ,
I I 03.onhand-qty i

Quotations
i

1 Inventory 1

j (b) 1. ..j

tion). A quantifier (e.g., 42) is a tuplc variable ranging over

its input tables. Setformcrs differ from quantiliers. in that
each element in the table over which a setformer ranges

may be used to construct the output from this operation (the

output table), whereas the elcmcnts ranged over by a quan-
tifier will not be added to the output table, only used to

restrict it. Thus Q3 is a sctformer, producing a table of

partno’s. Q2 is a quantifier, ranging over this table: the
elements it ranges over will be used to restrict those produced

by Ql in the upper box, but will not be added to the result

of that upper box.

Many iterators can range over the same input table, as each
represents a separate access to that table. QuantiIiers have

different types, which may be interpreted differently by dif-

ferent operations. For example, quarttiGers of type Exists

(3) and All (‘d) are interpreted by the SELECT operation

as existential and universal quantifiers, respectively, Q2 is

an existential quantifier corresponding to the IN keyword

of the query. There is only one built-in type of setformer,

ForEuch (F), though others may be added (see below).

Vertices (setformers and quantiIiers), edges (range and qual-

ifier), and boxes (with heads) are the main constructs of

QGM. They are extremely powerful, allowing us to express
arbitrarily complicated queries. Further, because the inter-

pretation of these constructs can vary depending on the type

of the operation, QGM is extensible. We anticipate that the

most common extension will be to add new operations on

tables, which requires the DBC to give an interpretation to

the qualifier edges and any new iterator types. The rest of

Figure 2: (a) QG;\I of a query (b) Same QG.54 after rewrite rules applied

QGM is “generic”; that is, the information is standard and

has a standard interpretation, regardless of the operation.
This is because most of QGM describes tables, both input

and output, and not the operations themselves.

For example, assume we wished to add a left outer join

operation. In this case,.qualiIier edges correspond to pred-
icates, as with SELECT’. However, the meaning of the pred-

icate is different, because if matching inner!values are not

found, the outer tuple still must be included m the result. A
simple way to flag this difference is to change the setformer

of the outer table to a new type, say, PF (Preserve Foreach).

hlany of Corona’s built-in functions (e.g., catalog lookup,
name resolution, most of the semantic checking, etc.) can
be used to generate QGM for queries containing outer join.

The DBC must write code for those parts that are different.
In this case, he might write code to check whether the outer

join was associative or commutative (in general it would not

be), and to change F setformers to PF where tuples must

be preserved. Of course, other parts of the system must be

changed before the user can actually write and execute an

outer join query. Query rewrite rules, optimizer cost esti-

mates, execution routines, and so on, are ail needed. The

important point here is that QGM is modifiable to allow

the operation to be represented internally.

Similar query graphs have been described in the literature

[RIES83, ZANI82]. QGM expands on these models in two

respects. First, QGiM has the full expressive power of Hy-

drogen. Thus it can represent intricacies of the language
such as nested operations, different iterator types, aggrega-

381

tion, correlation, and recursion. Second, due to its generic

interfaces, QG,M can also be used to represent extensions

to the system and to the language, such as externally defined

table functions and iterator types.

In summary, QGhl provides an understandable, detailed,
and unambiguous semantic representation of a query that

can be modified by the DBC as he adds operations to the

system. Further, because of the generic nature of the fable
abstraction, the DBC can capitalize on the common services

provided by Corona. Thus QGM simplifies the DBC’s task,

while giving him a great deal of flexibility and power.

5. Query Rewrite

There are several reasons why relational DBMSs need to

rewrite queries. There arc frequently several alternative

phrasings of a query. Since relational query languages are
ostensibly nonprocedural, these should perform equivalently.

Further, complex applications often rely on abstractions

provided by views to reduce the complexity of query speci-
fication. As view definitions are hidden from the query

writer, only the DBMS can rewrite queries involving views.

There is an extensive set of transformations that could be

performed during query rewrite. Views may be merged with

the queries that use them, as in System R and INGRES
[STON76]. Redundant joins may be eliminated [OTTSZ].

Predicates may be migrated from one operation to another
to minimize the amount of data accessed (this includes “side-
ways information passing” [ULLM85]). With the introduc-

tion of recursion in DBMS queries, transformations such as

magic sets [BANC86] should be incorporated. Semantic
query optimization [KING81, SHEN87] uses integrity con-

straints to transform queries. All of these transformations

may lead to better performance for the query, and new
transformations are constantly being proposed (e.g.,

[DAYA87]).

It is unlikely that we will ever have a complete set of trans-

formations, even for a standard relational language. And
for an extensible language such as IIydrogen, as new lan-
guage constructs and operations are added, new transfor-

mations will be needed. Thus this part of the system must
be highly extensible. To achieve this, we have created a new

phase in query processing for handling query rewrites at the

QGM level, using a rule-based approach [HASA88]. Query

rewrite is essentially a form of optimization. However, tra-

ditional DBMS optimization primarily deals with low level

decisions, such as the methods for table accesses, and the
methods and order of joins, creating a plan for query exe-

cution. Query rewrite occurs at a higher level of abstraction

(in our case, QGM), but which is slightly lower (more pro-
cedural) than the query language level.

Although many rule-based systems exist, we have chosen to

develop our own rule system for query rewrite. We require

a rich set of primitives for manipulating query graphs, nested

execution of rules, explicit control over the order of rule

execution, and some sort of termination guarantee to avoid

endless looping, yet preserve consistency. We estimated that

the effort of integrating an existing system into Starburst and
modifying it to meet these requirements would be greater

than the cost of implementing our own.

In our rule system, the rule language is C. A rule consists

of two parts, the condition and the acrion, each written as
a C function. The rule writer is expected to ensure that

every rule changes a consistent QGM representation into

another consistent QGM representation, i.e., each rule com-
pletes a transformation. We provide a set of rules for re-

writing the base system operations. A DBC may provide
additional rules for these operations, or rules for new (ex-
ternally defined) operations. Rules may be grouped into rule

classes to limit the number of rules that have to be examined,

to allow modularization of rules, and to give the DBC (and
ourselves) more explicit control over the execution sequence.

As an example, consider the following rules:

Rule 1 (Subquery to Join):3

IF OPl.type=Select A Q2.type=‘Y A

(at each evaluation of the existential predicate

at most one tuple of T2 satisfies the predicate)
THEN

Q2.type = ‘F’; /*convert to join*/

Rule 2 (Operatiqn Merging):

IF OPl .type = Select A OP2.type = Select A Q2.type = ‘F’

A (NOT (Tl .distinct = false

THEN

A OP2.eliminate-duplicate = true))

merge OP2 into OPI;

IF OP2.eliminate-duplicate = true

THEN OPI .eliminate-duplicate = true;

The first rule says that an existential subquery can be con-

verted to a join when there is at most one matching tuple

of the subquery for each tuple of the main query. The
second rule says that two SELECT operations may be

merged as long as there is no conflict in the way they handle

duplicates.4 These rules can be applied to the QG,M of figure

2(a), resulting in the transformed QGM of !igure 2(b). By

merging the operations, there is greater scope for optimiza-

tion, which may result in an improved execution plan.

The rules we provide for base system operations fall mainly

into three classes: predicate migration, projection push-down,

and operation merging. Predicate migration allows predi-

cates to be pushed down into lower level operations to min-
imize the amount of data retrieved. Predicates may also be

3 For purposes of illustration, we assume the subquery is a conjunct of the predicate

4 For a more complete explanation of these rules, and a more general version of Rule 1, see [HASASS]

382

replicated, and replicas migrated to multiple operations to

reduce execution cost. Predicates may also be moved up,

and then possibly down to other operations, which may be

beneficial. Rules for projection push-down avoid the retrieval
of unused columns of tables or views. These rules interact

with those for predicate migration: for example, when a

predicate is pushed to a “lower” operation, columns refer-

enced only by that predicate are no longer needed by the

higher operation. Operation merging rules merge QGM

“boxes”, creating the union of the predicates and iterators
of the original operations to allow more scope for optimi-

zation. View merging rules fall into this category, as does

the rule in our example. Not all operations are mergeable
(for example, GROUP BY cannot merge with SELECT).

Even two SELECT operations may not always merge, de-

pending, for example, on how they handle duplicates. Other
rules convert subqueries to joins [KIM82, GANS87], and

apply miscellaneous transformations.

DBC’s can take advantage of existing rules in any of these

classes, or write their own rules in these or other classes.
For example, predicate push-down rules are of two types:

those that specify when a predicate may be pushed down

from an operation, and those that specify when a predicate

may be received by (pushed down 10) an operation. A DBC

adding a left outer join operation will want the from rules

to apply automatically to the type F setformer (see “4. The
Query Graph hlodel”), without his having to respecify them.
However, they should not be applied to the type PF

setformer, as they would then eliminate tuples which should
be preserved. Left outer join (unlike the SELECT operation)

does not keep predicates, but can receive them if they refer

only to columns of the PF setformer, in which case they are
pushed rhvough the outer join operation to the operation

ranged over by the PF setformer. Thus the DBC would

have to write his own rule for receiving predicates.

Besides the rewrite rules, our rule system has two other

major components: the rule engine and the search facility
The rule engine is independent of the individual rules, but

is designed to meet the needs of query rewrite rules in gen-

eral. It handles IF TIIEN rules, using a forward chaining
strategy. Several control strategies are provided: sequential

(rules are processed sequentially), priority (higher ‘priority

rules are given a chance first), and statistical (next rule is
chosen randomly based on a user defined probability distri-

bution). To keep the rule engine from spending too much

time rewriting queries, it can be given a budget. When the

budget is exhausted, the processing stops at a consistent

state (of QGM). The search strategy is independent of both

the rules and the rule engine, but is specific to QGM. Its

role is to browse through QGM, providing the context for

the rules to work on. Both depth first (top down) and

breadth first search are supported.

There may be several alternative transformations for a query.
For example, a join predicate may be pushed down on

either of its iterators (but not both!). If a view is used in

multiple places in a query, it may be merged into the query

each time, or materialized once and used several times. To

choose among these alternatives, cost analysis is needed.

However, cost estimates are known only at the plan level,

since we need to have decisions about join order, access

methods, etc, in order to estimate costs. As a result, query
rewrite must interact with plan optimization to estimate the

cost of alternative QGM representations. We have initially

chosen to generate the alternatives during query rewrite and
select among them during optimization. We have therefore

added a new operation, CHOOSE, to QGM to link together

the alternatives. This operation can be eliminated when the
optimizer chooses an alternative, or kept in the plan until

runtime to allow a decision based on runtime parameters

(e.g. the value of programming language variables). A sim-
ilar operation for plans has been proposed by Graefe

[GRAE89].

One drawback of deferring the choice of an alternative until

optimization is that alternatives cannot be pruned during

query rewrite. Thjs is particularly troublesome for predicate
migration, since the number of alternatives grows as a prod-

uct of the number of iterators and predicates. We are cur-

rently investigating ways to integrate the query rewrite and
optimization phases to avoid this problem.

We have built the rule system and defined rules for the base

operations and for several extensions. Recently we have

been adding rewrite rules for recursive queries, including
rules to do magic set transformations (BANC86]. Much

work remains to be done. In particular, we would like to
do a comprehensive study of the rule system’s performance.
We would like to prove the correctness of the rewrite rules

designed so far, and develop tools to help DBC’s establish

the correctness of their transformations. We are pursuing
the design of a more restrictive rule language that would

allow automatic analysis and optimal execution of rules, and

are studying the applicability of efficient execution techniques
such as RETE networks [FORG82] and rule indexing. Fi-

nally, we need to add rules for many more extensions, to

determine whether the rule system is sufficiently flexible, and
to study the interactions between rules for different extensions.

6. Plan Optimization

Given a QGM representation of the query, the optimizer

estimates the cost of alternative query evaluation plans
(QEPs) to execute that query, and chooses the cheapest. As

with other query optimizers, the Starburst optimizer may be

characterized by its approach to three major aspects of

optimization: (1) plan generation, (2) plan costing, and (3)

search strategy. Again, Starburst’s goal of extensibility dic-

tated a more flexible specification of each of these aspects

ofoptimization than earlier optimizers for System R [SEL179]
and R* [LOHM85], which embedded all execution strategies,

cost formulas, and search strategies in the code. The chal-
lenge was to find an eflicient yet easy-to-specify representation

for each aspect, in order to facilitate the specification of a

rich repertoire of alternative execution plans without sacri-
ficing compiler performance. For greater extensibility, the

383

three aspects were designed to be largely orthogonal, so that
each could be modified independently of the others.

The optimizer algorithm optimizes each QGM operation

independently, bottom up, using a rule-driven plan generator
and rules peculiar to that operation’s type to construct QEPs
and evaluate their cost. For example, the most common

operation type, a SELECT operation, has rules for accessing
stored tables in various ways, and rules for joining multiple

iterators. A DBC adding a left outer join operation would

add new rules for the outer join operation itself, but could

benefit from the existing rules for single table accesses.

The Starburst plan generator generates alternative plans us-
ing a constructive, “building blocks” approach [LOHM88].

This approach is closer to that of the Genesis project

[BAT087a] than the plan transformational approach of the

Exodus project [GRAE87a, GRAE87b] or of Freytag
[FREY87]. Executable plans are defined using a grammar-

like set of parameterized production rules called srrategy
alternative rules (STARS). These rules detine higher-level

“non-terminal” constructs from low-level “terminal” database

operators strung together, in a way resembling a functional
programming language [BACK78]. A “terminal” in this

grammar is a low-level plan operator (LOLEPOP) that will

be interpreted by the Query Evaluation System at run-time.
LOLEPOPs are a variation of the relational algebra (e.g.,

JOIN, UNION, etc.), supplemented with physical operators

such as SCAN, SORT, SHIP, etc. Each LOLEPOP is
expressed as a function that operates on 0 or more streams

of tuples, and produces 0 or more new streams (typically

one). A Starburst query evahation plan (QEP) is a nesting
of invocations of LOLEPOPs. A STAR consists of a name

(the nonterminals ofour grammar), zero or more parameters,

and one or more alternative defmitions in terms of

LOLEPOPs or other STAR names. IF conditions can be

attached to any alternative, to determine the applicability of

that alternative, and “V” clauses can be used to generate a

set of related alternatives.

Every table (either a base table or the result of a plan) has

a set of properties that summarize its characteristics

[BAT087b, ROSE871 and hence are important to the cost
model. These properties are of three types: relational (e.g.,

tables joined, columns accessed, and predicates applied thus

far), operational (e.g., order of tuples (if any), site of result)

and estimated (e.g., (cumulative) cost, cardinality). Each

LOLEPOP changes selected properties of its operands, in a

way influenced by its parameters, usually adding cost. These

changes, including the appropriate cost and cardinality esti-

mates, are detined by a C function for each LOLEPOP.

For example, SORT changes the order of tuples to the order
specified in a parameter. SHIP changes the site to the
specified site. SCAN changes a stored table to a memory-

resident stream of tuples, but optionally can also subset
columns and apply predicates that may be enumerated as

parameters. The latter option will of course change the

cardinality property as well.

A STAR may require certain properties of its operands,

especially for certain join methods. For example, the merge
join requires its input table streams to be ordered by the

join columns. Required properties are achieved by additional

“glue” STARS that find the cheapest plan satisfying the re-

quirements. If necessary, glue STARS may add LOLEPOPs

to make existing plans meet the requirements. For example,

SORT can be added to change the tuple order, or SHIP to
change the site [LOHM88].

When a QGM operation (especially SELECT) contains mul-

tiple iterators, a join enumerafor then enumerates all valid
join sequences by iteratively constructing progressively larger

sets of iterators (iterator sets) from twos smaller iterator sets,

starting initially from the plans generated earlier for sets of
a single iterator. For each such pair of iterator sets, the join

enumerator invokes the plan generator to generate and eval-

uate alternative QEPs for that join using the join STARS.
The enumeration exploits join predicates referencing more

than two iterators, implied predicates, and joins permitting

composite inner tables, producing a potentially larger set of

plans than did the R* and System R optimizers [ONOSS].

Starburst’s wider range of plans necessitates more powerful

mechanisms for limiting the search. Our optimizer has both
query-specific parameters to limit the search space as well
as an extensible search strategy. Each alternative for a
STAR will have a rank associated with it, so that alternatives

exceeding a given rank can be pruned by the plan generator.
In addition, a prioritized queue mechanism parameterizes

the order in which STARS are evaluated. Merely by changing

the priorities, this general mechanism can implement breadth-
first, depth-Brst, or many other strategies. Two other pa-

rameters allow the join enumerator to prune join sequences

having composite inners (“bushy trees”) or no join predicate
(Cartesian products), as System R and R* always did.

We have implemented the complete join enumerator
[ON088]and an initial STAR-based plan generator [LEE88].

The plan generator contains (1) a general-purpose STAR

evaluator, (2) a search strategy that chooses the next STAR
to evaluate, and (3) an array of STARS. This design permits

the optimizer designer to add, change, or delete rules in the

STAR array without affecting the code for the search strategy
or the rule evaluator. Similarly, the search strategy can be

changed without affecting the rule evaluator or the STARS.

Each time the plan generator is invoked, it constructs a tree

of alternative QEPs as STARS are evaluated and replaced

by their alternative definitions, much as is done by a macro

processor, until all STARS are fully refined to LOLEPOPs.
Then the property function for each LOLEPOP is called to

evaluate its effect on the properties of its operands, starting

with statistics on stored tables. Currently, the STAR array

is initialized manually in the code, but ultimately we hope

5 Joms are typically implemented as dyadic operators, but this lirmtahon can be removed in Starburst.

384

to build a compiler that will permit the DBC to specify

STARS in a very high level functional programming language.

This design is very powerful, and highly extensible. Using
STARS, we can readily express all the strategies of the R*

optimizer, plus new strategies for composite inners (e.g.,
(A*B)*(C*D)), new join methods, new access methods, index

ANDing, filtration methods such as semi-joins and Bloom-

joins [MACK86], dynamic creation of indexes on interme-

diate results, conversion of subqueries to joins, and materi-

alization of tables at any point to force projection, all in

under 20 rules. We can add new properties to existing

operators, add new operators, form new plans by combining

existing operators in new ways, restrict or broaden the search

space, and change the search method. Many of these

changes can be accomplished by simple modifications to
existing rules or by giving a different value to a parameter.

Others require somewhat more sophistication by the DBC

(for example, adding a new property). An easily extensible
optimizer is critical to achieving Starburst’s goals. We plan

to experiment with a variety of extensions to demonstrate

the power and cxtcnsibility of our optimizer.

7. The Query Evaluation System

At runtime, Starburst’s query evaluation system (QES) takes

a query evaluation plan (QEP), and evaluates it against the

database. The QES calls Core to retrieve tuples from tables

and attachments into its own set of buffers, where it performs
complex operations such as join or aggregation. For exten-

sibility, we need a QES that can be easily changed and
extended to accommodate, for example, new types of access

methods or new join methods, without changing its overall

structure or implementation. We achieve this goal by devel-
oping an algebraic interface between the optitiizer and the

QES. A QEP is an operator tree similar to a query speci-

fication in the relational algebra. Each operator takes one
or more streams of tuples as input and produces one or

more streams of tuples (usually one) as output. We implement

the concept of streams by lazy evaluarion to keep “interme-
diate” results between operators as small as one tuple.

There are several advantages to this approach. First, using
the stream abstraction allows us to add new operators easily.

The interaction between operators can be standardized, so

that the details of obtaining a tuple from and handing a
tuple to another operator can be hidden by predefmed mac-

ros. The implementers of new operators then can reuse

those macros without reimplementing them for each exten-
sion. Second, the algebraic interface guarantees the inde-

pendence of different parts of the QES. As long as the

operators use the model of streams as the interface between

them, we do not anticipate changes in existing operators due
to an extension or change in another part of the QES.

Finally, the algebraic approach not only provides an interface

to a component that interprets QEPs, but it can also serve

as the input specification to a component that compiles

QEPs into iterative programs [FREY86].

Starburst will include about a dozen built-in LOLEPOPS.

By far the most difficult of these to implement are the JOIN
operators. One reason for this is that in Starburst, we treat

subqueries as special types of join. This simplifies QGM,

query rewrite and optimization considerably, but causes sev-
eral problems for the execution system. First, the join op-

erators must be able to handle different kinds of joins; that

is, joins between different iterator types in QGM. The dif-

ferent kinds of joins include “regular” join, “exists” join (or

semi-join), “scalar-subquery” join (one in which the subquery

is introduced by a scalar comparison operator), and “op-
ALL” join (corresponding to the universal quantifier). This

set of join kinds can also be extended as new iterator types

are added to QGM. Each join operator takes as one of i&
parameters a function name, representing the join kind. In

this way a single operator can handle many different join

kinds.6. By clearly separating the “control structure” of the
join, i.e., the join method, from the function performed dur-

ing the join, i.e., the join kind, we provide an additional

degree of flexibility for the implementation of joins. For
example, “left outer” join could be added as a join kind,

allowing the left outer join operator to take advantage of

existing methods of join evaluation. Alternatively, or in ad-
dition, a new join method specific to left outer join could

be added simply by adding a new LOLEPOP.

Secondly, Hydrogen, like SQL, allows both correlated and

uncorrelated subqueries, which must then be handled by the
join operators. In Corona, we replace the mechanisms of

“evaluate-at-open” and “evaluate-at-application” [LOHM84]

for uncorrelated and correlated subqueries, respectively, by
a single uniform mechanism called “evaluate-on-demand”.

With this approach, we evaluate subqueries only as they are

needed. We also include logic to avoid re-evaluating the
subquery when the correlation values have not changed,

thus improving the performance during execution.

The third problem arises when evaluating queries containing

OR predicates with subqueries. Consider the Hydrogen query

SELECT * FROM Tl
WHERE Tl.Al = S OR Tl.A2 =

(SELECT B2 FROM T2 WHERE T2.Bl = 16).

The two predicates must be executed by separate operators.
The first could be evaluated using the FILTER operator, the

other by a JOIN operator using any join method combined

with the “scalar-subquery” join kind to join Tl and the

subquery table(s). However, the.FILTER operator, if applied

first, cannot just discard a tuple which does not satisfy the

predicate. Instead it must be handed over to the JOIN
operator for further consideration. For this, we have designed

an additional OR operator that is based Non the “stream

philosophy” and does not require any change to the operators
used to evaluate the predicate terms.

6 This does not imply that every jam method can be combined with every join kind.

385

During the initial implementation of the QES, we realized

that it has a very regular structure (due to the algebraic
approach) and simple interfaces. To support the DBC who

extends the QES, we would like to have an additional tool
that relieves him from knowing which parts of the system

to change in order to add or remove operators from the
component. We have considered providing a QES generator.
In some well-defined way, the DBC could specify each op-

erator and its corresponding execution routine (and possibly
a printing and building routine). The generator would then

add the necessary data structures and procedures that “glue”

these operators together to form the QES.

8. Conclusions

Implementation of the Starburst prototype is well underway.

Initial implementations of all pieces of Corona described in

this paper have been built on top of the basic Core functions,

and arc being integrated. IIydrogen statements of arbitrary

complexity can be parsed and translated into QGM, and

the QGM rewritten by an initial set of rules for view merging
and predicate push-down. Much of the infrastructure of the

optimizer is in place, including the inference engine for

STARS. The interpreter routines for most of the QEP op-
erators have been written and tested in an artificial environ-

ment, but few of the routines for transforming the optimizer’s

output QEP into an executable QEP exist. We have executed
our first single-table SELECI’. We have some initial proof

of the extensibility of the language processing. We have

been able to extend the early parts of the system to add a
left outer join operation, so that queries with outer join can

now be parsed, represented in QGM and manipulated cor-

rectly by the rewrite rules. Adding rules for new operations

to the optimizer seems to be easy, though defining them may

be hard, and adding new operators to the QES has been

trivial (once the code for the operators has been written).

Although work on Corona is far from complete, we have
already learned several important lessons about designing

and building an extensible system. The success we have had

in building and extending Corona to date is based on two
principles: orthogonality and the table abstraction. Under-

standing which parts of the system are logically orthogonal

allows us to separate them, leading to a very modular design.
Thus, complex components are broken into independent

pieces, which can be replaced or extended individually.

Keeping the extensions orthogonal from the base system

also creates a basis for sharing across application areas.

This reliance on orthogonality exists throughout Corona. In

addition, a powerful internal model of processing is critical.

Basing the design of language processing on the table ab-

straction (and the QGM representation) led to simpler de-

signs and a clean interface for extensions. Since both the
extensions and the base system are written in terms of the
same high level model, sharing between different extensions

and the system should be enhanced.

On the whole, we are pleased with the design of Corona.
All of the pieces are quite powerful and extensible. However,

some concerns remain. In Corona, extensions at different

levels of the system are done in different ways, well suited

to their separate problems. For example, query rewrite uses

production rules, and cost optimization employs grammar-
like rules, while the QES takes an algebraic approach. We

need to see in practice how well these approaches Iit together,

whether they can be combined in a single unified framework
and whether there is any benefit to combining them. Per-

formance of the system is another open question. These

issues can only be resolved through completion of the pro-

totype and experimentation with actual applications.

There are many other open problems in extensible systems.

Currently, customization of Corona (and Starburst in general)

requires a skilled programmer, and, for many extensions,
experience with database technology and implementation.

While even this level of extensibility is a great improvement

over standard DBMSs, we feel that it is important to inves-
tigate tools for making customization easier. What are the

appropriate tools? How easy can this process be made?

How can independent extensions be combined, or more

importantly, how can we ensure that independent extensions

do not conflict? For example, how do we ensure that trans-

formation rules for one extension do not interfere with the
rules of another extension? In general, how do we ensure

the “sanity” of the DBMS after several extensions have been

made? Many other challenges will arise as we look at spe-
chic applications and further extensions to Starburst’s

functionality. For example, in a distributed environment

where different Starburst nodes may be extended in different
directions, query planning and coordination of metadata

may be difficult.

In the near term, we are finishing the implementation of our

prototype. In the future, we plan to study the uses of this

extensible technology. We will test the extensibility of our

system by building (or-getting others to build) application

systems for Starburst. We are currently exploring knowledge-

based systems as a first application area, examining issues
such as how to represent and support frames and rules in

the database, what function should reside in the DBMS, and
what function should be left in the application. We will also
continue to pursue advances in database technology, includ-

ing new access methods, join algorithms, parallelism and

other execution strategies, using Starburst as a testbed for

our research.

In summary, this paper described the overall design of the

Starburst language processing component. The main chal-

lenge for language processing is to handle extensions to the

data manager, the language, and the language processing

itself. We feel that Corona has gone a long way towards

meeting this goal. Among the novel features that have helped

us achieve this extensibility are an internal model of the
query based on tables, the use of rule-based processing for

query rewrite, the separation of the different components of
optimization and using grammar-like rules to generate plans,

and an execution system based on the relational algebra.

Still, there are many exciting open questions in extensible

database research.

386

Acknowledgements

Several others have contributed greatly to the design of Co-

rona. Mavis Lee and Waqar IIasan designed and imple-

mented the rule-based optimizer prototype and the rule en-

gine for query rewrite, respectively. Kiyoshi Ono created

the optimizer infrastructure and the join enumerator. Bill
Cody designed and built the lexical analysis and the parser.

Bruce Lindsay and George Lapis designed and implemented

much of the infrastructure for Corona, as well as the exten-
sible data detinition, authorization and catalog management

components. She1 Finkelstein, in investigating how Starburst

could support knowledge-based systems applications, has
suggested many ways to increase Corona’s extensibility, and

has frequently forced us to re-examine our designs. Our

colleagues and collaborators on Starburst -- Walter Chang,

John McPherson, C. Mohan, Peter Schwarz, Paul Wilms

and Bob Yost -- have improved our designs and clarified

our ideas, while causing us to stretch to accommodate their
innovations in Core. We are grateful to Bruce Lindsay, She1

Finkelstein, John McPherson, Pat &linger, Irv Traiger, Paul

Wilms and several anonymous referees who carefully and
constructively read a draft of this paper.

9. Bibliography

[ABITSS] Abiteboul, S., M. Scholl, G. Gardarin and E.
Simon, Towards DBMSs for Supporting new Applica-
tions, Procs. of the Twelfth International Conference on

Very Large Databases (Kyoto, Aug; 1986).

[ASTR76] Astrahan, M., M. Blasgen, D. Chamberlin, K.
Eswaran, J. Gray, P. Griffiths, W. King, R. Lorie, P.

McJones, J. Mchl, G. Putzolu, I. Traiger, B. Wade and

V. Watson, System R: Relational approach to database
management, ACM Transactions on Database Systems

I:2 (June 1976).

[BACK781 Backus, J., Can programming be liberated from
the von Neumann style? A functional style and its

algebra of programs, Comm. ACM 21:s (Aug. 1978).

[BANC86] Bancilhon, F., D. IMaier, Y. Sagiv and J. Ullman,
Magic sets and other strange ways to implement logic

programs, 5th ACM Symposium on Principles of Da-

tabaTe Systems, Cambridge (1985).

[BANE871 Banerjee, J., W. Kim, H.J. Kim and H. Korth,
Semantics and Implementation of Schema Evolution in

Object-Oriented Databases, Procs. ACMSIGMOD (San
Francisco, May 1987).

[BAT0861 Batory, D., GENESIS: A Project to Develop

an Extensible Database Management System, Procs.

1986 Int. Workshop on Object-oriented Database Sys-

tems (Asilomar, Sept. 1986).

[BAT087a] Batory, D., A Molecular Database Systems
Technology, Tech. Report TR-87-23 (Dept. of Comp.

Sci., Univ. of Texas at Austin, June 1987).

[BATO87b] Batory, D., Extensible Cost Models and Query

Optimization in GENESIS, IEEE Database Engineering

IO:4 (Dec. 1986).

[CARE861 Carey, M., D. DeWitt, D. Frank, G. Graefe,
M. Muralikrishna, J. Richardson and E. Shekita, The

Architecture of the EXODUS Extensible Database Sys-

tem, Procs. 1986 Int. Workshop on Object-oriented Da-
tabase Systems (Asilomar, Sept. 1986).

[CARR79] Carr, B., Graphs and Networks, Oxford Uni-

versity Press: New York, NY, 1979, ch.3 (1979).

[CHAM81] Chamberlin, D., M. Astrahan, W. King, R.

Lorie, J. Mehl, T. Price, M. Schkolnick, P. Selinger, D.

Slutz, B. Wade and R. Yost, Support for Repetitive
Transactions and Ad-Hoc Queries in System R, ACM

Trans. on Database.Systems 6:l (Mar. 1981).

[DATE841 Date, C., A Critique of the SQL Database,
ACM SIGMOD Record (1984).

[DAYA86] Dayal,U. and J. Smith, PROBE: A Knowledge-

Oriented Database Management System, On Knowledge
Base Management Systems: Integrating Artificial Intel-

Iigence and Database Technologies, Springer Verlag

(Brodie & Mylopoulos (eds.), 1986).
[DAYA87] Dayal, U., Of Nests and Trees: A Unified Ap-

proach to Processing Queries That Contain Nested

Subqueries, Aggregates, and Quantifiers, Procs. of the

Thirteenth International Conference on Very Large Da-

tabases (Brighton, Sept. 1987).

[FORG82] Forgy, C., RETE: A fast algorithm for the many
pattern: many object pattern match problem, Artificial

Intelligence I9: I7-38 (1982).
[FREY861 Freytag, J.C. and N. Goodman, Rule-Based

Translation of Relational Queries into Iterative Pro-

grams, Procs. ACM SIGMOD (Washington, D.C., May

1986).
[FREY871 Freytag, J.C., A Rule-Based View of Query

Optimization, Procs. ACM SIGMOD (San Francisco,

May 1987).
[GANS87] Ganski, R. and H. Wang, Optimization of

Nested SQL Queries Revisited, Procs. ACM SIGMOD

(San Francisco, May 1987).
[GRAE87a] Graefe, G. and D. Dewitt, The EXODUS

Optimizer Generator, Procs. ACM SIGMOD (San Fran-

cisco, May 1987).
[GRAE87b] Graefe, G., Software Modularization with the

EXODUS Optimizer Generator, ZEEE Database Engi-

neering IO:4 (Dec. 1986).
[GRAE89] Graefe, G., Dynamic Query Evaluation Plans,

Oregon Graduate Center TR No. CS’E 88-003 (1988).

[GRIF76] Grifliths, P. and B. Wade, An Authorization
Mechanism for a Relational Database System, ACM

Trans. on Database Systems I:3 (Sept. 1976).

[GUM’841 Gunman, A., R-Trees: A Dynamic Index Struc-

ture for Spatial Searching, Procs. ACM SIGMOD (BOS-

ton, June 1984).

[HAAS Haas, L, W. Cody, J. Freytag, G. Lapis, B.
Lindsay, G. Lohman and H. Pirahesh, An Extensible
Processor for an Extended Relational Query Language,

IBM Research Report RJ 6182 (April 1988).

[HASA Hasan, W. and H. Pirahesh, A Rule System for
Query Rewrite Optimization in Starburst, IBM Research

Report RJ6367 (Aug. 1988).

387

[IBM871 IBM Systems Application Architecture, Common

Programming Interface: Database Reference, SC

26-4348-O (Sept. 1987).

[KIM821 Kim, W., On Optimizing an SQL-like Nested

Query, ACM Trans. on Database Systems 7:3 (Sept.

1982).

[KIM871 Kim, W., J. Banerjee, H.-T. Chou, J. Garza and

D. Woelk, Composite Object Support in an Object-

Oriented Database System, Procs. ACM Conf. on Object

Oriented Programming Systems, Languages and Appli-
cations (Orlando, Oct. 1987).

[KlNG81] King, J., QUIST: A system for semantic query

optimization in relational database, Procs. of the Sev-
enth International Conference on Very Large Databases

(1981).
[LEE881 Lee, M., J.C. Freytag and G. Lohman, Imple-

menting an Interpreter for Functional Rules in a Query

Optimizer, Procs. of the Fourteenth International Con-

ference on Very Large Databases (Los Angeles, Aug.

1988).
[LIND87] Lindsay, B., J. McPherson and I-I. Pirahesh, A

Data Management Extension Architecture, Procs.
ACM SIGMOD (San Francisco, May 1987).

[LOlfM84] Lohman, G., L. Haas, R. Kistler, P. Selinger

and D. Daniels, Optimization of Nested Queries in a

Distributed Relational Database, Proc. of the Tenth

InternationaI Conference on Very Large Database (Sing-
apore, Aug. 1984).

[LOH,M85] Lohman, G., C. Mohan, L. Haas, B. Lindsay,

P. Selinger, P. Wilms and D. Daniels, Query Processing
in R*, Query Processing in Database Systems, Springer-

Verlag (Kim, Batory, & Reiner (eds.), 1985).
[LOHM88] Lohman, G., Grammar-like Functional Rules

for Representing Query Optimization Alternatives,
Procs. of ACM-SIGI14OD (Chicago, IL, June 1988).

[MACK86] Mackert, L. and G. Lohman, R* Optimizer

Validation and Performance Evaluation for Distributed
Queries, Procs. of the Twelfth International Conference

on Very Large Databases (Kyoto, August 1986).

[MAIE86] Maier, D., J. Stein, A. Otis and A. Purdy, De-
velopment of an Object-Oriented DBMS, Procs. ACM

Conf. on Object Oriented Programming Systems, Lan-

guages and Applications (Portland, Sept. 1986).
[ONO88] Ono, K. and G. Lohman, Extensible Enumeration

of Feasible Joins for Relational Query Optimization,

IBM Research Report RJ6625 (Dec. 1988).
[OTT’821 Ott, N. and K. Horlander, Removing Redundant

Join Operations in Queries Involving Views, Heidelberg

Scientific Center, TR 82.03.003 (March 1982).

[PAUL871 Paul, H., H. Schek, M. Scholl, G. Weikum and

U. Deppisch, Architecture and Implementation of the

Darmstadt Database Kernel System, Procs. ACM

SIGMOD (San Francisco, CA, May 1987).
[PIRA89] Pirahesh, H. and S. Finkelstein, An Extensible

Query Graph Model, internal working paper.

[RIES83] Ries, D., A. Chan, U. Dayal, S. Fox, K. Wen-Te
and L. Yedwab, Decompilation and Optimization for

ADAPLEX: A procedural Database Language, Tech-

nical Report, CCA-82-04 (Sept. 1983).

[ROSE841 Rosenthal, A. and D. Reiner, Extending the

Algebraic Framework of Query Processing to handle

Outerjoins, Procs. of the Tenth International Conference
on Very Large Databases (Singapore, Aug. 1984).

[ROSE861 Rosenthal, A., S. Heiler, U. Dayal and F.

Manola, Traversal Recursion: A Practical Approach to
Supporting Recursive Applications, Procs. ACM

Sigmod (Boston, June 1984).

[ROSE871 Rosenthal, A. and P. Helman, Understanding
and Extending Transformation-Based Optimizers, IEEE

Database Engineering IO:4 (Dec. 1986).

[SCHW86] Schwarz, P., W. Chang, J.C. Freytag, G.
Lohman, J. McPherson, C. Mohan, H. Pirahesh,

Extensibility in the Starburst Database System, Procs.

1986 Int. Workshop. on Object-oriented Database Sys-
tems (Asilomar, Sept. 1986).

[SEL179] Selinger, P., M. Astrahan, D. Chamberlin, R.

Lorie, and T. Price, Access Path Selection in a Relational
Database Management System, Procs. ACM SIGMOD

(June 1979).

[SIIEN87] Shenoy, S. and Z. Ozsoyoglu, A System for
Semantic Query Optimization, Procs. ACM SZGMOD

(May 1987).

[STON76] Stoncbraker, M., E. Wong, P. Kreps and G.
Held, The design and implementation of INGRES,

ACM Trans. on Database Systems I:3 (Sept. 1976).

[STON86] Stonebraker, M. and L. Rowe, The Design of
POSTGRES, Procs. ACM SIGMOD (Washington,

D.C., May 1986).
[ULLM85] Ullman, J., Implementation of Logic Query

Languages for Databases, ACM Trans. on Database

Systems IO:3 (Sept. 1985).

[WILM88] Wilms, P., P. Schwarz, H. Schek and L. Haas,
Incorporating Data Types in an Extensible Database

Architecture, 3rd Int’I Conference on Data and Knowl-

edge Buses (Jerusalem, June 1988).
[ZAN182] Zariiolo, C. and M. Melkanoff, A Formal Ap-

proach to the Definition and the Design of Conceptual

Schemata for Database Systems, ACM Trans. on Da-

tabase Systems 7:l (March 1982).

388

