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Abstract 

Today’s DBMSs are unable to support the increasing de- 

mands of the various applications that would like to use a 

DBMS. Each kind of application poses new requirements 

for the DBMS. The Starburst project at IBM’s Almaden 

Research Center aims to extend relational DBMS technology 
to bridge this gap between applications and the DBMS. 

While providing a full function relational system to enable 

sharing across applications, Starburst will also allow (sophis- 
ticated) programmers to add many kinds of extensions to 

the base system’s capabilities, including language extensions 

(e.g., new datatypes and operations), data management ex- 
tensions (e.g., new access and storage methods) and internal 

processing extensions (e.g., new join methods and new query 

transformations). To support these features, the database 
query language processor must be very powerful and highly 

extensible. Starburst’s language processor features a powerful 

query language, rule-based optimization and query rewrite, 
and an execution system based on an extended relational 

algebra. In this paper, we describe the design of Starburst’s 

query language processor and discuss the ways in which the 
language processor can be extended to achieve Starburst’s 

goals. 

1. Introduction 

As relational DBMSs have become more widely used, they 

have attracted applications beyond those for which they 

were originally designed. Engineering, office and geographic 
applications (among others) have attempted to use relational 

databases to store their data. However, each of these kinds 

of applications has requirements that standard relational 
systems are unable to satisfy. All have data that is structured 

in (sometimes) complex ways, and functions that manipulate 

that data. But the demands of each kind of application for 
new data types and functions are different. 

For applications such as these, using a relational DBMS 

can be frustrating. While relational systems offer functionality 

that these applications need (e.g., the ability to relate arbitrary 

pieces of information, easy storage for basic facts, high level 

query language with automatic optimization, concurrency 

control, recovery), they do not provide sufficient support for 
the functions and data types needed by the applications. 

Thus, to derive any benefit from a relational system, the 

application itself must build the additional function it needs, 

on top of the DBMS. In particular, it must map its types 
to DBMS types, and it must evaluate all functions, even 

those in predicates, that are not built into the DBMS. This 

leads to complex and inefficient applications: complex, be- 
cause the applications must each perform this extra work, 

and inefficient, because much data must be returned to the 

application for processing and predicate evaluation, and be- 
cause there can be little or no internal DBMS support of 

the data for fast access (e.g., no specialized access paths or 
storage management). 

The Starburst project at IBM’s Almaden Research Center 
[SCHWS6] aims to bridge this gap between relational DBMSs 

and the applications that would like to use them. Starburst 

will serve as a testbed for research in relational database 
technology and database applications, as well as extended 

database support for applications, hardware architectures 

and devices. Extensibility, or the ability to tailor the DBMS 
code to support particular applications or hardware, is the 

key to achieving these goals. Thus Starburst provides support 

for adding new storage methods for tables, new types of 
access methods and integrity constraints, new data types, 

functions, and new operations on tables. In most cases, 

these extensions will be made by knowledgeable database 
implementers, whom we will call database customizers 

(DBCs), and not by end-users or even skilled application 

programmers. 

Starburst has two major components, the query language 
processor, Corona, and the data manager, Core, correspond- 

ing roughly to the RDS and RSS of System R [ASTR76]. 

Corona is responsible for compiling the user’s query into an 

efftciently interpretable form. Thus its duties include parsing 

the query, semantic analysis, choosing an execution strategy, 

and producing the set of operators to implement the execution 
strategy (the Query Evaluation Plan). It also drives the 

execution, by interpreting the Query Evaluation Plan, and 

controls the data definition process (when tables, access 
methods, etc. are created and destroyed). During each of 

these activities Corona invokes the data manager’s servi,ces 

as needed. Among the services provided by Core are record 

management (locating, retrieving, and storing records), buffer 

management, access path management, concurrency control 

and recovery. 

One aspect of Core deserves further description, as it puts 

demands on the capabilities of Corona. This is Core’s data 

management extension architecture [LIND87]. This archi- 

tecture allows a DBC to add new kinds of attachments 
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(access methods and integrity constraints) and new storage 

managers to Starburst. For example, a DBC could define 

a new storage manager which handles fixed-length records 

only -- but extremely efficiently. Corona must ensure that 

the correct storage manager is invoked when a table is 

accessed. Likewise, a DBC could define a new type of 
access method, e.g., an R-tree [GUTT84]. Corona must 
recognize when this access method is useful for a query and 

when to invoke it. Thus the language processor must ac- 

commodate these extensions to the data manager’s capabil- 
ities. 

The Starburst prototype runs under AIX on IBM PC/RT 

workstations, and is being implemented in C to increase 

portability. Starburst is still in the early prototype phase of 
implementation. The design is essentially complete and ini- 

tial implementations exist for each of the components de- 
scribed below, with varying degrees of robustness. Some 

components, such as the parser, are complete and have been 

thoroughly tested; others have complete functionality but 

have not been integrated. We are in the process of integrating 

these components to make a coherent, usable system. 

Many other systems ‘provide facilities similar to those of 
Starburst. DASDBS [PAUL87], Exodus [CARE86], Genesis 

[BAT086], Postgres [STON86], Probe [DAYA86], and 

SABRE [ABIT86] are all extensible systems. Exodus and 
Genesis are distinguished by following what has been called 

the “toolkit” approach: both allow the database implementer 

to mix-and-match a set of components and then generate a 
DBMS from these components, so that the DBMS is tine- 

tuned for a particular application. By contrast, our approach 

in Starburst allows the DBMS to be, extended in multiple 
directions, which promotes data integration across applica- 

tions. DASDBS, Postgres and SABRE are based on the 

relational data model, and DASDBS allows nested relations. 

The other systems are based on functional data models. 

There are also several “object-oriented” systems with similar 

goals, including Orion [BANE87, KIM871 and Gemstone 
(MAIE861. We chose to stay with the relational model be- 

cause of its great power and simplicity, as well as its current 

popularity in the commercial realm. We hope to show that 

we can give users the support they need for their objects 

through extensions, while preserving the advantages of a 

relational DBMS. 

Language processing has two components, one for data 

definition statements and one for data manipulation state- 

ments. In this paper we will focus on the handling of data 

manipulation statements in Starburst. An overview of data 

definition in Starburst can be found in [HAAS88]. In the 

next section we discuss Starburst’s query language. Section 

3 gives an overview of how a data manipulation statement 

is processed. Section 4 describes the internal representation 

of a query. This representation is critical to achieving ex- 

tensibility. We then discuss the optimization of queries: first, 

a semantic, “rewrite” optimization in section 5, and then 

cost-based optimization in section 6. Section 7 describes the 

query execution component. Finally, we summarize our 

experiences with the implementation, describe its current 

status, and discuss some of the challenges that lie ahead for 

Starburst and for extensible systems in general. 

2. Language 

Starburst’s language, Hydrogen, is based on SQL [IBM87]. 

As in SQL, queries are expressed in an English-like syntax 

(SELECT...FROM...WHERE...). Hydrogen includes and 
generalizes most SQL features, allowing aggregation, set op- 

erations and nested subqueries, in addition to the standard 

operators of the relational calculus. It expands on SQL in 
two important respects. First, it generalizes the SQL gram- 

mar to make the language more orthogonal [DATE84]. 
Second, it allows DBC’s to add new functionality to the 
language, that is, Hydrogen itself is extensible. 

The generalization of SQL takes two forms: many of the 

implementation-dependent constraints of SQL are relaxed, 

and a new construct is added to increase the orthogonality 
of the language. SQL has many constraints on where par- 

ticular constructs may appear. Those constraints pertaining 

to views and the use of set operations (UNION, etc.) are 
particularly noticeable. For example, in SQL, if a view 

performs an aggregation, it cannot be used in a query in 

which it is joined to another table or view. This forces the 
user of the view to be aware of the view definition. In 

Hydrogen, by contrast, views can appear anywhere a base 

table can be used in a select statement, as well as in many 
update statements. Update through views will be allowed 

when the update is unambiguous; otherwise an error will be 

returned. Likewise, queries with set operations may appear 
wherever a select statement can be used -- in view definitions, 

subqueries, etc. The goal in Hydrogen is complete 

orthogonality: any operation on tables produces a table, and 
can be used wherever a table would normally be allowed. 

To achieve this goal, table expressions [DATE841 have been 

introduced, and can appear anywhere a view or table can. 

Table expressions are expressions (usually queries) which 
produce a table as output. The output table can be named 

and referred to later in the same query. Table expressions 

add considerable power to the language. They allow users 
to modularize their queries by factoring out common 

subexpressions. While similar to views, they are more pow- 

erful, as they may contain references to host language vari- 
ables, or be correlated with other parts of the query. 

One important use of table expressions is for expressing 

recursion. Recursion can be expressed by forming cyclic 

references to named table expressions. Hydrogen can be 
used for logic programming by mapping rules to table ex- 

pressions. Recursive queries may contain relational calculus 

operations, aggregation, and even externally defined functions 

(see below). As a result, one can also express path algebra 
computations [ROSE86, CARR79] in Hydrogen. Thus Hy- 

drogen can be used as an integrated language for logic 

programming and database access. This allows the scope 

of optimization to include both the rules and the database 

queries, providing the opportunity to obtain a globally op- 

timized execution plan. 
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DBCs can extend Hydrogen in several ways. They can 

define new functions on columns, new operations on tables, 

and new data types for columns. Several types of functions 

can be defined. Scalar functions (e.g., Area( Width, Length)) 
take one or more field values from a single (possibly com- 

posite) tuple, and return a single value. Scalar functions can 

be used anywhere a column can be referenced. Aggregate 

functions (e.g., StandardDeviation(Salary)) range over many 

tuples of a table and return a single (aggregated) value. 

Externally defined aggregate functions can be used in place 
of built-in aggregates. Both types of functions can be invoked 

by Starburst at low levels of the system to allow more effi- 

cient handling of the data. For example, by invoking func- 
tions in the predicate evaluator, Starburst can reduce the 

amount of irrelevant data that is returned to the user. 

New set predicate functions may also be defined. Set pred- 
icate functions take as input a set (of tuples) and a predicate. 

In SQL the built-in set predicate functions include ALL and 

ANY, whose operands are a simple predicate (e.g., Tl.cl 
= T2.cl) and a subquery that defines the set of tuples over 

which that predicate should range (e.g., SELECT T2:cl 

FROM T2 WHERE T2.c2=5). The function returns true 
if the predicate holds for all (any) elements of the set. In 

Hydrogen, a DBC could define a new set predicate function, 

e.g., MAJORITY, which would return true if the predicate 
is true for the majority of the elements of the set. 

A fourth kind of function in Hydrogen is the table function. 

These functions take one or more tables (or table expressions) 
and possibly other parameters as their input, and produce 

a new table as output. For example, the function SAM- 

PLE(table, int) might produce a new table consisting of int 
rows of table. Table functions can appear anywhere a table 

or table expression can. They may be used to define new 

operations on tables to supplement the relational calculus 
operations supported by the base system. For example, a 

DBC might add outer join or relational divide, or an oper- 

ation for solving simultaneous equations. Although syntac- 
tically a new operation looks like a function call, table func- 

tions require sophisticated processing internally (see “4. The 

Query Graph Model”). 

Delinition of new data types for columns has more impact 
on the DDL than the DML. However, they are extremely 

useful to the user writing DML queries, as they allow type- 

checking to better reflect the user’s semantic intent, and 
enable better structuring of the user’s data. Starburst will 

allow the definition of almost any type. Columns whose type 

is externally defined can appear anywhere a column with 
built-in type can appear, and functions can be defined on 

them. An overview of our approach to externally defined 

types appears in [WILM88]. 

With its increased orthogonality and extensibility, Hydrogen 
can express very complex queries. This is necessary for 

achieving Starburst’s goal of supporting nontraditional ap- 
plications, such as logic programming. As in SQL, Hydrogen 

has a relatively small number of built-in constructs. This 

keeps the grammar small and compact, and perhaps makes 

the language easier to learn. However, it creates two diffi- 

culties. First, while complex queries can be expressed, their 

representation in Hydrogen is usually quite complex as well. 

This could make Hydrogen very hard to read and write, 

making application development more difficult. Some “syn- 
tactic sugar” may be needed on top of Hydrogen to make 
Starburst sufficiently easy to use. In addition, even with a 

small number of constructs, there are frequently several ways 
of expressing the same query. In SQL, for example, the 

standard query asking for all employees who make more 

than their manager can be expressed either as a subquery 
or as a join [KIM82], with several variations on predicate 

order, etc. In Hydrogen, it could also be expressed several 

different ways using table expressions. Whenever feasible, 
the performance of a query should depend on its meaning 

rather than on its expression; this increases nonprocedurality. 

Identifying equivalent expressions for a query poses a sig- 
nificant challenge for optimization. 

Overall, we are pleased with the expressiveness of Hydrogen, 

despite potential difficulties. We are experimenting with a 

powerful architecture for rewriting queries (see “5. Query 
Rewrite”) to address the optimization issue. We will be 

better able to address the complexity issue when we have 

some experience developing applications for Starburst. 

3. Overview of Language Processing 

As in System R and R*, processing of the data manipulation 

language (DML) consists of two stages: first, compilation of 
the query, and then, execution [CHAM81]. These two stages 
may be separated in time, since the result of the compilation 

stage can be stored for future use. The different phases of 

query processing are shown in Figure 1. The query is first 
broken into tokens, then parsed into its internal representa- 

tion, the Query Graph Model (QGM). Semantic analysis of 

the query is also done during parsing, so the QGM produced 
is guaranteed to be valid. The query rewrite phase transforms 

the QGM representation of the query into an equivalent 

QGM for better performance. This phase could be bypassed 
for faster query compilation at the expense of potentially 

lower runtime performance. The plan optimizer chooses an 

execution strategy (Query Evaluation Plan, or QEP) for the 
query based on estimated cost, and this strategy is then 

refined (Plan Refmcment) for efficient interpretation by the 

Query Evaluation System at runtime. 

4. The Query Graph Model 

Starburst must be able to accommodate many types of ex- 

tensions, including language extensions, data management 

extensions and language processing extensions. For many 

of these extensions, the DBC may wish to influence Corona’s 

basic internal processing. For example, a DBC providing 

an outer join operation may wish to tell the system when 

predicates on the join can be “pushed down” to (applied to) 

the individual tables. The rules for predicate push-down for 

outer join are different than those for regular join (ROSE841. 

At the same time, many base system functions (e.g., catalog 
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Figure 1: Phases of Query Processing 

interface) can frequently be used by the extension. Ideally, 

the DBC’s extensions should be able to invoke Corona’s 

code for these common functions without altering them. 

In Starburst we meet both goals, allowing the DBC to use 
as much of Corona’s function as he oan and to write the 

rest himself, by dctining a generic internal representation for 

queries and giving the DBC access to this representation. 
We call this representation the Query Graph Model (QGM). 

QGM can be regarded as the schema for a main memory 

database storing information about a query. This database 

is the main interface between different phases of query com- 

pilation (Figure l), and between Corona and any extensions. 

We do not have space in this paper for a formal description 

of QGM semantics [PIRA89]. Instead, we will use the fol- 
lowing query and its corresponding QGM (Figure 2(a)) to 

illustrate the most important QGM constructs: 

SELECT partno, price, order-qty 

FROM quotations Ql 

WHERE Ql.partno IN 

(SELECT partno 

FROM inventory Q3 

WHERE QJ.onhand-qty < Ql.order-qty 

AND QJ.type = ‘CPU’) 

This query returns the part number, price and order amount 

corresponding to each quotation for a cpu part that is in 

inventory, and for which the supply on hand is low. 

In QGM, queries are represented as a series of high level 

operations on tables. These operations include: SELECT, 

which performs selection, projection and join; GROUP BY, 

2 For simplicity, we show only the column names in Figure 2 

Plan 
‘inen 

Plan 
stwage 

which forms equivalence classes (groups) from tuples of the 

input table and applies aggregate functions to each group; 

INSERT; UPDATE; DELETE; UNION; INTERSEC- 
TION; and so on. Our query involves two SELECT oper- 

ations, one for each SELECT...FROM...WHERE. These 

are shown as two separate boxes in Figure 2(a). Each 
operation has a head that describes its output table (the 

column names and datatypes*) and a body that represents 

the operation graphically. In this query, the outer SELECT 
consists of an access to the quotations table and a predicate 

over the result of a subquery. The inner SELECT contains 

an access to inventory, and a predicate with two conjuncts. 
Each access to either a stored or a derived table (one pro- 

duced by another operation) is represented in the QGM by 

a vertex and a dotted line (range edge) connecting the vertex 
to the table or operation being accessed. Each conjunct of 

a predicate is represented by a rectangle on a solid line 

(qualifier edge) connecting one or more vertices (loops rep- 

resent single table predicates). Thus in our query’s QGM, 

Ql represents the access to the quotations table (stored ta- 

bles are shown as dotted boxes, to distinguish them from 

derived tables), 42 the access to the result of the lower 

SELECT operation, and 43 the access to inventory. There 

is a qualifier edge between Ql and Q2 representing the 

predicate over the subquery result (the “IN” predicate), an 

edge between Ql and Q3 representing the first conjunct of 

the lower SELECT’s predicate (Q3.onhand-qty < 

Ql.order-qty), and a loop from Q3 to itself, representing 

“Q3.type = ‘CPU’“. 

Vertices represent iterators, which may be either setformers 

or quantifiers. A setformer, such as vertex Ql or 43, creates 
a new table (set) from its input tables (essentially by projec- 
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tion). A quantifier (e.g., 42) is a tuplc variable ranging over 

its input tables. Setformcrs differ from quantiliers. in that 
each element in the table over which a setformer ranges 

may be used to construct the output from this operation (the 

output table), whereas the elcmcnts ranged over by a quan- 
tifier will not be added to the output table, only used to 

restrict it. Thus Q3 is a sctformer, producing a table of 

partno’s. Q2 is a quantifier, ranging over this table: the 
elements it ranges over will be used to restrict those produced 

by Ql in the upper box, but will not be added to the result 

of that upper box. 

Many iterators can range over the same input table, as each 
represents a separate access to that table. QuantiIiers have 

different types, which may be interpreted differently by dif- 

ferent operations. For example, quarttiGers of type Exists 

(3) and All (‘d) are interpreted by the SELECT operation 

as existential and universal quantifiers, respectively, Q2 is 

an existential quantifier corresponding to the IN keyword 

of the query. There is only one built-in type of setformer, 

ForEuch (F), though others may be added (see below). 

Vertices (setformers and quantiIiers), edges (range and qual- 

ifier), and boxes (with heads) are the main constructs of 

QGM. They are extremely powerful, allowing us to express 
arbitrarily complicated queries. Further, because the inter- 

pretation of these constructs can vary depending on the type 

of the operation, QGM is extensible. We anticipate that the 

most common extension will be to add new operations on 

tables, which requires the DBC to give an interpretation to 

the qualifier edges and any new iterator types. The rest of 

Figure 2: (a) QG;\I of a query (b) Same QG.54 after rewrite rules applied 

QGM is “generic”; that is, the information is standard and 

has a standard interpretation, regardless of the operation. 
This is because most of QGM describes tables, both input 

and output, and not the operations themselves. 

For example, assume we wished to add a left outer join 

operation. In this case,.qualiIier edges correspond to pred- 
icates, as with SELECT’. However, the meaning of the pred- 

icate is different, because if matching inner!values are not 

found, the outer tuple still must be included m the result. A 
simple way to flag this difference is to change the setformer 

of the outer table to a new type, say, PF (Preserve Foreach). 

hlany of Corona’s built-in functions (e.g., catalog lookup, 
name resolution, most of the semantic checking, etc.) can 
be used to generate QGM for queries containing outer join. 

The DBC must write code for those parts that are different. 
In this case, he might write code to check whether the outer 

join was associative or commutative (in general it would not 

be), and to change F setformers to PF where tuples must 

be preserved. Of course, other parts of the system must be 

changed before the user can actually write and execute an 

outer join query. Query rewrite rules, optimizer cost esti- 

mates, execution routines, and so on, are ail needed. The 

important point here is that QGM is modifiable to allow 

the operation to be represented internally. 

Similar query graphs have been described in the literature 

[RIES83, ZANI82]. QGM expands on these models in two 

respects. First, QGiM has the full expressive power of Hy- 

drogen. Thus it can represent intricacies of the language 
such as nested operations, different iterator types, aggrega- 
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tion, correlation, and recursion. Second, due to its generic 

interfaces, QG,M can also be used to represent extensions 

to the system and to the language, such as externally defined 

table functions and iterator types. 

In summary, QGhl provides an understandable, detailed, 
and unambiguous semantic representation of a query that 

can be modified by the DBC as he adds operations to the 

system. Further, because of the generic nature of the fable 
abstraction, the DBC can capitalize on the common services 

provided by Corona. Thus QGM simplifies the DBC’s task, 

while giving him a great deal of flexibility and power. 

5. Query Rewrite 

There are several reasons why relational DBMSs need to 

rewrite queries. There arc frequently several alternative 

phrasings of a query. Since relational query languages are 
ostensibly nonprocedural, these should perform equivalently. 

Further, complex applications often rely on abstractions 

provided by views to reduce the complexity of query speci- 
fication. As view definitions are hidden from the query 

writer, only the DBMS can rewrite queries involving views. 

There is an extensive set of transformations that could be 

performed during query rewrite. Views may be merged with 

the queries that use them, as in System R and INGRES 
[STON76]. Redundant joins may be eliminated [OTTSZ]. 

Predicates may be migrated from one operation to another 
to minimize the amount of data accessed (this includes “side- 
ways information passing” [ULLM85]). With the introduc- 

tion of recursion in DBMS queries, transformations such as 

magic sets [BANC86] should be incorporated. Semantic 
query optimization [KING81, SHEN87] uses integrity con- 

straints to transform queries. All of these transformations 

may lead to better performance for the query, and new 
transformations are constantly being proposed (e.g., 

[DAYA87]). 

It is unlikely that we will ever have a complete set of trans- 

formations, even for a standard relational language. And 
for an extensible language such as IIydrogen, as new lan- 
guage constructs and operations are added, new transfor- 

mations will be needed. Thus this part of the system must 
be highly extensible. To achieve this, we have created a new 

phase in query processing for handling query rewrites at the 

QGM level, using a rule-based approach [HASA88]. Query 

rewrite is essentially a form of optimization. However, tra- 

ditional DBMS optimization primarily deals with low level 

decisions, such as the methods for table accesses, and the 
methods and order of joins, creating a plan for query exe- 

cution. Query rewrite occurs at a higher level of abstraction 

(in our case, QGM), but which is slightly lower (more pro- 
cedural) than the query language level. 

Although many rule-based systems exist, we have chosen to 

develop our own rule system for query rewrite. We require 

a rich set of primitives for manipulating query graphs, nested 

execution of rules, explicit control over the order of rule 

execution, and some sort of termination guarantee to avoid 

endless looping, yet preserve consistency. We estimated that 

the effort of integrating an existing system into Starburst and 
modifying it to meet these requirements would be greater 

than the cost of implementing our own. 

In our rule system, the rule language is C. A rule consists 

of two parts, the condition and the acrion, each written as 
a C function. The rule writer is expected to ensure that 

every rule changes a consistent QGM representation into 

another consistent QGM representation, i.e., each rule com- 
pletes a transformation. We provide a set of rules for re- 

writing the base system operations. A DBC may provide 
additional rules for these operations, or rules for new (ex- 
ternally defined) operations. Rules may be grouped into rule 

classes to limit the number of rules that have to be examined, 

to allow modularization of rules, and to give the DBC (and 
ourselves) more explicit control over the execution sequence. 

As an example, consider the following rules: 

Rule 1 (Subquery to Join):3 

IF OPl.type=Select A Q2.type=‘Y A 

(at each evaluation of the existential predicate 

at most one tuple of T2 satisfies the predicate) 
THEN 

Q2.type = ‘F’; /*convert to join*/ 

Rule 2 (Operatiqn Merging): 

IF OPl .type = Select A OP2.type = Select A Q2.type = ‘F’ 

A (NOT (Tl .distinct = false 

THEN 

A OP2.eliminate-duplicate = true)) 

merge OP2 into OPI; 

IF OP2.eliminate-duplicate = true 

THEN OPI .eliminate-duplicate = true; 

The first rule says that an existential subquery can be con- 

verted to a join when there is at most one matching tuple 

of the subquery for each tuple of the main query. The 
second rule says that two SELECT operations may be 

merged as long as there is no conflict in the way they handle 

duplicates.4 These rules can be applied to the QG,M of figure 

2(a), resulting in the transformed QGM of !igure 2(b). By 

merging the operations, there is greater scope for optimiza- 

tion, which may result in an improved execution plan. 

The rules we provide for base system operations fall mainly 

into three classes: predicate migration, projection push-down, 

and operation merging. Predicate migration allows predi- 

cates to be pushed down into lower level operations to min- 
imize the amount of data retrieved. Predicates may also be 

3 For purposes of illustration, we assume the subquery is a conjunct of the predicate 

4 For a more complete explanation of these rules, and a more general version of Rule 1, see [HASASS] 
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replicated, and replicas migrated to multiple operations to 

reduce execution cost. Predicates may also be moved up, 

and then possibly down to other operations, which may be 

beneficial. Rules for projection push-down avoid the retrieval 
of unused columns of tables or views. These rules interact 

with those for predicate migration: for example, when a 

predicate is pushed to a “lower” operation, columns refer- 

enced only by that predicate are no longer needed by the 

higher operation. Operation merging rules merge QGM 

“boxes”, creating the union of the predicates and iterators 
of the original operations to allow more scope for optimi- 

zation. View merging rules fall into this category, as does 

the rule in our example. Not all operations are mergeable 
(for example, GROUP BY cannot merge with SELECT). 

Even two SELECT operations may not always merge, de- 

pending, for example, on how they handle duplicates. Other 
rules convert subqueries to joins [KIM82, GANS87], and 

apply miscellaneous transformations. 

DBC’s can take advantage of existing rules in any of these 

classes, or write their own rules in these or other classes. 
For example, predicate push-down rules are of two types: 

those that specify when a predicate may be pushed down 

from an operation, and those that specify when a predicate 

may be received by (pushed down 10) an operation. A DBC 

adding a left outer join operation will want the from rules 

to apply automatically to the type F setformer (see “4. The 
Query Graph hlodel”), without his having to respecify them. 
However, they should not be applied to the type PF 

setformer, as they would then eliminate tuples which should 
be preserved. Left outer join (unlike the SELECT operation) 

does not keep predicates, but can receive them if they refer 

only to columns of the PF setformer, in which case they are 
pushed rhvough the outer join operation to the operation 

ranged over by the PF setformer. Thus the DBC would 

have to write his own rule for receiving predicates. 

Besides the rewrite rules, our rule system has two other 

major components: the rule engine and the search facility 
The rule engine is independent of the individual rules, but 

is designed to meet the needs of query rewrite rules in gen- 

eral. It handles IF TIIEN rules, using a forward chaining 
strategy. Several control strategies are provided: sequential 

(rules are processed sequentially), priority (higher ‘priority 

rules are given a chance first), and statistical (next rule is 
chosen randomly based on a user defined probability distri- 

bution). To keep the rule engine from spending too much 

time rewriting queries, it can be given a budget. When the 

budget is exhausted, the processing stops at a consistent 

state (of QGM). The search strategy is independent of both 

the rules and the rule engine, but is specific to QGM. Its 

role is to browse through QGM, providing the context for 

the rules to work on. Both depth first (top down) and 

breadth first search are supported. 

There may be several alternative transformations for a query. 
For example, a join predicate may be pushed down on 

either of its iterators (but not both!). If a view is used in 

multiple places in a query, it may be merged into the query 

each time, or materialized once and used several times. To 

choose among these alternatives, cost analysis is needed. 

However, cost estimates are known only at the plan level, 

since we need to have decisions about join order, access 

methods, etc, in order to estimate costs. As a result, query 
rewrite must interact with plan optimization to estimate the 

cost of alternative QGM representations. We have initially 

chosen to generate the alternatives during query rewrite and 
select among them during optimization. We have therefore 

added a new operation, CHOOSE, to QGM to link together 

the alternatives. This operation can be eliminated when the 
optimizer chooses an alternative, or kept in the plan until 

runtime to allow a decision based on runtime parameters 

(e.g. the value of programming language variables). A sim- 
ilar operation for plans has been proposed by Graefe 

[GRAE89]. 

One drawback of deferring the choice of an alternative until 

optimization is that alternatives cannot be pruned during 

query rewrite. Thjs is particularly troublesome for predicate 
migration, since the number of alternatives grows as a prod- 

uct of the number of iterators and predicates. We are cur- 

rently investigating ways to integrate the query rewrite and 
optimization phases to avoid this problem. 

We have built the rule system and defined rules for the base 

operations and for several extensions. Recently we have 

been adding rewrite rules for recursive queries, including 
rules to do magic set transformations (BANC86]. Much 

work remains to be done. In particular, we would like to 
do a comprehensive study of the rule system’s performance. 
We would like to prove the correctness of the rewrite rules 

designed so far, and develop tools to help DBC’s establish 

the correctness of their transformations. We are pursuing 
the design of a more restrictive rule language that would 

allow automatic analysis and optimal execution of rules, and 

are studying the applicability of efficient execution techniques 
such as RETE networks [FORG82] and rule indexing. Fi- 

nally, we need to add rules for many more extensions, to 

determine whether the rule system is sufficiently flexible, and 
to study the interactions between rules for different extensions. 

6. Plan Optimization 

Given a QGM representation of the query, the optimizer 

estimates the cost of alternative query evaluation plans 
(QEPs) to execute that query, and chooses the cheapest. As 

with other query optimizers, the Starburst optimizer may be 

characterized by its approach to three major aspects of 

optimization: (1) plan generation, (2) plan costing, and (3) 

search strategy. Again, Starburst’s goal of extensibility dic- 

tated a more flexible specification of each of these aspects 

ofoptimization than earlier optimizers for System R [SEL179] 
and R* [LOHM85], which embedded all execution strategies, 

cost formulas, and search strategies in the code. The chal- 
lenge was to find an eflicient yet easy-to-specify representation 

for each aspect, in order to facilitate the specification of a 

rich repertoire of alternative execution plans without sacri- 
ficing compiler performance. For greater extensibility, the 
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three aspects were designed to be largely orthogonal, so that 
each could be modified independently of the others. 

The optimizer algorithm optimizes each QGM operation 

independently, bottom up, using a rule-driven plan generator 
and rules peculiar to that operation’s type to construct QEPs 
and evaluate their cost. For example, the most common 

operation type, a SELECT operation, has rules for accessing 
stored tables in various ways, and rules for joining multiple 

iterators. A DBC adding a left outer join operation would 

add new rules for the outer join operation itself, but could 

benefit from the existing rules for single table accesses. 

The Starburst plan generator generates alternative plans us- 
ing a constructive, “building blocks” approach [LOHM88]. 

This approach is closer to that of the Genesis project 

[BAT087a] than the plan transformational approach of the 

Exodus project [GRAE87a, GRAE87b] or of Freytag 
[FREY87]. Executable plans are defined using a grammar- 

like set of parameterized production rules called srrategy 
alternative rules (STARS). These rules detine higher-level 

“non-terminal” constructs from low-level “terminal” database 

operators strung together, in a way resembling a functional 
programming language [BACK78]. A “terminal” in this 

grammar is a low-level plan operator (LOLEPOP) that will 

be interpreted by the Query Evaluation System at run-time. 
LOLEPOPs are a variation of the relational algebra (e.g., 

JOIN, UNION, etc.), supplemented with physical operators 

such as SCAN, SORT, SHIP, etc. Each LOLEPOP is 
expressed as a function that operates on 0 or more streams 

of tuples, and produces 0 or more new streams (typically 

one). A Starburst query evahation plan (QEP) is a nesting 
of invocations of LOLEPOPs. A STAR consists of a name 

(the nonterminals ofour grammar), zero or more parameters, 

and one or more alternative defmitions in terms of 

LOLEPOPs or other STAR names. IF conditions can be 

attached to any alternative, to determine the applicability of 

that alternative, and “V” clauses can be used to generate a 

set of related alternatives. 

Every table (either a base table or the result of a plan) has 

a set of properties that summarize its characteristics 

[BAT087b, ROSE871 and hence are important to the cost 
model. These properties are of three types: relational (e.g., 

tables joined, columns accessed, and predicates applied thus 

far), operational (e.g., order of tuples (if any), site of result) 

and estimated (e.g., (cumulative) cost, cardinality). Each 

LOLEPOP changes selected properties of its operands, in a 

way influenced by its parameters, usually adding cost. These 

changes, including the appropriate cost and cardinality esti- 

mates, are detined by a C function for each LOLEPOP. 

For example, SORT changes the order of tuples to the order 
specified in a parameter. SHIP changes the site to the 
specified site. SCAN changes a stored table to a memory- 

resident stream of tuples, but optionally can also subset 
columns and apply predicates that may be enumerated as 

parameters. The latter option will of course change the 

cardinality property as well. 

A STAR may require certain properties of its operands, 

especially for certain join methods. For example, the merge 
join requires its input table streams to be ordered by the 

join columns. Required properties are achieved by additional 

“glue” STARS that find the cheapest plan satisfying the re- 

quirements. If necessary, glue STARS may add LOLEPOPs 

to make existing plans meet the requirements. For example, 

SORT can be added to change the tuple order, or SHIP to 
change the site [LOHM88]. 

When a QGM operation (especially SELECT) contains mul- 

tiple iterators, a join enumerafor then enumerates all valid 
join sequences by iteratively constructing progressively larger 

sets of iterators (iterator sets) from twos smaller iterator sets, 

starting initially from the plans generated earlier for sets of 
a single iterator. For each such pair of iterator sets, the join 

enumerator invokes the plan generator to generate and eval- 

uate alternative QEPs for that join using the join STARS. 
The enumeration exploits join predicates referencing more 

than two iterators, implied predicates, and joins permitting 

composite inner tables, producing a potentially larger set of 

plans than did the R* and System R optimizers [ONOSS]. 

Starburst’s wider range of plans necessitates more powerful 

mechanisms for limiting the search. Our optimizer has both 
query-specific parameters to limit the search space as well 
as an extensible search strategy. Each alternative for a 
STAR will have a rank associated with it, so that alternatives 

exceeding a given rank can be pruned by the plan generator. 
In addition, a prioritized queue mechanism parameterizes 

the order in which STARS are evaluated. Merely by changing 

the priorities, this general mechanism can implement breadth- 
first, depth-Brst, or many other strategies. Two other pa- 

rameters allow the join enumerator to prune join sequences 

having composite inners (“bushy trees”) or no join predicate 
(Cartesian products), as System R and R* always did. 

We have implemented the complete join enumerator 
[ON088]and an initial STAR-based plan generator [LEE88]. 

The plan generator contains (1) a general-purpose STAR 

evaluator, (2) a search strategy that chooses the next STAR 
to evaluate, and (3) an array of STARS. This design permits 

the optimizer designer to add, change, or delete rules in the 

STAR array without affecting the code for the search strategy 
or the rule evaluator. Similarly, the search strategy can be 

changed without affecting the rule evaluator or the STARS. 

Each time the plan generator is invoked, it constructs a tree 

of alternative QEPs as STARS are evaluated and replaced 

by their alternative definitions, much as is done by a macro 

processor, until all STARS are fully refined to LOLEPOPs. 
Then the property function for each LOLEPOP is called to 

evaluate its effect on the properties of its operands, starting 

with statistics on stored tables. Currently, the STAR array 

is initialized manually in the code, but ultimately we hope 

5 Joms are typically implemented as dyadic operators, but this lirmtahon can be removed in Starburst. 
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to build a compiler that will permit the DBC to specify 

STARS in a very high level functional programming language. 

This design is very powerful, and highly extensible. Using 
STARS, we can readily express all the strategies of the R* 

optimizer, plus new strategies for composite inners (e.g., 
(A*B)*(C*D)), new join methods, new access methods, index 

ANDing, filtration methods such as semi-joins and Bloom- 

joins [MACK86], dynamic creation of indexes on interme- 

diate results, conversion of subqueries to joins, and materi- 

alization of tables at any point to force projection, all in 

under 20 rules. We can add new properties to existing 

operators, add new operators, form new plans by combining 

existing operators in new ways, restrict or broaden the search 

space, and change the search method. Many of these 

changes can be accomplished by simple modifications to 
existing rules or by giving a different value to a parameter. 

Others require somewhat more sophistication by the DBC 

(for example, adding a new property). An easily extensible 
optimizer is critical to achieving Starburst’s goals. We plan 

to experiment with a variety of extensions to demonstrate 

the power and cxtcnsibility of our optimizer. 

7. The Query Evaluation System 

At runtime, Starburst’s query evaluation system (QES) takes 

a query evaluation plan (QEP), and evaluates it against the 

database. The QES calls Core to retrieve tuples from tables 

and attachments into its own set of buffers, where it performs 
complex operations such as join or aggregation. For exten- 

sibility, we need a QES that can be easily changed and 
extended to accommodate, for example, new types of access 

methods or new join methods, without changing its overall 

structure or implementation. We achieve this goal by devel- 
oping an algebraic interface between the optitiizer and the 

QES. A QEP is an operator tree similar to a query speci- 

fication in the relational algebra. Each operator takes one 
or more streams of tuples as input and produces one or 

more streams of tuples (usually one) as output. We implement 

the concept of streams by lazy evaluarion to keep “interme- 
diate” results between operators as small as one tuple. 

There are several advantages to this approach. First, using 
the stream abstraction allows us to add new operators easily. 

The interaction between operators can be standardized, so 

that the details of obtaining a tuple from and handing a 
tuple to another operator can be hidden by predefmed mac- 

ros. The implementers of new operators then can reuse 

those macros without reimplementing them for each exten- 
sion. Second, the algebraic interface guarantees the inde- 

pendence of different parts of the QES. As long as the 

operators use the model of streams as the interface between 

them, we do not anticipate changes in existing operators due 
to an extension or change in another part of the QES. 

Finally, the algebraic approach not only provides an interface 

to a component that interprets QEPs, but it can also serve 

as the input specification to a component that compiles 

QEPs into iterative programs [FREY86]. 

Starburst will include about a dozen built-in LOLEPOPS. 

By far the most difficult of these to implement are the JOIN 
operators. One reason for this is that in Starburst, we treat 

subqueries as special types of join. This simplifies QGM, 

query rewrite and optimization considerably, but causes sev- 
eral problems for the execution system. First, the join op- 

erators must be able to handle different kinds of joins; that 

is, joins between different iterator types in QGM. The dif- 

ferent kinds of joins include “regular” join, “exists” join (or 

semi-join), “scalar-subquery” join (one in which the subquery 

is introduced by a scalar comparison operator), and “op- 
ALL” join (corresponding to the universal quantifier). This 

set of join kinds can also be extended as new iterator types 

are added to QGM. Each join operator takes as one of i& 
parameters a function name, representing the join kind. In 

this way a single operator can handle many different join 

kinds.6. By clearly separating the “control structure” of the 
join, i.e., the join method, from the function performed dur- 

ing the join, i.e., the join kind, we provide an additional 

degree of flexibility for the implementation of joins. For 
example, “left outer” join could be added as a join kind, 

allowing the left outer join operator to take advantage of 

existing methods of join evaluation. Alternatively, or in ad- 
dition, a new join method specific to left outer join could 

be added simply by adding a new LOLEPOP. 

Secondly, Hydrogen, like SQL, allows both correlated and 

uncorrelated subqueries, which must then be handled by the 
join operators. In Corona, we replace the mechanisms of 

“evaluate-at-open” and “evaluate-at-application” [LOHM84] 

for uncorrelated and correlated subqueries, respectively, by 
a single uniform mechanism called “evaluate-on-demand”. 

With this approach, we evaluate subqueries only as they are 

needed. We also include logic to avoid re-evaluating the 
subquery when the correlation values have not changed, 

thus improving the performance during execution. 

The third problem arises when evaluating queries containing 

OR predicates with subqueries. Consider the Hydrogen query 

SELECT * FROM Tl 
WHERE Tl.Al = S OR Tl.A2 = 

(SELECT B2 FROM T2 WHERE T2.Bl = 16). 

The two predicates must be executed by separate operators. 
The first could be evaluated using the FILTER operator, the 

other by a JOIN operator using any join method combined 

with the “scalar-subquery” join kind to join Tl and the 

subquery table(s). However, the.FILTER operator, if applied 

first, cannot just discard a tuple which does not satisfy the 

predicate. Instead it must be handed over to the JOIN 
operator for further consideration. For this, we have designed 

an additional OR operator that is based Non the “stream 

philosophy” and does not require any change to the operators 
used to evaluate the predicate terms. 

6 This does not imply that every jam method can be combined with every join kind. 
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During the initial implementation of the QES, we realized 

that it has a very regular structure (due to the algebraic 
approach) and simple interfaces. To support the DBC who 

extends the QES, we would like to have an additional tool 
that relieves him from knowing which parts of the system 

to change in order to add or remove operators from the 
component. We have considered providing a QES generator. 
In some well-defined way, the DBC could specify each op- 

erator and its corresponding execution routine (and possibly 
a printing and building routine). The generator would then 

add the necessary data structures and procedures that “glue” 

these operators together to form the QES. 

8. Conclusions 

Implementation of the Starburst prototype is well underway. 

Initial implementations of all pieces of Corona described in 

this paper have been built on top of the basic Core functions, 

and arc being integrated. IIydrogen statements of arbitrary 

complexity can be parsed and translated into QGM, and 

the QGM rewritten by an initial set of rules for view merging 
and predicate push-down. Much of the infrastructure of the 

optimizer is in place, including the inference engine for 

STARS. The interpreter routines for most of the QEP op- 
erators have been written and tested in an artificial environ- 

ment, but few of the routines for transforming the optimizer’s 

output QEP into an executable QEP exist. We have executed 
our first single-table SELECI’. We have some initial proof 

of the extensibility of the language processing. We have 

been able to extend the early parts of the system to add a 
left outer join operation, so that queries with outer join can 

now be parsed, represented in QGM and manipulated cor- 

rectly by the rewrite rules. Adding rules for new operations 

to the optimizer seems to be easy, though defining them may 

be hard, and adding new operators to the QES has been 

trivial (once the code for the operators has been written). 

Although work on Corona is far from complete, we have 
already learned several important lessons about designing 

and building an extensible system. The success we have had 

in building and extending Corona to date is based on two 
principles: orthogonality and the table abstraction. Under- 

standing which parts of the system are logically orthogonal 

allows us to separate them, leading to a very modular design. 
Thus, complex components are broken into independent 

pieces, which can be replaced or extended individually. 

Keeping the extensions orthogonal from the base system 

also creates a basis for sharing across application areas. 

This reliance on orthogonality exists throughout Corona. In 

addition, a powerful internal model of processing is critical. 

Basing the design of language processing on the table ab- 

straction (and the QGM representation) led to simpler de- 

signs and a clean interface for extensions. Since both the 
extensions and the base system are written in terms of the 
same high level model, sharing between different extensions 

and the system should be enhanced. 

On the whole, we are pleased with the design of Corona. 
All of the pieces are quite powerful and extensible. However, 

some concerns remain. In Corona, extensions at different 

levels of the system are done in different ways, well suited 

to their separate problems. For example, query rewrite uses 

production rules, and cost optimization employs grammar- 
like rules, while the QES takes an algebraic approach. We 

need to see in practice how well these approaches Iit together, 

whether they can be combined in a single unified framework 
and whether there is any benefit to combining them. Per- 

formance of the system is another open question. These 

issues can only be resolved through completion of the pro- 

totype and experimentation with actual applications. 

There are many other open problems in extensible systems. 

Currently, customization of Corona (and Starburst in general) 

requires a skilled programmer, and, for many extensions, 
experience with database technology and implementation. 

While even this level of extensibility is a great improvement 

over standard DBMSs, we feel that it is important to inves- 
tigate tools for making customization easier. What are the 

appropriate tools? How easy can this process be made? 

How can independent extensions be combined, or more 

importantly, how can we ensure that independent extensions 

do not conflict? For example, how do we ensure that trans- 

formation rules for one extension do not interfere with the 
rules of another extension? In general, how do we ensure 

the “sanity” of the DBMS after several extensions have been 

made? Many other challenges will arise as we look at spe- 
chic applications and further extensions to Starburst’s 

functionality. For example, in a distributed environment 

where different Starburst nodes may be extended in different 
directions, query planning and coordination of metadata 

may be difficult. 

In the near term, we are finishing the implementation of our 

prototype. In the future, we plan to study the uses of this 

extensible technology. We will test the extensibility of our 

system by building (or-getting others to build) application 

systems for Starburst. We are currently exploring knowledge- 

based systems as a first application area, examining issues 
such as how to represent and support frames and rules in 

the database, what function should reside in the DBMS, and 
what function should be left in the application. We will also 
continue to pursue advances in database technology, includ- 

ing new access methods, join algorithms, parallelism and 

other execution strategies, using Starburst as a testbed for 

our research. 

In summary, this paper described the overall design of the 

Starburst language processing component. The main chal- 

lenge for language processing is to handle extensions to the 

data manager, the language, and the language processing 

itself. We feel that Corona has gone a long way towards 

meeting this goal. Among the novel features that have helped 

us achieve this extensibility are an internal model of the 
query based on tables, the use of rule-based processing for 

query rewrite, the separation of the different components of 
optimization and using grammar-like rules to generate plans, 

and an execution system based on the relational algebra. 

Still, there are many exciting open questions in extensible 

database research. 
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