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  Abstract 

A dielectric elastomer is capable of large voltage-induced deformation, particularly when the 

voltage is applied on the verge of snap-through instability.  This paper describes a model to 

show that the snap-through instability is markedly affected by both the extension limit of 

polymer chains and the polarization saturation of dipoles.  The model may guide the search for 

high-performance dielectric elastomer transducers. 
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 Subject to a voltage through its thickness, a membrane of a dielectric elastomer reduces 

thickness and enlarges area (Fig. 1).  This electromechanical coupling is being studied intensely 

for diverse applications, including soft robots, adaptive optics, Braille displays, and electric 

generators.1-10  Voltage-induced strains over 100% have been achieved in several ways, by pre-

stretching an elastomer,11 by using an elastomer of interpenetrating networks,12 by swelling an 

elastomer with a solvent,13 and by spraying charge on an electrode-free elastomer.14      

 When the voltage ramps up, the membrane thins down, so that the same voltage will 

induce an even higher electric field.  This positive feedback results in the pull-in instability.15  

The pull-in instability is commonly considered a mode of failure:  the voltage causes the 

elastomer to reduce the thickness drastically, possibly leading to electrical breakdown.16  In 

recent years, the pull-in instability has been analyzed within the context of dielectric elastomer 

transducers.17-24 

 It is recognized recently, however, an elastomer may survive the pull-in instability 

without electrical breakdown, and be stabilized in a state of a much smaller thickness, resulting 

in the snap-through instability.25  This behavior is understood as follows.  When the elastomer is 

subject to mechanical forces (Fig. 2a), on approaching the extension limit, lim , the elastomer 

stiffens steeply.  When the deformation is caused by voltage rather than the mechanical forces, 

the voltage-stretch curve is typically not monotonic (Fig. 2b).  The voltage attains a local 

maximum at stretch c , corresponding to the onset of the pull-in instability.  As the voltage 

ramps up further, the membrane snaps, and is stabilized at a stretch close to lim .  Indeed, giant 

voltage-induced strains well above 100% are possible, so long as the elastomer snaps to a state 

safe from electrical breakdown.26,27    

 This paper shows that the snap-through instability can also be markedly affected by 

polarization saturation (Fig. 2c)   When a dielectric with randomly oriented dipoles is subject to 

a voltage, the dipoles rotate to align with the electric field.  The polarization of the material may 
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saturate when the voltage is high enough.28,29  This nonlinear dielectric behavior will be 

incorporated in equations of state, and will be shown to modify the voltage-stretch curve.     

 In the reference state (Fig. 1a), the membrane is subject to neither forces nor voltage, 

and is of dimensions 1L , 2L  and 3L .  In the current state (Fig. 1b), subject to forces 1P , 2P  and 

3P , and voltage  , the membrane is of dimensions 1l , 2l  and 3l , the two electrodes accumulate 

electric charges Q , and the Helmholtz free energy of the membrane is F .   

 When the dimensions of the membrane change by 1l , 2l  and 3l , the forces do work 

332211 lPlPlP   .  When a small quantity of charge Q  flows through the conducting wire, the 

voltage does work Q .  In equilibrium, the combined work equals the increase in the free 

energy of the membrane: 

  QlPlPlPF   332211 . (1) 

 Define the specific Helmholtz free energy by  321 LLLFW  , stretches by 111 Ll , 

222 Ll  and 333 Ll , stresses by  3211 / llP ,  3122 / llP  and  2133 / llP , electric field 

by 3/ lE  , and electric displacement by  21llQD  .  The amount of charge on either 

electrode relates to the electric displacement by 21lDlQ  , so that the variation of the charge is  

  DlllDllDlQ  212112  . (2) 

 The elastomer is taken to be incompressible—that is, the volume of the material remains 

unchanged during deformation,   321321 LLLlll  , so that 

  1321  . (3) 

This assumption of incompressibility places a constraint among the three stretches.  We regard 

1  and 2  as independent variables, so that 1
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both sides of (1) by the volume of the membrane, 321 LLL , and using (2) and (3), we obtain that  

      DEDEDEW   
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For an incompressible dielectric, the condition of equilibrium (4) holds for arbitrary and 

independent variations 1 , 2  and D .    

 As a material model, the specific free energy is taken to be a function of the three 

independent variables,  DW ,, 21  , so that (4) is equivalent to the following equations: 
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Electromechanical coupling may be classified into two kinds:  the geometric coupling 

characterized by (2), and the material coupling characterized by the function  DW ,, 21  .  

 We next focus on a model known as ideal dielectric elastomers.25  An elastomer is a 

three-dimensional network of long and flexible polymer chains, held together by crosslinks.  

Each polymer chain consists of such a large number of monomers that the crosslinks affect 

polarization of the monomers negligibly.  That is, the elastomer can polarize nearly as freely as a 

polymer melt.   As an idealization, we may assume that the dielectric behavior of an elastomer is 

exactly the same as that of a polymer melt, so that the relation between the electric field is a 

function of the electric displacement independent of deformation:   

   DfE  . (8) 

Holding 1  and 2  fixed, and integrating (4) with respect to D, we obtain that  

       
D

s dDDfWDW
0

2121 ,,,  . (9) 

The constant of integration,  21 ,sW , is the Helmholtz free energy associated with the 

stretching of the elastomer.  Equations (5) and (6) become 
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The four equations, (3), (8), (10) and (11) constitute the equations of state for an incompressible, 

ideal dielectric elastomer, provided the functions  Df  and  21 ,sW  are given. 

 When the model of ideal dielectric elastomers was proposed,25 the elastomer was taken 

to be a linear dielectric, /DE  , where   is the permittivity.  To study the effect of 

polarization saturation, here we assume that the elastomer is a nonlinear dielectric, 

characterized by the function29  

   ss DEDD /tanh  , (12) 

where sD  is the saturated electric displacement.  When electric field is low, 1/ sDE , (12) 

recovers the linear dielectric behavior, /DE  .  When the electric field is high, 1/ sDE , (12) 

becomes sDD  . 

 The free energy due to the stretching of the elastomer,   21 ,sW , may be selected from a 

large menu of well-tested functions in the theory of rubber elasticity.  To account for the 

extension limit, here we adopt the Gent model 30 
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where   is the shear modulus, and limJ  is a constant characterizing the extension limit.  The 

stretches are restricted as   1/30 lim
2
3

2
2

2
1  J .  When   0/3 lim

2
3

2
2

2
1  J , the 

Gent model recovers the neo-Hookean model ,   32/ 2
3

2
2

2
1  sW .  When 

  1/3 lim
2
3

2
2

2
1  J , the free energy (13) diverges, and the elastomer approaches the 

extension limit. 
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 The theory is now used to study a membrane of a dielectric elastomer subject to fixed 

forces PPP  21  and 03 P , as well as voltage  .  Write the three stretches as    21  and 

2
3

  .  Specializing (10), we obtain that  

  
 

5 2

2 4
2 3 3 3lim

tanh
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        

. (14) 

We may normalize the voltage as   // 3L , and the force as  32/ LLP  .  The extension limit 

of polymer chains is represented by the dimensionless parameter limJ , and the polarization 

saturation of dipoles is represented by the dimensionless parameter /sD .   

 Fig. 3 plots the voltage-stretch relation at several levels of the applied equal-biaxial 

forces. When the forces are small, the voltage-stretch curve exhibits a local maximum.  As the 

voltage ramps up, the membrane undergoes the snap-through instability.  When the applied 

forces are large, the local maximum disappears, leading to a monotonic voltage-stretch curve.  

Before the voltage is applied, the applied forces pull the membrane toward the extension limit, 

so that the steep stiffening removes the local maximum of the voltage-stretch curve.  This 

mechanism may explain why mechanical forces enhance voltage-induced deformation.11   

 The effect of polarization saturation is appreciated by inspecting the equations of state, 

(10) and (11).  When the dielectric behavior is linear, ED  , the term DE  recovers the Maxwell 

stress 2E .  As polarization saturates, however, the term DE  becomes EDs , which increases 

with the electric field linearly.  Consequently, polarization saturation makes the stress associated 

with voltage rise less steeply, an effect that tends to stabilize the elastomer.  This effect is 

illustrated in Fig. 4a, where the voltage-stretch curves are plotted for elastomers without the 

extension limit ( limJ ) and subject to no applied forces.  The local maximum is eliminated 

when /sD  is small.   Setting 0P  and 0lim J in (14), we note that the voltage approaches 

a limiting value sDL /3lim   as  .   
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 Fig. 4b plots the voltage-stretch curves for elastomers with 100lim J  and several values 

of /sD .  Such a diagram suggests various routs to achieve large voltage-induced 

deformation.  For instance, a large value of permittivity both reduces the level of the voltage 

needed for actuation and stabilizes the voltage-stretch curve.  A large shear modulus increases 

the level of the voltage needed for actuation, but helps to stabilize the voltage-stretch curve.  Of 

course, to achieve large deformation by applying voltage on the verge of the snap-through 

instability, one must ensure that the voltage will not cause electrical breakdown.26,27 

 In summary, we develop a model of electromechanical coupling to account for nonlinear 

elastic and dielectric behavior.  Both extension limit and polarization saturation can significantly 

affect the snap-through instability.  The model may aid the search for high-performance 

dielectric elastomer transducers.  
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FIG.  1.   A membrane of a dielectric elastomer is sandwiched between two compliant electrodes.  

(a) In the reference state, the dielectric is subject to neither forces nor voltage.  (b) In the current 

state, subject to forces and voltage, the membrane deforms, and charge flows from one electrode 

to the other through the external conducting wire. 
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FIG. 2. (a) Stress-stretch curve of a membrane of an elastomer under biaxial stresses.  The curve 

stiffens steeply upon approaching the extension limit.  (b) Voltage-stretch curve of a membrane 

of a dielectric elastomer is typically not monotonic.  (c) For a dielectric contains randomly 

oriented dipoles, as the electric field increases, the dipoles rotate to align with the electric field, 

and the electric displacement saturates. 
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FIG. 3.  Voltage-stretch curves of a dielectric elastomer subject to equal-biaxial forces. 
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FIG. 4.  (a) Voltage-stretch curves for a dielectric elastomer without extension limit ( limJ ), 

but with several levels of polarization saturation.  (b) Voltage-stretch curves for a dielectric 

elastomer with an extension limit ( 100lim J ), and with several levels of polarization saturation. 


