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Extension of a result of LadyZenskaja and Ural'ceva
concerning second-order parabolic equations
of arbitrary order

by WoLF voN WaHL (Bayreuth, GFR)

Abstract. In this paper we give conditions under which every weak solution for the initial
boundary value problem for semilinear parabolic equations u'+ A(f)u+f(t, x, u, Fu, ..., P"u)
= 0 is a regular one. 2m denotes the order of the elliptic operators A (t). The result carries over
a theorem of LadyZenskaja and Ural'ceva for second order equations to equations of arbitrary
order. .

0. Introduction and notation. In this paper we deal with the question of
finding conditions under which every weak solution on (0, T)x 2 < R"*! for
the initial boundary value problem for

(0.1) U+ A)u+f(t,u, Vu,...,V"u) =0

is a regular one. Here A(t) denotes a time dependent elliptic operator
of order 2m having divergence structure. The answer is affirmative if
n>=2m—2(') and

|f(, %, 0, Vuy oy Pu) S 3 (Put T im0 20 4 ),
vy=0

uf (t, x, u, Vu, ..., V™"u) = c'u’+c"u.

The constant C must be positive, ¢/, ¢ may be arbitrary. The growth
condition on fis the weakest possible in order to guarantee the existence of
the integrals occurring in the definition of a weak solution to (0.1). In [5] we
treated the same equation but the non-linearity was not allowed to contain
any derivatives of u.

In their book [2] LadyZenskaja and Ural'ceva proved the same result
for m=1, ie. for the case of second order equations. Since no uniqueness
theorem is known, the authors had to insert suitable testing functions to
achieve the desired result [2], p. 423-425. Our method is necessarily com-

(') Actually we deal with the case n = 2m extensively. n 2 2m—2 is treated in the remark
after Lemma I.1.
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pletely different from that of LadyZenskaja and Ural'’ceva. It is based on
solving an auxiliary equation. It is for this purpose that we need some
stronger conditions on A(t), on the initial value and the boundary values.

We introduce some notation. Let X be a Banach space. Then
C’([0, T], X) is the Banach space of all v times continuously differen-
tiable mappings from [0, T] into X. The Banach space C"**([0, T], X),
0 <a <1, consists of all v times continuously differentiable mappings from
[0, T] into X with the finite norm

<u 1 d”u(r) d’u
:.se[ol.)'r] [t—s|* (| dt® dr’

A

M d*u
+ ), sup d—t‘(t)

x A=0 0T

(5)

x
Further, I7((0, T), X), 1 < p< oo, is the Banach space of all measurable
mappings u: (0, T) - X with the norm

T
([llu (@5 de)'’?,  respectively, ess sup [|u(t)ix.
0 0SIST
If Q is a bounded open subset of R”", then H"?(Q) is the Banach space of
all complex-valued functions defined on @ with distributional derivatives in
I7(£) up to the order v. Its norm is denoted by |||, or || *|[gvsy. As usual,
A"?(Q) denotes the completion of CF () in the norm of H"?(f). The norm
of C°([0, T], H*?(Q)) is denoted by |||*|ll,,
Frequently we will consider functions which are continuous on
Qr:=[0, ] xQ. For such functions we introduce the notation

1) := sup If(e, )=f(s, @I+  sup 11t =S (t ),

1,5€[0,T] L€[|0-T]
[t—s[<r x,yel,|x—y|<r
xef}

1fl(r):= sup [f(t, x)—f(t, y).
1€(0, 7]

x,y€
lx=y|<r

For sup |f(t, x)| we simply write |||f]||.

",

The Banach spaces C*(Q), C***(Q) consist of all complex-valued func-
tions defined on © which are continuously differentiable up to the order v
in Q and have derivatives of order v continuous in @ or Holder continu-
ous with exponent « in Q. The norms of C'(Q2), C***(Q) are denoted by

II*llys #Illv+a respectively. Finally, we use the notation
Il =11 lpen s =Ml llop,  H'(2):=H"*(Q), H(Q):=H"*(Q),
-1l ==11+llo,25
'—1 a 1]

=>-—, DEf:=[[D¥
i oy JI;II "
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where & is a multi-index with components a;e N U {0}. N denotes the set of
positive integers.

We say that Q is of class C* or C'** if dQ locally admits a repre-
sentation

Xy = ¢(x1, cony Xg—1s Xg413 oves x")
with #eC" or C'*7 respectively, and if Q locally is on one side of 9.

1. Parabolic equations. Let 2 < R” be bounded and of class C*™ meN.
Suppose that for each pair of multi-indices (%, f)eR" xR" with |&] < m,
|Bl < m there are given functions Az: R* xQ — C with

Az€CO([0, T1, C"(@), T=0, (1/)*# 455, x)eR,
MIE > Y Ag(t, )& > M1 g™, EeR" (t, )eR* x .

|2 =m

Bl=m

Let f be real-valued and in L'((0, T), L*(2)) or in L2((0, 7),
L2+ 2m () for some T > 0.
We say that a real-valued element

ueL2((0, T), H™(Q)) ~ L= (0, T), L*(Q))

is a weak solution of the equation-

Y

(1.1) u+ Y D¥Ag(t, x) DPu)+f() =0 ’
i
on (0, T) x Q with initial value #eL?(2) if and only if the relation
7 T 7
— [(u@, ¥'(0)dt+ HZ £ (Azz(t, x) DFu(p), D¥yr (v)de + g(f(r), u(t))dt
0 ZI|<m
1Fi<m

holds for all real testing functions ¥ with
v'el?(0, T), L2(®), vel?(0, T), A"(©2), w(T)=0.

Observe that ¥ (0), y(T) make sense since Y eC°([0, T], L*(Q)).
We set
Au= Y D¥(Agy(t, x)D’u), ueH™1(Q),

@l <m

1Bl <m
in the distributional sense and often we write instead of (I.1) w'+ A(t)u+

+f(t) =0.
Let n, be the number of multi-indices @ of R" with |a] =s. Let n > 2m. If
h: R" xQxRxR"'xR?x...xR™— R is a measurable function fulfilling

5 — Annales Polonici Mathematici XLI. 1,
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the growth condition

m
(1.2)  |h(t, X, Pos P1s Pas -y Pl S €1y D, |pyft HEmT 2VOE )

v=0

pocR, p,eR™ 1<v<m,
with positive constants ¢y, ¢;, and if, moreover, h is continuous in
(pO’ ) pm): then

”h(t, u, Vu, tevy Vmu)”LZn/(n+1m)(Q)

m
<e(n,m, @, c1, ¢2) (lullna: T Il ™" +1)

ueH™(Q) (see [1], p. 27). Thus we see that for a function
uel?((0, T), H"(Q)) n L=((0, T), L*(Q))

the expression h(t, u, Vu, ..., P"u) fulfils
hit, u, Vu, ..., P"u)e L2((0, T), L2+ 2m (),

Therefore it makes sense to speak of weak solutions for the equation

W+A@)u+h(t,u, Vu,..., V"u)=0

on (0, T)xQ with initial values from L?(Q) (see also [2], p. '423, for m =1).
Finally we assume that Gérding’s inequality

(L3) Re Y (Ag(t)D*u, DPu) > c(n, m, 2, M, 1Azl ||ull2 2,
@] <m
1Bl<m

ue H™(Q),

holds with a positive constant c(n, m,...). As regards the parabolic
equations treated here this yields no loss of generality. Moreover, let T > 0
be arbitrary but fixed. |

Let f be a measurable function

f: R"xQxRxR"x...xR">R

with the following properties: f is continuous in (py, ..., Pm)s

(14) |f(t, X, Pos - Pl S K+M Y |p,|!T4m™ 2n+ 20,
v=0
(L5) uf(t, X, u, py, P2, ..., Pm) = L'*+L"u,

with positive constants M, K and arbitrary constants L', L".
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Now we introduce a new nonlinearity, namely

F(t, X, @, Pys ---» Pm) = q(t, ¥) (¢, %) L1+ K} +F(t, x, @, P1, .-y Pm)s

F(ts X, 0, p13 seey pm)

m
=q(t, )m rIL'I lo|+ M Z lpvll+(4m-2v)/(rl+2v)+M|wli+(4m/n)}.
v=1

Here d(jw]) =1 if w =0 and ¢(|w|) =|w] if w# 0. The functions F, q, g
depend on the weak solution u under consideration. Namely, if u is an
arbitrary but fixed weak solution for the equation

u+A@Qu+f(t, u, Vu, ..., V") =0
on (0, T)xQ with initial value ®#eC?"(Q), D*®|dQ =0, |&@] < m—1, and
with u(t)e H™() for almost every te(0, T), then
f(t x,u, Vu, ..., V"u)— L'u—L"

{M Z |Vvull+(4m ZV)](II+2v)+K+ILHI+ILf| Iul}

L6 LX) = 6(Iul)
(1.6) q(t, x) u(t, %) %0,

0, uft,x)=0,

g(t, x) = u(t, x)/8(ju(t, x))).
Since u(f(t, x, u, Vu, ..., V"u)—L'u—L") 2 0, q has the following property:
q(t, x) 2 0 ae. in (0, T)x L. It is evident that |gq(t, x)| < 1 a.e. (0, £) x£.
Lemma 1.1. We have
(F(t, @3y, Vsz rery Vme)_F(t! wy, les rees Vmwl)’ wz“w1)
> —ellw,—w|ln—cle, n,m, Q, ||m1||L1(9)+|lw2|lL’(m) x
X (looll2+llosll2) lwy — s llE2ey, @1, ;€ H"(2), 1> &> 0.
Proof We have
(F(t, 0y, Parg, ..., 7™ w,)—F(t, ml, Vwy, ..., 7™ oy)) (0~ o)

Wy
=q(t, x L) |wql +
069 (55 0 1o
+M z Ivazll+(4m—2v)/(n+ 2v)} (wz_wl)+
v=0

5(' 1|) {IL] (lw] — ey )+

m
+ M Z (’ vaz|1 +(4m—2v){(n+ 2v)_|Vva)1|1 +(4m— 2v)/(n+ 2v))} _(wz "CD1)-
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Since w/d(|w|) is monotonically non-decreasing and bounded, the first term
on the right is > 0 and integrable. As regards the second term we may
restrict ourselves to

(I 74 wll 14+(4m~2v)/(n+ 2v) _I Vv wll 1+ (4m—2v)/(n+ Zv)) (0-72 _wl) .

We have

Hlpvwzll +(4m— 2v)/(n+2v) __ | valll +(4m— 2v)f{n+ Zv)l la’z _wll dx

< c(m, m) [ [|7¥ o= 2T 20 4|7V 0, ||7Y (@ — )| @03 — 0y | dix
2

< c(n, m) llo, —wyll, (177 @l e+ 29+

+|| V“OJ1”(1;’("D-) 2t 2v)) llw, “wlllem W+ v-amygys D > 4m—4y,

< cln, m, Q) llog =@y J3" llog — oyl 152 (leoglfym en= 291020

L)

XIICO l v/m)(4m 2V)I(n+2\')+”w “(v/hd(d»m 2v)/(n+2v)"w ”(Ll (—ﬂ\;/m)(“m Zv){(n+ ZV))X
xllwz—m i) m = 207201% 29| g5 — || 1. nim) (4= 20 20+ 29

< c(n, m, Q) ||@2_ml”g/m)+(n/m)(4m—zv)/z(nnv, %
xllwz wl”i (g)'/m) (n/m) (dm— 2v)/2(n+ 2v) x
X(”CD ”(vlm)(4m 2\')/("+2v)”w ”(l—v/m)(4m 2V)/(n+2y)+
+le||g/'”)(4""2")/("+2v)“m ”(Ll (—n\;/mnctm 2v)/(n+ 2v)

<c(n, m, Q) ellw— ol +c(n, m, Q, &) lloy— w2, , %
X'(”(Dz”:Ilcozn[g(;’v/’")“"" 2v)/(n+ 2v)) - 2J[2 — v/m) — (n/m) (4m — 2”)/2(n+2v)]+

oo 12 ooy |1 7 m t4m= 20Wtot 2902062 = vim) ~ () o= 20/ 2+ 290

see [1]; p. 27.
If 2m<n<4m—4v we have

I‘, — ?[;“Vv m2|(4m— 2v)/(n+2v) +|P w1|(4m— 2v)/(n+ 2v)‘ ||7v (wz _wl)l . |wz _'a)ll dx

S ”wz_wllle(m “Vv(wz_a)l)”th(n) X

dm-2 -2y
X (“ VV ('-’1”(1,2’:1(4..!)12(::/;3:{)(9) + ” VV w2|I(L;’:Z(43|‘-)/2(\gf-(’;l-lz>;)v)(9))’

where 1/g,+1/q, = 1. If (m—v)/n <4 we choose
1/2q; =% —(m=v)/n,  1/2q; =(m~v)/n.
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Then
1
[2(4m—2v)/(n+2v)] 4,

= ’21+a(%——m/n)+(1 —a)%

with
1
(dm—2v)/(n+2v)

Because of n < 4m—4v we have a <1 and because of n > 2(m—v) we have
a > v/m. Thus we arrive at

a=

I s C(l‘l, m, Q) ”032—w1“Lz(m”mz‘w1”m,z X

x(”wl”m.z ”wlll(:;("‘;) 2v)/(n+2v)- 1 +”w2”m'2 “wzn(&r(n!;)- 2v)/(n+ 2v)—1)

(see [1], p. 27). The case (m—v)/n>%, n>2m, is not possible. Now let
(m—v)/n =4. Since n > 2m, we then have v = 0. The term

= p (22l +amjn_
I(r, x) = q(t, )M (5(1032(!, oy lwa (£, x)|1+4m
wy (t, X) o 3
) =) ¢,

is 20 ae. in (0, T)xQ, and, moreover,

2+4m/
”m”L“‘z/”"(ﬂ) <c(n,m, Q) “w”i;(.fﬂ:/u)m) lleof}

S C(") m, Q) ”w”r%l,z ”CD”:;’;/‘;),

LY )

by [1], p. 27. Therefore I is integrable over (0, ) x 2. Thus the lemma is
proved.

Remark. The restriction n > 2m is in fact needed only for Lemma I.1. .
If we assume

nf2>m—v or v=0

the second part of the proof of Lemma L1 goes through as well. This would
mean that instead of (I.4) one must have

[f(t, X, Poy s Pu)l SK+M Y |p)|tH0m= 20Mnt 29

v=0or
n>2(m—v)

Next we prove |

LemMa 1.2. Let f be real valued and in L*((0, T), L*"*?™(Q)). Let
Pecl(Q). Then every weak solution on (0, T)xQ of the equation
W' +A(t)u = f(t) with initial value ® and with u(t)e H" () for ae. te(0, T)
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Julfils the a priori estimate

sy + [ Y (4e5(0)D7ulc), DPu(a))do

0 |alsm
|Bl<m
t

< 3119112, [(£(0), u(0))do, te(0, T).

Proof. This follows from Lions [3], p. 55, by an ordinary approxi-

mation argument.
Lemma 1.1, Lemma 1.2 and Gronwall’s inequality yield

LemMa 1.3, Let ®eL*(Q). Then the equation
(L7 w'+ANo0+F(t, 0, Vo, ..., V"w)= —Lw—-L

has at most one weak solution on (0, T)x Q with initial value @ and with
w()e H™(Q) for ae. te(0, T).
From [6], proof of Theorem II.1, we get with the aid of Lemma L1
LemMa 14, Let p>n+1. Let ¢C*™(Q), D*®|Q =0, |&] < m—1. Then
there exists a unique

wel((0, T), H*7(Q))n L*((0, T), H™*(Q))

with
o'el?((0, T), I'(Q)), w(0)= o,
o'+ANw+F(t, 0, Vo, ..., w)= —-Lw-L"

Moreover, the a priori estimate

T T
J110 O g 1+ 0 Oyt

<c(nomp, Q, T, M, M, R, L, L", g, I7® Agll, [|9|2m,)

holds.

Proof. The assumptions of Theorem II.1 in [6] are all fulfilled with the
exceptions that F is not Lipschitz continuous with respect to w. The a priori
estimates in the proof of Theorem II.1 in [6] are not affected but the
application of Schaefer’s fixed point theorem — as it was done in [6], proof
of Theorem 1.1 — needs a little additional consideration:

If {w,) is a sequence from

{wlweI?((0, T), H*™P(Q)),

T T
W el((0, T), (@), [l Ol gy dt+ [l Ollzmpdt < 1)
1] ]
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with
w,—~o" in I’(0, T), I’(Q), o,—~w in IF(0, T), H*™*(Q))

for v—-00 we must show that F(w,, Vo,, ..., " 0,)~ F(o, Vo, ..., /" w)
in I#((0, T), L(R)). We have ([1], p. 27)

P m m
J" w, IZ Iprv|1+(4m—2u)/(n+2p)__ Z “711m,1'+(4m—2u)f(n+2#)|"dx
0 (joo,l) =
]
i /(1+4.) /(1+4)
D,
SC(”, m, p, Q)Z “wv_wHZmp T ”Cl) mll’:ﬁﬂ) % X
=0
pa,/(1+4,) pa2/(1 +g,) J1+a) (1+g)
x(lowlizms % oz "%+ ol - ol T

with g, =(4m—2p)/(n+2y). From p>n+1 it follows that w,—+w in
C°([0, T] x Q). Moreover,

lim | Dy
o ) [8(wy)) (|60|)
2

z IVM |l+(4m 2M)I(H+2ﬂ)dx

= ] | | - Vn 14+(4m=2u)/(n+ 2pu)
Jm f Siop 50 2, 7@ .

2
w=0"
Since P*w = 0 a.e. on w = 0 we see that the last limes is = 0. Thus we have
in fact F(w,, Po,, ..., V"0,) > F(0, Vo, ..., P"w) in I7(0, T), 7 (Q)).
Thus we see that for sufficiently regular initial data ¢ with boundary
values 0, equation (I.7) has in fact a uniquely determined weak solution w.
Moreover, this solution is a regular one as it follows from Lemma I4. It is
evident that u solves (I.7) weakly. Thus u = @ and we arrive at our final
result, namely
THEOREM 1.5. Let p>n+1. Let @eC*™(Q), D*®|oQ =0, |a] < m—
Let u be a weak solution for the equation

W+ A u+f(t,u, Vu,..., ¥ "u)=0

on (0, T)xQ with initial value ® and with u(t)e H™(Q) for almost every
te(0, T). Then

ueL#((0, T), H*™(Q)n [*((0, T), A™*(Q)), w'el?(0, T), *(Q)).
Moreover, the following a priori estimate holds:

T
gllu'(t)lli,(mdw Illu(t)llzmp

<c(nm p, @, T, M, M, K, L, L', 1 g1, |I"" Az3lll, | ®ll2m,p)-
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If we impose suitable additional regularity assumptions on the 4;5 and
f, we can prove that
we () C(6,T], C(Q), ue N C(6, T], C*™**(Q)
4,0<5<T 5,0<5<T
for a sufficiently small ¢ > 0. For this purpose one has to use the theory of
C*-semigroups developed by the author (cf. [4]).

Also non-vanishing boundary values g(t, x), gelL?((0, T), H*™?(Q)),
g el’((0, T), I7(Q)) are admissible.

Moreover, it should be remarked that from our a priori estimate an
existence theorem for classical solutions for all t can easily be derived. Our
results will remain valid for systems with a one sided condition for the
non-linearity, eg. u' f'(x, u, Vu, ..., V™"u) > 0, where the u' are the.com-
ponents of u. The proof of Lemma 1.4 being no longer correct in the case of
a system, the growth condition (1.4) must be fulfilled also for fY/u/, |u'] < 1.

w
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