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One of the main ingredients in Carleson’s solution to the corona
problem [2] is the theorem characterizing the measures u on the open
unit disk with the property that f& H? implies

f” | 1) |Pdu@z) < ©, 0<p< .
z|<1

Carleson’s proof of this theorem involves a difficult covering argu-
ment and the consideration of a certain quadratic form (see also [1]).
L. Hérmander later found a proof which appeals to the Marcinkiewicz
interpolation theorem and avoids any discussion of quadratic forms.
The main difficulty in this approach is to show that a certain sub-
linear operator is of weak type (1, 1). Here a covering argument re-
appears which is similar to Carleson’s but apparently easier (see [4]).

We wish to point out that Hérmander’s argument, with appropri-
ate modifications, actually proves the theorem in the following ex-
tended form.

THEOREM. Let u be a finite measure on |z| <1, and suppose 0<p
=<qg< ». Then in order that there exist a constant C such that

® {f 1o anca} s il

for all fEH?, it is necessary and sufficient that there be a constant A
such that

(2 u(S) = 4hal»
for every set S of the form
3) S={re?: 1 —h=<r<1,0,<0=06+ h}.

OUTLINE OF ProoF. A standard argument (factoring out Blaschke
products) shows it is enough to consider the case p =2. The necessity
of (2) is then proved by choosing f(z) = (1 —az)~!, where [al <1.

Conversely, let p =2 and suppose (2) holds. Since each fEH? is the
Poisson integral of its boundary function, it will be sufficient to prove
that

143



144 PETER L. DUREN [January

@ { ﬁ .K,[“(Z)]’d"(z)} "< cllols

if #(2) is the Poisson integral of a nonnegative function ¢ & L2
With each point z=re? in 0<|z| <1 we associate the boundary arc

L={e:0—-31—-r<t=<0+31-0n}.

Taking 0 <6< 2w, we can identify I, with a segment on the real line.
Given an integrable function ¢(¢) 20, periodic with period 2, define

1
#(z) = sup m ft e(t)dt,

where the supremum is taken over all intervals DI, of length
| 7| <1. Then &(z) is continuous in 0<|z| <1. It is not difficult to
show that

u@@) = 1622{6() + [lell},  |2] <1,

where u is the Poisson integral of ¢. Thus it will suffice to prove (4)
with ¢ replacing u.

In other words, we must show that the sublinear operator T': o—@
is of type (2, g). Since T is trivially of type (e, «), this will follow
from the Marcinkiewicz interpolation theorem if it can be shown that
T is of weak type (1, ¢) for 1 Sg< o

(5) /-"(En) = Cs_q”‘P”:’
where
E,={z:3()>s}, s>0.

It is only in proving (5) that any use is made of the assumption that

(6) u(S) = Ahe
for all S of the form (3). (For convenience, ¢/2 has been replaced
by ¢.)

Essentially following Hérmander [4], we define for each ¢>0 the
sets

:={z:f o | dt> s+ u,|)},
Il

and

B: = {z: I, C I, for some w € A:}
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Note that
O w(E.) = lim u(B).
0

If z,E 4; and the arcs I,, are disjoint, then

®) s (e+ | L]) < sz | o) dt < 24l

€

In particular, there can be at most a finite number of points 2, in A4}
whose associated arcs I, are disjoint. The following lemma, whose
proof we omit, is now needed (compare [4, Lemma 2.2]).

COVERING LEMMA. Let A be a nonempty set in | z| <1 which contains
no infinite sequence of points whose associated arcs I, are disjoint. Then
there exists a finite number of points zy, - - -, 2, 10 A such that the arcs
I, are disjoint and

ACU {a:L,CT.},

na=1
where J, is the arc of length 5| I.| whose center coincides with that of I,.

If E, is nonempty, the lemma gives (for some ¢>0)

A2c U {z: I,Cu),
n=1
where 2, E 4; and the arcs I,, are disjoint. It follows that
B:C G {z: I,CJ,,,}.

n=1

Thus the hypothesis (6) gives

© wBY=CY | L

n=1

But by (8) we have (since ¢=1)

{10} s S

n=1 n=1

<25

This together with (7) and (9) proves (5), and (1) follows.
Two applications are worth noting:
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1. If 0<p<g< o, then fEH? implies
! q/p—2_ q
[ a=n""uie, i < =,
0
where

. 1 27 -
M) = f | f(re™) |“a5.

This useful result is due to Hardy and Littlewood [3].
2. If0<p=qg< »,and fEH?, then

1 1/q
{ [ a=nurlsolat " s difl,

This is a generalization of the Fejér-Riesz theorem, aside from the
value of the constant C.
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