
ROCKY MOUNTAIN 
JOURNAL OF MATHEMATICS 
Volume 19. Number 1. Winter 1989 

EXTENSION OF A THEOREM OF LAGUERRE TO 
ENTIRE FUNCTIONS OF EXPONENTIAL TYPE II 

Q.I. RAHMAN AND G. SCHMEISSER 

1. Introduction. A domain whose boundary is a circle or a straight 
line is called a circular domain. The following theorem of Laguerre [6, 
Pp. 56-63] which we state in a form used in [12, p. 33] does not only 
play an important role in the location of critical points of polynomials 
[7] but also allows one to deduce Bernstein's inequality for polynomials 
on the unit disk and various of its refinements [3; 10, Chapters 1 and 
4]-

THEOREM A. Let p(z) be a polynomial of degree n > 1. If p(z) ^ 0 
in a (closed or open) circular domain K, then 

n p(z) -{z- Qp'(z) ^ 0 for c € A', C e A 

which in the case £ = oc means that p'(z) ^ 0 for z e K. 

With the object of getting a result of similar scope for entire functions 
of exponential type we recently [11] proved the following 

THEOREM 1. Let f be an entire function of exponential type r > 0 
such that 

hf(ir/2) := hm sup = 0 
r—+3C f 

and denote by H the (closed or open) upper half-plane. If f(z) ^ 0 for 
z e H, then 

rf(z) + i(l - C)f'(z) ^ 0 forze H and |Ç| < 1. 

We showed that the assumptions of this theorem cannot be relaxed 
and it constitutes an extension of Theorem A. Furthermore, we deduced 
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various old and new results on entire functions of exponential type 
from it. The purpose of this note is to present further applications of 
Theorem 1 which include a new short proof of Bernstein's inequality for 
entire functions of exponential type and a necessary condition for the 
stability problem of delay-equations. Together with the results given 
in [11] one can see that Theorem 1 indeed provides a useful tool for 
entire functions of exponential type. 

2. Bernstein's inequality and refinements. We first show that 
the famous inequality of Bernstein [2] for entire functions of exponential 
type is a simple consequence of Theorem 1. 

COROLLARY 1. Let f be an entire function of exponential type r > 0 
such that \f(x)\ < 1 for x e R. Then 

(1) \f\x)\<r forxeR. 

More precisely, for a given x0 G R, 

(2) \f'(x0)\
2 + {r2 - \f'(x0)\

2sm2a}\f(x0)\
2 < r2 , 

where a := arg{/(xo)// '(xo)} if f{x0), f'(x0) are both different from 
zero; otherwise a can be any real number. 

PROOF. For every XeC such that |A| > 1 the function 

F(z) := eiTZf(z) - A 

is of exponential type 2r such that hF(7r/2) = 0. Furthermore, 
| / (x) | < 1 for x G R implies (see [11]) that \e1TZf(z)\ < 1 for all z 
in the closed upper half-plane H. Hence Theorem 1 applies to F with 
r replaced by 2r and we obtain 

eiTX{rf(x) + if'(x) + C(rf(x) - if'(x)} - 2r\ ± 0 

for all xe R, |A| > 1 and |C| < 1. This implies 

(3) \rf(x) + if'(x)\ + \rf(x) - if'(x)\ < 2r. 
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Now (1) follows on noting that, by the triangle inequality, the left hand 
side of (3) cannot be smaller than 2|/ ' (x) | . 

For (2) we write 

|T/(^o)±i/ ' ( - ro) | = {|/'(^o)|2 + r 2 | / (xo) | 2 ±2r | / (xo) / ' ( ^o) s inal} 1 / 2 

in (3) (with x = x0) and square the two sides obtaining thereby 

{(l/'(*o)|2 + r 2 | / ( x 0 ) | 2 ) 2 - 4r2 | /(xo)/'(a-o)|2sin2 af'2 

< 2 T 2 - | / ' 0 r o ) | 2 - T 2 | / ( * o ) | 2 . 

This is readily seen to be equivalent to (2). o 

REMARK. It was proved by Duffin and Schaeffer [5] that if / is an 
entire function of exponential type r > 0 such that | / (x) | < 1 for x G R 
then 

(4) | / ' (* ) | 2 + r 2 | / ( : r ) | 2 < T 2 

for x G R provided / (x) is real for real x. Our inequality (2) shows 
that, for (4) to hold at a given point xo of the real axis, it is enough 
that one of the following conditions be satisfied: 

(i) /(xo) = 0, 

(ii) / '(*o) = 0, 

(iii) / ( x 0 ) / / / (x 0 ) is real. 

As another consequence of Theorem 1 we have 

COROLLARY 2. [9, inequality (3.12)]. Let f be an entire function of 
exponential type r such that hf(ir/2) < 0 and set UJ(Z) — elTZf(z). If 
l /(#)| < ! for x G R? then 

(5) | / ; (x) | + | u / ( x ) | < r for x G R. 



348 Q.T. RAHMAN AND G. SCHNEISSER 

PROOF. Let A be any complex number such that |A| > 1. Then 
Theorem 1 applies t o F ( 2 ) : = / ( 2 ) - A and yields 

Tf(x) + if'{x)-i(f'(x)^\T 

for all x e R, |A| > 1 and |Ç| < 1. Hence 

\f'(x)\ + \rf(x) + if'(x)\ < T for x 6 R 

which is (5). 

3. A representation theorem. Yet another obvious consequence 
of Theorem 1 is the following analogue of a representation theorem of 
Dieudonné for the logarithmic derivative of a polynomial [4, p. 7]. 

COROLLARY 3. Let f be an entire function of exponential type r > 0 
such that hf(7r/2) = 0. If all the zeros of f lie in the (closed or open) 
lower half-plane G, then, for z G C\G, 

f'(z) ir 
f(z) 1-lMzY 

where if is holomorphic and \<f(z)\ < 1. 

4. Stability of delay-equations. Consider a function / given by 

n 

(6) f(z) = Y,P»i*)e-X'*, 

where Pu(z) are polynomials and A„ are real numbers such that 

0 = Ao < Ai < • • • < An =: T. 

For stability of the solutions of certain delay-equations one would like 
to know under what conditions such a function / has all its zeros in 
the open left half-plane (see [1, Chapter 12]). For this question we 
may obviously assume that PQ(Z) ^ 0. Then / is an entire function of 
exponential type r such that /i/(0) = 0. In this situation we may utilize 
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the following equivalent form of Theorem 1 obtained by a rotation of 
the complex plane. 

THEOREM 1'. Let f be an entire function of exponential type r > 0 
such that 

hm sup = 0 
x—>oc % 

and denote by 1Z the {open or closed) right half-plane. If f(z) ^ 0 for 
z e1Z, then 

rf(z) + (1 - Qf'(z) ^0 for zeli and \Q < 1. 

Now we may proceed as follows. Suppose that, for the function / in 
(6), we have f(z) ^ 0 for z € 11 and denote by k the degree of Pn{z). 
Then, by Theorem 1', also 

fl(z):=rf(z) + f(z)^Oiovzen. 

Obviously / i is of the form 

n 

with polynomials Pu(z) of the same degree as Pv{z) except for Pn{z) 
whose degree has become A: — 1. Defining 

fJ + l(z)~Tfj(z) + f'J(z)(j = l,...,k) 

we may apply Theorem 1' repeatedly. After k steps we arrive at an 
entire function fk+i of the form 

n - l 

i /=0 

with polynomials Qu(z) of the same degree as Pv(z) which does not 
vanish in 72., according to Theorem 1'. Now we may continue the 
procedure with r replaced by An_i, and so on. Reducing the number of 
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exponential terms this way we finally end up with a polynomial P{z) of 
the same degree as PQ(Z) which should have all its zeros in C\7Z. If this 
turns out to be false (for example, by using the Hurwitz-Routh test) it 
follows that f(z) is not different from zero in 1Z. The polynomial P(z) 
can be explicitly written as 

P(z) = (Ai + D)k> (A2 + D)k*... (An 4- D)k»PQ(z) 

where D := ^ and 

fc„ := 1 + degree Pu(z) {v = 1,2,..., n). 

As a simple example (see also [8, p. 18]) let us consider 

(7) f(z) = a + z + be-x* (A > 0). 

Then 
P(z) = (A + D)(a -h z) - A(a + z) + 1 

and hence 

Re a > - -
A 

is a necessary condition for (7) to have all its zeros in the open left 
half-plane. 
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