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Abstract

The Material Point Method (MPM) is a numerical technique that combines a fixed Eulerian background grid and Lagrangian
point masses to simulate materials which undergo large deformations. Within the original MPM, discontinuous gradients
of the piecewise-linear basis functions lead to the so-called grid-crossing errors when particles cross element boundaries.
Previous research has shown that B-spline MPM (BSMPM) is a viable alternative not only to MPM, but also to more advanced
versions of the method that are designed to reduce the grid-crossing errors. In contrast to many other MPM-related methods,
BSMPM has been used exclusively on structured rectangular domains, considerably limiting its range of applicability. In
this paper, we present an extension of BSMPM to unstructured triangulations. The proposed approach combines MPM with
C1-continuous high-order Powell–Sabin spline basis functions. Numerical results demonstrate the potential of these basis
functions within MPM in terms of grid-crossing-error elimination and higher-order convergence.

Keywords Material Point Method · B-splines · Powell–Sabin splines · Unstructured grids · Grid-crossing error

1 Introduction

The Material Point Method (MPM) has proven to be success-
ful in solving complex engineering problems that involve
large deformations, multi-phase interactions and history-
dependent material behaviour. Over the years, MPM has
been applied to a wide range of applications, including mod-
elling of failure phenomena in single- and multi-phase media
[1,35,40], crack growth [14,20] and snow and ice dynam-
ics [12,31,34]. Within MPM, a continuum is discretised by
defining a set of Lagrangian particles, called material points,
which store all relevant material properties. An Eulerian
background grid is adopted on which the equations of motion
are solved in every time step. The solution on the background
grid is then used to update all material point properties such
as displacement, velocity and stress. In this way, MPM incor-
porates both Eulerian and Lagrangian descriptions. Similarly
to other combined Eulerian–Lagrangian techniques, MPM
attempts to avoid the numerical difficulties arising from non-
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linear convective terms associated with an Eulerian problem
formulation, while at the same time preventing grid distor-
tion, typically encountered within mesh-based Lagrangian
formulations (e.g. [10,32]).

Classically, MPM uses piecewise-linear Lagrange basis
functions, also known as ‘tent’ functions. However, the
gradients of these basis functions are discontinuous at ele-
ment boundaries. This leads to the so-called grid-crossing
errors [2] when material points cross this discontinuity. Grid-
crossing errors can significantly influence the quality of the
numerical solution and may eventually lead to a lack of
convergence (e.g. [28]). Different methods have been devel-
oped to mitigate the effect of grid-crossings. For example,
the Generalised Interpolation Material Point (GIMP) [2] and
Convected Particle Domain Interpolation (CPDI) [25] meth-
ods eliminate grid-crossing inaccuracies by introducing an
alternative particle representation. The GIMP method rep-
resents material points by particle-characteristic functions
and reduces to standard MPM, when the Dirac delta function
centred at the material point position is selected as the charac-
teristic function. For multivariate cases, a number of versions
of the GIMP method are available such as the uniform GIMP
(uGIMP) and contiguous-particle GIMP (cpGIMP) meth-
ods. The CPDI method extends GIMP in order to accurately
capture shear distortion. Much research has been performed
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to further improve the accuracy of the CPDI approach and
increase its range of applicability [16,22,26]. On the other
hand, the Dual Domain Material Point (DDMP) method [41]
preserves the original point-mass representation of the mate-
rial points, but adjusts the gradients of the basis functions to
avoid grid-crossing errors. The DDMP method replaces the
gradients of the piecewise-linear Lagrange basis functions in
standard MPM by smoother ones. The DDMP method with
sub-points [7] proposes an alternative manner for numerical
integration within the DDMP algorithm.

The B-spline Material Point Method (BSMPM) [28,
29] solves the problem of grid-crossing errors completely
by replacing piecewise-linear Lagrange basis functions
with higher-order B-spline basis functions. B-spline and
piecewise-linear Lagrange basis functions possess many
common properties. For instance, they both satisfy the parti-
tion of unity, are non-negative and have a compact support.
The main advantage of higher-order B-spline basis functions
over piecewise-linear Lagrange basis function is, however,
that they have at least C0-continuous gradients which pre-
clude grid-crossing errors from the outset. Moreover, spline
basis functions are known to provide higher accuracy per
degree of freedom as compared to C0-finite elements [15]. On
structured rectangular grids, adopting B-spline basis func-
tions within MPM not only eliminates grid-crossing errors
but also yields higher-order spatial convergence [3,11,28,29,
37]. Previous research also demonstrates that BSMPM is
a viable alternative to the GIMP, CPDI and DDMP meth-
ods [11,19,30,39]. While the CPDI and DDMP methods
can be used on unstructured grids [16,22,41], to the best of
our knowledge, BSMPM for unstructured grids does not yet
exist. This implies that its applicability to real-world prob-
lems is limited compared to the CPDI and DDMP methods.

In this paper, we propose an extension of BSMPM to
unstructured triangulations to combine the benefits of B-
splines with the geometric flexibility of triangular grids.
The proposed method employs quadratic Powell–Sabin (PS)
splines [23]. These splines are piecewise higher-order poly-
nomials defined on a particular refinement of any given trian-
gulation and are typically used in computer-aided geometric
design and approximation theory [9,18,24,27]. PS-splines
are C1-continuous and hence overcome the grid-crossing
issue within MPM by design. We would like to remark that
although this paper focuses on PS-splines, other options such
as refinable C1 splines [21] can be used to extend MPM
to unstructured triangular grids. The proposed PS-MPM
approach is analysed based on several benchmark problems.

The paper is organised as follows. In Sect. 2, the governing
equations are provided together with the MPM solution strat-
egy. In Sect. 3, the construction of PS-spline basis functions
and their application within MPM is described. In Sect. 4,
the obtained numerical results are presented. In Sect. 5, con-
clusions and recommendation are given.

2 Material Point Method

We will summarise the MPM as introduced by Sulsky et
al. [32] to keep this work self-contained. First, the govern-
ing equations are presented, afterwards the MPM strategy to
solve these equations is introduced.

2.1 Governing equations

The deformation of a continuum is modelled using the con-
servation of linear momentum and a material model. It should
be noted that MPM can be implemented with a variety of
material models that either use the rate of deformation (i.e.
the symmetric part of the velocity gradient) or the defor-
mation gradient. However, for this study it is sufficient to
consider the simple linear-elastic and neo-Hookean models
that are based on the deformation gradient. Using the Ein-
stein summation convention, the system of equations in a
Lagrangian frame of reference for each direction xk is given
by

∂uk

∂t
= vk , (1)

ρ
∂vk

∂t
= ∂σkl

∂xl

+ ρgk , (2)

Dkl = δkl + ∂uk

∂x0
l

, (3)

σkl =

⎧

⎨

⎩

λ
J

Dkl tr (Ekl ) + 2µ
J

Dkl Ekl for linear-elastic materials,

λ ln(J )
J

δkl + µ
J

(Dkm Dlm − δkl) for neo-Hookean materials.

(4)

where uk is the displacement, t is the time, vk is the velocity, ρ
is the density, gk is the body force, Dkl is the deformation gra-
dient, δkl is the Kronecker delta, σkl is the stress tensor, x

0 is
the position in the reference configuration, λ is the Lamé con-
stant, Ekl is the strain tensor defined as 1

2 (Dkl + Dlk) − δkl ,
J is the determinant of the deformation gradient and µ is the
shear modulus. Equations 2 and 4 describe the conservation
of linear momentum and the material model, respectively.

Initial conditions are required for the displacement, veloc-
ity and stress tensor. The boundary of the domain Ω can be
divided into a part with a Dirichlet boundary condition for the
displacement and a part with a Neumann boundary condition
for the traction:

uk(x, t) = Uk(x, t) on ∂Ωu, (5)

σkl(x, t) nl = τk(x, t) on ∂Ωτ , (6)

where x = [ x1 x2 ]T and n is the unit vector normal to
the boundary ∂Ω and pointing outwards. We remark that the
domain Ω , its boundary ∂Ω = ∂Ωu ∪ ∂Ωτ and the normal
unit vector n may all depend on time.
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For solving the equations of motion in the Material Point
Method, the conservation of linear momentum in Eq. 2 is
needed in its weak form. For the weak form, Eq. 2 is first
multiplied by a continuous test function φ that vanishes on
∂Ωu and is subsequently integrated over the domain Ω:

∫

Ω

φρak dΩ =
∫

Ω

φ
∂σkl

∂xl

dΩ +
∫

Ω

φρgk dΩ, (7)

in which ak = ∂vk

∂t
is the acceleration. After applying inte-

gration by parts, the Gauss integration theorem and splitting
the boundary into Dirichlet and Neumann part, the weak for-
mulation becomes

∫

Ω

φρak dΩ =
∫

∂Ωτ

φτk dS−
∫

Ω

∂φ

∂xl

σkl dΩ+
∫

Ω

φρgk dΩ,

(8)

whereby the contribution on ∂Ωu equals zero, as the test
function vanishes on this part of the boundary.

2.2 Discretised equations

Equation 8 can be solved using a finite element approach by
defining nbf basis functions φi (i = 1, . . . , nbf). The accel-
eration field ak is then discretised as a linear combination of
these basis functions:

ak(x, t) =
nbf∑

j=1

âk, jφ j (x), (9)

in which âk, j is the time-dependent j th acceleration coeffi-
cient corresponding to basis function φ j . Substituting Eq. 9
into Eq. 8 and expanding the test function in terms of the
basis functions φi leads to

∫

Ω

φiρ

⎛

⎝

nbf∑

j=1

âk, jφ j

⎞

⎠ dΩ

=
∫

∂Ωτ

φiτk dS−
∫

Ω

∂φi

∂xl

σkl dΩ +
∫

Ω

φiρgk dΩ, (10)

which holds for i = 1, . . . , nbf. By exchanging summation
and integration, this can be rewritten in matrix-vector form
as follows:

nbf∑

j=1

(∫

Ω

φiρφ j dΩ

)

︸ ︷︷ ︸

Mi j

âk, j

=
∫

∂Ωτ

φiτk dS

︸ ︷︷ ︸

F trac
k,i

−
∫

Ω

∂φi

∂xl

σkl dΩ

︸ ︷︷ ︸

F int
k,i

+
∫

Ω

φiρgk dΩ

︸ ︷︷ ︸

F
body
k,i

, (11)

⇒ Mâk = F
trac
k − F

int
k + F

body
k , (12)

where M denotes the mass matrix, âk the coefficient vec-
tor for the acceleration, while F

trac
k , F

int
k and F

body
k denote,

respectively, the traction, internal and body force vector in the
xk-direction. When density, stress and body force are known
at time t , the coefficient vector âk is found from Eq. 12.
The properties of the continuum at time t + ∆t can then be
determined using the acceleration field at time t .

2.3 Solution procedure

Within MPM, the continuum is discretised by a set of parti-
cles that store all its physical properties. At each time step,
the particle information is projected onto a background grid,
on which the momentum equation is solved. Particle proper-
ties and positions are updated according to this solution, as
illustrated in Fig. 1.

To solve Eq. 12 at every time step, the integrals in Eq. 11
have to be evaluated. Since the material properties are only
known at the particle positions, these positions are used as
integration points for the numerical quadrature, and the par-
ticle volumes V are adopted as integration weights. Assume
that the total number of particles is equal to n p. Here, sub-
script p corresponds to particle properties. A superscript t

is assigned to particle properties that change over time. The
mass matrix and force vectors are then defined by

M t
i j =

n p
∑

p=1

V t
pρ

t
p

︸ ︷︷ ︸

m p

φi (x
t
p)φ j (x

t
p), (13)

F
trac,t
k,i =

n p
∑

p=1

φi (x
t
p) f

trac,t
k,p , (14)

F
int,t
k,i =

n p
∑

p=1

V t
p

∂φi

∂xm

(x
t
p) σ t

mk,p (15)

F
body,t

k,i =
n p
∑

p=1

V t
pρ

t
p

︸ ︷︷ ︸

m p

φi (x
t
p)gk, (16)

in which m p denotes the particle mass, which is set to remain
constant over time, guaranteeing conservation of the total
mass. The coefficient vector â

t
k at time t for the xk-direction

is determined by solving

M
t
â

t
k =

(

F
trac,t
k − F

int,t
k + F

body,t

k

)

. (17)

Unless otherwise stated, Eq. 17 is solved adopting the consis-
tent mass matrix. Next, the reconstructed acceleration field
is used to update the particle velocity:
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Fig. 1 One time step in the MPM procedure. Projection of particle properties onto the basis functions of the background grid (left). Update of
particle properties based on the solution on the background grid (middle). Resetting the grid (right)

vt+∆t
k,p = vt

k,p + ∆t at
k

(

x
t
p

)

= vt
k,p + ∆t

nbf∑

j=1

ât
k, jφ j

(

x
t
p

)

.

(18)

The semi-implicit Euler-Cromer scheme [5] is adopted to
update the remaining particle properties. First, the velocity
field vt+∆t

k is discretised as a linear combination of the same
basis functions, similar to the acceleration field (Eq. 9):

vt+∆t
k (x) =

nbf∑

j=1

v̂t+∆t
k, j φ j (x), (19)

in which v̂
t+∆t
k is the velocity coefficient vector for the veloc-

ity field at time t + ∆t in the xk-direction. The coefficient
vector v̂

t+∆t
k is then determined from a density weighted L2-

projection onto the basis functions φi . This results in the
following system of equations:

M
t
v̂

t+∆t
k = P

t+∆t
k , (20)

where M
t is the same mass matrix as defined in Eq. 13.

P
t+∆t
k denotes the momentum vector with the coefficients

given by

P t+∆t
k,i =

n p
∑

p=1

V t
pρ

t
p

︸ ︷︷ ︸

m p

vt+∆t
k,p φi (x p). (21)

Particle properties are subsequently updated in correspon-
dence with Eqs. 1–4. First, the deformation gradient and its
determinant are obtained:

D
t+∆t
p =

(

I + ε
t+∆t
p ∆t

)

D
t
p, (22)

J t+∆t
p = det(D

t+∆t
p ). (23)

Here, I denotes the identify matrix and ε
t+∆t
p denotes the

symmetric part of the velocity gradient:

εt+∆t
kl,p = 1

2

nbf∑

j=1

(

v̂t+∆t
k, j

∂φ j

∂xl

(x
t
p) + v̂t+∆t

l, j

∂φ j

∂xk

(x
t
p)

)

. (24)

For linear-elastic materials, the particle stresses are computed
as follows:

E t+∆t
kl,p = 1

2

(

Dt+∆t
kl,p + Dt+∆t

lk,p

)

− δkl , (25)

σ t+∆t
kl,p = λδkl tr

(

E t+∆t
kl,p

)

+ 2µE t+∆t
kl,p . (26)

For neo-Hookean materials, the stresses are obtained from

σ t+∆t
kl,p =

λ ln(J t+∆t
p )

J t+∆t
p

δkl + µ

J t+∆t
p

(

Dt+∆t
km,p Dt+∆t

lm,p − δkl

)

.

(27)

The determinant of the deformation gradient is used to
update the volume of each particle. Based on this volume,
the density is updated in such way that the mass of each
particle remains constant:

V t+∆t
p = J t+∆t

p V 0
p , (28)

ρt+∆t
p = m p/V t+∆t

p . (29)

Finally, particle positions and displacements are updated
from the velocity field:

x t+∆t
k,p = x t

k,p + ∆t

nbf∑

i=1

vt+∆t
k,i φi (x

t
p), (30)

ut+∆t
k,p = ut

k,p + ∆t

nbf∑

i=1

vt+∆t
k,i φi (x

t
p). (31)

The described MPM can be numerically implemented by
performing the steps in Eqs. 13–31 in each time step in the
shown order. Note that all steps can be applied with a variety
of basis functions, without any essential difference in the
algorithm. In this paper, we investigate the use of Powell–
Sabin spline basis functions, which are described in the next
section.
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Fig. 2 A triangular grid (left)
and a possible PS-refinement
(right). The molecule Ωi around
vertex Vi is marked grey. (Color
figure online)

tj

tm

Vi

Zm

Zj
Zjm

tj

tm

Vi

Fig. 3 Top left: the PS-points of the middle vertex, marked with red dots, and a possible control triangle containing all PS-points. Other subfigures:
the three PS-splines associated with this control triangle. (Color figure online)

3 Powell–Sabin spline basis functions

In this section, the construction and essential properties of
Powell–Sabin (PS) spline basis functions are summarised.
For the full construction process and the proofs of the prop-
erties, we refer to the publication by Dierckx [8,9]. The

considered PS-splines are piecewise quadratic splines with
global C1-continuity. They are defined on arbitrary trian-
gulations, have local support and possess the properties of
non-negativity and partition of unity. Several examples of
PS-splines are shown in Fig. 3.
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3.1 Powell–Sabin grid refinement

To construct PS-splines on an arbitrary triangulation, a
Powell–Sabin refinement is required, dividing each of the
original main-triangles into six sub-triangles as follows (see
also Fig. 2).

1. For each triangle t j , choose an interior point Z j (e.g. the
incentre), such that if triangles t j and tm have a common
edge, the line between Z j and Zm intersects the edge.
The intersection point is called Z jm .

2. Connect each Z j to the vertices of its triangle t j with
straight lines.

3. Connect each Z j to all edge points Z jm with straight
lines. In case t j is a boundary element, connect Z j to
an arbitrary point on each boundary edge (e.g. the edge
middle).

The area consisting of the main-triangles around Vi is
referred to as the molecule Ωi of Vi (see Fig. 2). Each PS-
spline is associated with a main vertex Vi and will be defined
on the molecule Ωi .

3.2 Control triangles

For each main vertex Vi , the set of PS-points is given by
the union of Vi and the sub-triangle edge midpoints directly
around it, see Fig. 3. A control triangle for Vi is then defined
as a triangle that contains all its PS-points. Note that this con-
trol triangle is not uniquely defined. However, it preferably
has a small area to ensure good stability properties of the
resulting PS-splines [8].

A sufficiently good control triangle can be constructed by
considering only control triangles with two or three edges
shared with the convex hull of the PS-points and taking the
one with smallest surface. Further details about the imple-
mentation of such an algorithm can be found in [6].

Each control triangle defines three basis functions, all
associated with vertex Vi and the molecule Ωi . Therefore, the
basis functions are indexed φ

q

i (i = 1, . . . , nv, q = 1, 2, 3),
where i indicates the vertex Vi , nv the number of vertices and
q the local index. Each basis function φ

q
i is uniquely defined

by a triplet (α
q

i , β
q

i , γ
q

i ), containing the value and gradient
of φ

q
i in its associated vertex Vi ,

(

α
q
i , β

q
i , γ

q
i

)

=
(

φ
q
i (Vi ),

∂φ
q

i

∂x
(Vi ),

∂φ
q

i

∂ y
(Vi )

)

. (32)

The triplets of the three PS-spline basis functions correspond-
ing to vertex Vi are determined from the control triangle and
the position of Vi . Let the Cartesian coordinates of the con-
trol triangle vertices be Q1

i = (X1
i , Y 1

i ), Q2
i = (X2

i , Y 2
i )

Fig. 4 A control triangle lifted to z = 1 in one of its vertices for
determining a triplet of a basis function. The location in the lifted plane
above the vertex Vi in the middle is marked with a dot; the value and
gradient there correspond to the triplet of the associated basis function

and Q3
i = (X3

i , Y 3
i ), and the Cartesian coordinates of Vi =

(xi , yi ). The three triplets are then determined by solving

⎡

⎢
⎣

X1
i X2

i X3
i

Y 1
i Y 2

i Y 3
i

1 1 1

⎤

⎥
⎦

⎡

⎢
⎣

α1
i β1

i γ 1
i

α2
i β2

i γ 2
i

α3
i β3

i γ 3
i

⎤

⎥
⎦ =

⎡

⎣

xi 1 0
yi 0 1
1 0 0

⎤

⎦ . (33)

The control triangle has a direct geometric interpretation
for the triplet. Solving for the triplet

(

α
q
i , β

q
i , γ

q
i

)

of a basis
function φ

q

i corresponds geometrically to ‘lifting’ up control
triangle vertex Q

q
i of the control triangle in the z-direction

to 1, and evaluating the height and gradient of the resulting
plane at the location of Vi , as shown Fig. 4.

3.3 Bernstein–Bézier formulation for quadratic
splines

From the triplet
(

α
q
i , β

q
i , γ

q
i

)

, the PS-spline φ
q
i is constructed

as a piecewise quadratic polynomial over each sub-triangle in
the PS-refinement in barycentric coordinates. Cartesian coor-
dinates (x, y) can be converted to barycentric coordinates
(η1, η2, η3) with respect to the considered triangle vertices
(x1, y1), (x2, y2), (x3, y3) as follows (see also Fig. 5, left):

⎡

⎣

x1 x2 x3

y1 y2 y3

1 1 1

⎤

⎦

⎡

⎣

η1

η2

η3

⎤

⎦ =

⎡

⎣

x

y

1

⎤

⎦ . (34)

Next, we define 6 quadratic Bernstein polynomials Bi, j,k

for each sub-triangle in barycentric coordinates,

Bi, j,k(η) = 2!
i ! j !k!η

i
1η

j
2ηk

3, with i, j, k ∈ {0, 1, 2},

and i + j + k = 2, (35)

which are non-negative and form a partition of unity.
Any desired quadratic polynomial b(η) can be uniquely
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Fig. 5 Barycentric coordinates
with respect to the sub-triangle
vertices (left) and the Bézier
ordinates of a quadratic
polynomial b(η) (right),
schematically represented at the
same location

v1

v2

v3

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

(0, 1

2
, 1

2
)

( 1

2
, 1

2
, 0)

( 1

2
, 0, 1

2
)

v1

v2

v3

b2,0,0

b0,2,0

b0,0,2

b0,1,1

b1,1,0

b1,0,1

Fig. 6 The molecule around a
vertex Vi (left) and one of the
main-triangles in the molecule
(right). The locations of the
middle vertex Z and the edge
vertices R are marked with
respect to the vertices v1, v2 and
v3. v1(= Vi ) is also marked with
the barycentric coordinates with
respect to the control triangle

Vi

Q1

Q2

Q3

v2

v3

Vi = v1 =
(α1

i , α2

i , α3

i )

R12 =
(λ1, λ2, 0)

R13 =
(ν1, 0, ν3)

R23 =
(0, µ1, µ2)

Z =
(a, b, c)

constructed as a linear combination of the 6 quadratic Bern-
stein polynomials Bi, j,k over a sub-triangle,

b(η) =
∑

i+ j+k=2,
i, j,k∈{0,1,2}

bi, j,k Bi, j,k(η), (36)

where bi, j,k are called the Bézier ordinates. The desired
quadratic polynomial can thus be fully defined by its Bézier
ordinates, which can be schematically represented by asso-
ciating Bézier ordinate bi, j,k with barycentric coordinates
(

i
2 ,

j
2 , k

2

)

, as shown in Fig. 5.

3.4 Construction of PS-splines

Next, consider the molecule Ωi around a vertex Vi and one
of the main-triangles t j in the molecule, as depicted in Fig. 6.
The grey main-triangle has been divided into 6 sub-triangles
in the PS-refinement. In each of the sub-triangles, the 6 loca-

tions with barycentric coordinates
(

i
2 ,

j
2 , k

2

)

, i + j + k =
2, i, j, k ∈ {0, 1, 2} have been marked. Denote the vertices
of the main-triangle by v1, v2 and v3, with v1 (= Vi ) the
middle vertex of the considered molecule, and v2 and v3 be

indexed counter-clockwise. Let the centre vertex, Z , of the
grey triangle has barycentric coordinates Z = (a, b, c) with
respect to vertices v1, v2 and v3. Furthermore, let the edge
vertices R have barycentric coordinates R12 = (λ1, λ2, 0),
R23 = (0, µ2, µ3) and R13 = (ν1, 0, ν3) with respect to v1,
v2 and v3, as denoted in Fig. 6. Finally, let v1 have barycen-
tric coordinates v1 = (α1

i , α2
i , α3

i ) with respect to the control
triangle vertices Q1

i , Q2
i and Q3

i . These values of α also cor-
respond to the first values of the three triplets of the basis
functions associated with this molecule, see Equation (33).

Finally, the three basis function φ
q

i , q = 1, 2, 3, asso-
ciated with vertex Vi , are defined by their Bézier ordinates
on each of the sub-triangles within the molecule of Vi . The
Bézier ordinates of a basis function φ

q
i are shown in Fig. 7.

The coefficients in the figure are given in terms of the triplet
(α, β, γ ) = (α

q
i , β

q
i , γ

q
i ) of the considered basis function

φ
q

i and the barycentric coordinates of Z = (a, b, c), R12 =
(λ1, λ2, 0), R13 = (ν1, 0, ν3), and the Cartesian coordinates
of the considered triangle v1 = (x1, y1), v2 = (x2, y2) and
v3 = (x3, y3) as follows,
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Fig. 7 The Bézier ordinates for basis function φ1
i , corresponding to the

vertex Vi considered in Fig. 6. There are three different basis functions,
note that for each of these basis functions, α, β and γ should correspond
with the triplet (αq , βq , γ q ) corresponding to PS-triangle vertex Qq

L = α + 1 − λ1

2
β,

L ′ = α + 1 − ν1

2
γ ,

L̃ = α + b

2
β + c

2
γ , (37)

with

β = β(x2 − x1) + γ (y2 − y1) and

γ = β(x3 − x1) + γ (y3 − y1). (38)

The resulting PS-splines corresponding to the shown control
triangle of vertex Vi are shown on the associated molecule
in Fig. 3.

3.5 Projecting on PS-splines and lumping within
PS-MPM

In this section, we show by numerical experiments that the
projection on PS-splines leads to third-order spatial conver-
gence in the L2-error between an analytic function and its
projection. Furthermore, we also investigate the effect of per-
forming a projection on PS-splines using a lumped variant
of the mass matrix instead of the consistent one. Lumping of
the mass matrix is often used in MPM with piecewise-linear
basis functions, but we will show that lumping is less suit-
able for MPM with PS-spline basis function when no special
measures are taken.

We consider the projection of a two-dimensional sine
function onto a basis of PS-splines, using a consistent and a
lumped mass matrix, respectively. The results are also com-

pared with a projection onto a basis of piecewise-linear basis
functions. We project the function f = sin(x/π) sin(y/π)

on the unit square onto a basis of PS-splines using a standard
L2-projection:

f̂ (x, y) =
nbf∑

j=1

c jφ j (x, y);

nbf∑

j=1

(∫

Ω

φiφ j dΩ

)

︸ ︷︷ ︸

Mi j

c j =
∫

Ω

φi f dΩ

︸ ︷︷ ︸

bi

. (39)

The entries of the mass matrix M and the right-hand side
b are evaluated using high-order Gauss integration such that
the integration error is insignificant. Finally, we may obtain
the projection f̂ by either solving Mc = b consistently, or
by using the lumped mass matrix, bi = ci/M̃i i , in which
the lumped mass matrix M̃ has been created by lumping
all the mass of each row onto its diagonal element, M̃i i =
∑nbf

j=1 Mi j , M̃i j = 0 for i �= j . A basis of PS-splines, and of
piecewise-linear functions were adopted, respectively, both
defined on a structured triangulation.

Figure 8 shows the L2-error in the function value and x-
derivative for various refinements of the grid. When using
a consistent mass matrix, the expected orders of conver-
gence are obtained for piecewise-linear basis functions and
PS-spline basis functions, both in the function value and the
x-derivative. The use of a lumped mass matrix leads to a first-
order accurate approximation of the function value for both
types of basis functions. However, the x-derivative does not
converge at all when adopting a lumped mass matrix within
a PS-spline basis. As the gradient of the reconstructed field is
often used in MPM (e.g. Eq. 24), lumping within PS-MPM
will often lead to spatial oscillations as will be shown in more
detail in Sect. 4.3.

4 Numerical results

To validate the proposed PS-MPM, several benchmarks
involving large deformations are considered. The first bench-
mark describes a thin vibrating bar, where the displacement
is caused by an initial velocity field. For this benchmark,
PS-MPM on a structured triangular grid is compared with
a reference solution. A second benchmark considers a unit
square undergoing axis-aligned displacement with known
analytical solution. The spatial convergence of PS-MPM on
an unstructured grid is determined for this benchmark. The
third benchmark describes a solid column under self-weight.
In this benchmark, we investigate the use of a lumped mass
matrix in PS-MPM to stabilise the simulation when part of
the original domain becomes empty. We will show that a
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Fig. 8 Error in the function
value (left) and x-derivative
(right) when projecting onto a
basis of PS-splines (PS) and
piecewise-linear functions (PL),
using a consistent (cons.) and a
lumped mass matrix

Fig. 9 The vibrating bar
benchmark (top) and the initial
particle configuration (bottom)

v0

0 L

0 0.2 0.4 0.6 0.8 1
0

0.05

fully lumped mass matrix within PS-MPM leads to spatial
oscillations, as expected from Sect. 3.5. Instead, we propose
the use of a partially lumped mass matrix to mitigate these
oscillations. Throughout this section, coordinates in the cur-
rent configuration are denoted by (x, y) and in the reference
configuration by (x0, y0).

4.1 Vibrating bar

In this section, a thin linear-elastic vibrating bar is consid-
ered with both ends fixed. A one-dimensional UL-FEM [36]
solution on a very fine grid serves as reference. The grid used
for PS-MPM and the initial particle positions are shown in
Fig. 9.

The bar is modelled with density ρ = 25 kg/m3, Young’s
modulus E = 50 Pa, Poisson ratio ν = 0, length L = 1 m,
width W = 0.05 m and initial maximum velocity of 0.1 m/s.
The chosen parameters result in a maximum normal strain
in the x-direction of approximately 7%. At the left and right
boundary, homogeneous Dirichlet boundary conditions are
imposed for both x- and y-displacement, whereas at the
top and bottom boundary, a homogeneous Dirichlet bound-
ary condition is imposed only for the y-displacement, and a
free-slip boundary condition for the x-direction. The initial
displacement equals zero, but an initial x-velocity profile is

set to vx (x0, y0) = 0.1 sin(x0π/L). The initial y-velocity is
equal to zero.

The time step size for the simulation is ∆t = 5·10−3 s. The
Courant number for two-dimensional problems is defined as
C = 2∆t

h

√
E/ρ, in which h is the typical element length, and√

E/ρ is the characteristic wave speed. Due to the ambiguity
of h for a PS-refinement on an unstructured triangular grid,
we estimate the average edge length of the sub-triangles by
h ≈ 0.025 m. In this case, the Courant number is C ≈ 0.56 <

1, satisfying the CFL condition [4].
Figure 10 shows the displacement in the middle of the bar

over time and the stress profile through the entire bar at the
end of the simulation. Although a relatively coarse PS-MPM
grid and few particle are used, the method yields accurate
results and a smooth stress profile.

In case of small and large deformations, the energy in
the system over time is shown in Fig. 11. Results for small
deformations have been obtained by setting the initial max-
imum velocity equal to 0.001 m/s. In the limit of small
deformations, the PS-MPM solution is described exactly by a
harmonic oscillator, and the simulation with small deforma-
tions is indeed in good agreement with the (sampled) exact
solution. For large deformations, however, the solution is no
longer perfectly periodic. Nonetheless, the energy over time
obtained with PS-MPM strongly resembles the UL-FEM
reference solution. Only after 7 s, the PS-MPM simulation
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Fig. 10 Displacement of the
particle initially positioned at
(x0, y0) ≈ (0.5 m, 0.025 m)

over time (left) and the stress
component σxx along the bar at
t = 2.5 s (right)

Fig. 11 Energy in the vibrating
bar with large deformations
(above), and for small
deformations (below). Both are
compared with a sampled
reference solution

shows oscillations in the energy which are not present with
UL-FEM. A visible decay in total energy due to numerical
dissipation is only observed for simulation times larger than
15 s.

4.2 Axis-aligned displacement on an unstructured
grid

In this section, we consider two-dimensional axis-aligned
displacement on the unit square (L × W , with L = W = 1
m) to investigate the grid-crossing error and spatial conver-
gence of PS-MPM on an unstructured grid. An analytical
solution for this problem is constructed using the method of
manufactured solutions: the analytical solution is assumed a

priori, and the corresponding body force is calculated accord-
ingly. This benchmark has been adopted from [25] and [38].
The analytical solution for the displacement in terms of the
reference configuration is given by

ux = u0 sin
(

2πx0
)

sin

(√

E/ρ0 π t

)

, (40)

u y = u0 sin
(

2π y0
)

sin

(√

E/ρ0 π t + π

)

. (41)

Here, ρ0 = 103 kg/m3, u0 = 0.05 m and Young’s modulus
E = 107 Pa. The corresponding body forces [25] are

gx = π2ux

(

4µ

ρ0
− E

ρ0
− 4

λ
[

ln(Dxx Dyy) − 1
]

− µ

ρ0 D2
xx

)

,

(42)

gy = π2u y

(

4µ

ρ0
− E

ρ0
− 4

λ
[

ln(Dxx Dyy) − 1
]

− µ

ρ0 D2
yy

)

,

(43)

in which the Lamé constant λ, the shear modulus µ and the
normal components of the deformation gradient Dxx and Dyy

are defined as

λ = Eν

(1 + ν)(1 − 2ν)
, µ = E

2(1 + ν)
, (44)

Dxx = 1 + 2u0π cos(2πx0) sin

(√

E/ρ0 π t

)

, (45)
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Dyy = 1 + 2u0π cos(2π y0) sin

(√

E/ρ0 π t + π

)

. (46)

Here, ν = 0.3 and all solutions are again given with respect
to the reference configuration.

This benchmark was simulated with standard MPM and
PS-MPM, using an unstructured triangular grid with material
points initialised uniformly over the domain, as shown in
Fig. 12. A time step size of ∆t = 2.25 · 10−4 s was chosen,
which results in a Courant number of C ≈ 0.72. For the
adopted parameters, the imposed solution in Eqs. 40–41 has
period T = 0.02 s.

4.2.1 Grid-crossing error

First, it is shown that the grid-crossing error typical for
standard MPM does not occur in PS-MPM, by comparing
the normal horizontal stress resulting from these methods
(see Fig. 13). The configurations for PS-MPM and standard
MPM contain the same number of particles (5120, 4 times
as many as in Fig. 12) and a comparable number of basis
functions, 289 for standard MPM and 243 for PS-MPM. As
expected, the stress field in standard MPM suffers severely
from grid-crossing, whereas with PS-MPM a smooth stress
field is observed. The same conclusion can also be drawn
when investigating individual particle stresses over time, as
is shown in Fig. 14. For this figure, the particle positioned
at (x0, y0) ≈ (0.25 m,0.47 m) has been traced throughout
the simulation. The figure depicts the stress and trajectory of
the particle. For standard MPM, it is observed that the stress
profile is highly oscillatory, resulting in a disturbed trajec-
tory. PS-MPM shows no oscillations, but only a small offset,
which was found to disappear upon further refinement of the
grid.

4.2.2 Spatial convergence

PS-MPM with quadratic basis functions is expected to show
third-order spatial convergence. To determine the spatial con-
vergence, the time averaged root-mean-squared (RMS) error
is used:

RMS-error =

√
√
√
√

∑nt

i=1

∑n p

p=1 |x p(ti ) − x̂ p(ti )|2

n pnt

, (47)

where nt denotes the total number of time steps of the sim-
ulation. Under the assumption that the spatial error is much
larger than the error produced by the numerical integration
and time-stepping scheme, the spatial convergence of stan-
dard MPM and PS-MPM is determined by varying the typical
element length h. This length was defined as the average
edge length for standard MPM and the average sub-triangle

edge length for PS-MPM. It has been observed that the time-
integration error is indeed sufficiently small, but the number
of particles required for an adequately accurate integration
increases rapidly as h decreases.

Figure 15 shows the spatial convergence of both standard
MPM and PS-MPM for different numbers of particles per
element on an unstructured grid. Provided that a sufficient
number of particles is adopted, standard MPM shows second-
order spatial convergence, and PS-MPM converges with third
order. Both orders of convergence correspond to the order of
the projection-error, as shown in Sect. 3.5. Besides higher-
order spatial convergence, PS-MPM also results in a smaller
RMS-error compared to standard MPM, even for the coarsest
grid.

To achieve the optimal convergence order for both stan-
dard MPM and PS-MPM, the number of integration particles
required increases rapidly, as the integration error otherwise
dominates the total error, as shown in Fig. 15. Note that the
convergence rate in the number of particles for both standard
MPM and PS-MPM is measured to be of first order. However,
for a fixed typical element length h and number of particles
per element, the use of PS-MPM leads to a lower RMS-error,
illustrating the higher accuracy per degree of freedom. The
inaccurate integration in MPM due to the use of particles
as integration points is known to limit the spatial conver-
gence. Different measures have been proposed to decrease
the quadrature error in MPM based on function reconstruc-
tion techniques like MLS [13], cubic splines [37] and Taylor
least squares [39]. The combination of PS-MPM with func-
tion reconstruction techniques to obtain optimal convergence
rates with a moderate number of particles is subject to future
research to further improve PS-MPM for practical applica-
tions.

4.3 Column under self-weight

In the previous examples, we considered PS-MPM with a
consistent mass matrix. However, lumping of the mass matrix
is common practice in many applications of MPM, as it
speeds up the simulation and increases the numerical stabil-
ity. In case elements become (almost) empty, the consistent
mass matrix in Eq. 13 has very small entries and becomes
ill-conditioned, leading to stability issues, which is a well-
known phenomena in MPM [32]. Using a lumped version
of the mass matrix to solve for the acceleration and velocity
fields is known to overcome the ill-conditioning [32]. How-
ever, as explained in Sect. 3.5, lumping within PS-splines can
cause spatial oscillations. We show that this is indeed the case
and propose an alternative based to lumping to overcome the
ill-conditioning of the mass matrix while mitigating spatial
oscillations as much as possible.

First, we demonstrate that the standard lumping technique
is poorly suited for PS-MPM, by considering a solid col-
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Fig. 12 The exact solution in
which particles (marked with
dots) move back and forth along
the marked vectors (left) and the
unstructured grid with the initial
particle configuration (right)

Fig. 13 The interpolated
particle stress in the x-direction
at t = 0.016s

Fig. 14 The stress (left) and
movement (right) of a single
particle over time (in seconds)
for both standard MPM and
PS-MPM compared to the exact
solution
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Fig. 15 Spatial convergence
(top) and convergence in the
number of particles per element
(ppe) (bottom) for both standard
MPM (left) and PS-MPM (right)

umn under self-weight, as shown in Fig. 16. The column
in this exemplary benchmark is modelled as a linear-elastic
material. It is fixed in all directions at the bottom, and com-
pletely free at the top. At the left and right boundary, we
impose a free-slip boundary condition for movement in the
y-direction, but the displacement in the x-direction is fixed
to be zero. The column is compressed by gravity due to its
self-weight.

The solid column is modelled with density ρ = 1 ·
103 kg/m3, Young’s modulus E = 1 · 105 Pa, Poisson ratio
ν = 0, gravitational acceleration g = −9.81 m/s2, height
H = 1 m and width W = 0.1 m. The maximum strain when
adopting these parameters is approximately 18%. Figure 16
illustrates the grid considered for this benchmark as well as
the particle positions at maximal deformation.

Due to the fact that part of the grid becomes empty, the
use of a consistent mass matrix leads to stability issues with
unlumped PS-MPM. The use of a lumped mass matrix within
PS-MPM restores the stability, but causes spatial oscillations
in the stress profile, as was also discussed in Sect. 3.5. The
oscillations degrade the solution of the displacement and
velocity as well, as shown in Fig. 17 (left column). Since
these spatial oscillations are typical for lumped PS-MPM,
common remedies to solve problems due to lumping the mass
matrix, like the momentum formulation method [33] or dis-
tribution coefficient method [17], do not reduce the spatial
oscillations in lumped PS-MPM. Instead, we propose the use
of partial lumping.

g

0 W

H

x

y

0 0.05 0.1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

0 0.05 0.1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

Fig. 16 The column and a discretisation with the expected material
point positions at t = 0 and t = 0.186

4.3.1 Partial lumping to mitigate spatial oscillations

As full lumping within PS-MPM causes spatial oscillations,
we will instead consider a partial-lumping approach to over-
come the stability issues due to almost empty elements, while
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Fig. 17 A comparison of fully
lumped PS-MPM (left) and
partially lumped PS-MPM
(right) for simulation of a solid
column up to t = 2.5 s. For the
energy graphs, Ekin denotes
kinetic energy, E pot the
potential energy due to strain,
Egrav the gravitational energy
and Etot the total energy

PS-MPM, fully lumped PS-MPM, partially lumped
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at the same time minimising spatial oscillations due to lump-
ing. Partial lumping only lumps those rows responsible for
the ill-conditioning. These rows typically correspond to the
basis functions in the part of the grid where very few particles
are left. By only lumping these few rows, the simulation is
stabilised, while introducing a much smaller lumping error
compared to full lumping. Note that the choice of rows
to lump is crucial to ensure stability. Lumping more rows
increases the robustness of the simulation, but decreases the

accuracy. The trade-off between stability and accuracy within
partially lumped PS-MPM should be reconsidered for each
benchmark.

For the column under self-weight, we implemented partial
lumping by lumping all rows corresponding to a basis func-
tion with at least one empty main-triangle in its molecule.
Additional empty elements are added at the top of the col-
umn, to ensure that the top-most basis functions are always
lumped. Figure 17 (right column) shows the displacement
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Fig. 18 The equilibrium stress
at individual particles in a
damped solid column. The
numerical solutions were
determined with fully lumped
and partially lumped PS-MPM
at t = 10 s, at which the
solution was in equilibrium

and velocity of a particle over time, as well as the stress pro-
file at t = 2.5 s obtained with partially lumped PS-MPM.
Compared to the results obtained with fully lumped PS-
MPM, shown in Fig. 17 (left), the stress profile, the velocity
and displacement over time significantly improve. Further-
more, the total energy fluctuates less for partially lumped
PS-MPM than for fully lumped PS-MPM and also shows
less numerical dissipation. However, for very long simula-
tions, partially lumped PS-MPM requires smaller time steps
than fully lumped PS-MPM in order to remain stable.

Finally, we compared the equilibrium solution for the
stress profile in the solid column with partial and full lump-
ing. The analytical equilibrium solution is given by [41]:

σyy(yeq) = σyy(0)
(1 − yeq/H) + κ(yeq/H)

1 − κ(1 − κ)(yeq/H)
, (48)

where yeq refers to the equilibrium position of the particles.

Furthermore, σyy(0) = Hρg and κ = σyy(0)

2E
. To obtain the

static solution based on the dynamic calculations, a damping
term has been added:

F
damp
k = −α sign(v̂k)

(

F
trac
k − F

int
k + F

body
k

)

(49)

where, α = 0.6. The damping force damps the PS-MPM
solution at each time step in the opposite direction of the
velocity field. The equilibrium solution has then been deter-
mined by simulating the system with both fully lumped
and partially lumped PS-MPM until a stable solution was
reached. Both the analytical and numerical static solutions
are shown in Fig. 18. For fully lumped PS-MPM, the spatial
oscillations in the stress profile remain visible in the equilib-
rium solution. However, the stress profile of partially lumped
PS-MPM is in close agreement with the exact solution.

Hence, the use of partial lumping within PS-MPM com-
bines the advantages of adopting a consistent and lumped
mass matrix, while minimising their drawbacks, and thereby
improves the overall performance of the method. Future
research will focus on techniques to further mitigate or fully

overcome the oscillations caused by lumping, in particular
when PS-MPM is applied for practical problems.

5 Conclusion

In this paper, we presented an alternative for B-spline
MPM suited for unstructured triangulations using piece-
wise quadratic C1-continuous Powell–Sabin spline basis
functions. The method combines the benefits of smooth,
higher-order basis functions with the geometric flexibility
of an unstructured triangular grid. PS-MPM yields a mathe-
matically sound approach to eliminate grid-crossing errors,
due to the smooth gradients of the basis functions. As a first
validation, a vibrating bar was considered, for which the PS-
MPM solution yields accurate results on a relatively coarse
grid. Numerical simulations obtained for a unit square under-
going axis-aligned displacement have shown higher-order
convergence for the particle stresses and displacements.

The use of a lumped mass matrix to increase stability
within PS-MPM leads to spatial oscillations in the stress
profile. A partial lumping strategy was proposed to combine
the advantages of adopting a consistent and lumped mass
matrix, which successfully mitigates this issue. Investigation
of alternative unstructured spline technologies, in particular,
refinable C1 splines on irregular quadrilateral grids [21] is
underway.
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