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EXTENSION OF COMPLEXES OF GROUPS

by Andre HAEFLIGER

En hommage a Claude Godbillon et Jean Martinet,

mes compagnons de route.

The main concern of this paper is to develop homological algebra
aspects of complexes of groups. To illustrate the basic notions introduced
here, we show how the classical theory of extensions of groups can be
generalized to the case of complexes of groups.

This paper can be read independently of our preceding one on
complexes of groups (cf. [5]). Here we systematically work with complexes
of groups G(X) over ordered simplicial cell complexes X (see section 1 for
a definition; they are the geometric realization of the nerve of categories
without loop (see section 1 and [5]). We recall in sections 1 and 2 the basic
definitions in this slightly more general setting. A complex of groups can
be seen as a category verifying some conditions, and we can apply to it
the general notions of fundamental group, covering, cohomology, etc. , as
explained for instance in the first few pages of Quillen [6] (this replaces
the corresponding notions for topological groupoids which were in the
background of [5]).

In section 3, we study the classifying space BG(X) of G(X) and
show its connection with complex of spaces in the sense of Scott-Wall [9],
Gersten-Stallings [12] and more generally Corson [4]. A typical example

of a complex of spaces is a generalized Seifert fibration TT : Y —> X

(cf. for instance [2], p. 219) where the base space is an ordered simplicial

Key-words : Graph of groups - Complexes of groups - Homological algebra.
A.M.S. Classification : 20F32 - 20J05.
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cell complex well adapted to the fibration. The corresponding complex of
groups G(X) is a coding of the fundamental groupoid of the foliation on Y

as defined in Bonatti-Haefliger [2]. When the generic fibers are aspherical,
then BG{X) will have the same homotopy type as Y; this will give a typical
example of a Poincare duality complex of groups; we plan to develop this
notion in another paper.

In section 4, we define the notions of G'(X)-modules and cohomology
as in Quillen [6], and we prove the existence of finite free resolutions
when the complex X is finite and all the vertex groups admit finite free
resolutions.

In sections 5 and 6 we apply the general theory to the problem of
classifying the extensions of complex of groups by abelian kernel or by
locally constant kernel.

In fact, most of the homological algebra notions developed for groups
(cf. for instance the book of Brown [3]), have their natural generalization
to complexes of groups.

1. Ordered simplicial cell complexes.

Following [5], we shall work with the class of ordered simplicial cell
complexes X, namely those which are geometric realizations of the nerve
of a small category C(X) without loops. They generalize the simplicial
complexes associated to partially ordered sets, for instance the barycentric
subdivision of a simplicial complex (or more generally the barycentric

subdivision of a polyhedral cell complex).

1.1. Small categories. — Let us recall that a small category C is a
category whose morphisms form a set; if a and r are objects of C and if a
is a morphism of a in r, namely belongs to Hom(a, r), then r is denoted by
i(a) and a by t(a). Two morphisms a and /? are composable ifft(/?) = i(a).

We shall often identify an object a of C with the identity morphism la of
this object.

The nerve of C (cf. Segal [10]) is the simplicial set N{C) whose set

of fc-simplices are the sequences ai,..., a.k of k composable morphisms of

G. Its geometric realization (cf. Milnor [8]) will be denoted by BC\ it is a

GW-complex whose set of vertices corresponds to the set of objects of C

and the fc-cells, k > 0, to the sequences of k composable elements 71,..., 7fe
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of C none of them being identities; the corresponding fc-cell in BC will be
denoted by (71,..., 7jk).

A category C is equivalent to a category C" if there exist functors
(p : C —> C' and ^ : C' —> C such that there are (natural) isomorphisms of
the functors ̂  and <^ with the identity of C and C' respectively. Recall
that if (p and <^' are functors from C to C", a natural transformation of (p

to ( p ' is a map ^ associating to each object a of C a morphism ^(a) of C'
such that for every morphism a € C, we have <^'(a)$(t(a)) = <^(t(a))y?(a).
If each ^(a) is invertible, then $ is called a natural isomorphism.

1.2. Category without loop and ordered simplicial cell complexes.

A category C is without loop if, whenever a and f3 are composable
morphisms such that i(f3) = t(a), then a and /3 are the identity morphism of
the object i((3). In particular for every object a, the set Hom(<r, a) contains
only one element (still denoted by o-). Note that a category C' in which
each morphism a with i(a) = t(a) = a is the identity morphism of a is
equivalent to a category without loop unique up to isomorphism.

An ordered simplicial cell complex is the geometric realization of the
nerve of a category without loop (7. It is a cell complex X = BC whose
set of vertices V(X) is identified to the set of objects of C and the set
E(X) of 1-cells to the set of morphisms of C which are not identities of
objects. Each 1-cell a € E(X) has a given orientation : its initial point is
the vertex i(a) and its terminal point is the vertex t(a). The fc-cells, noted
(ai , . . . ,a jk) , k > 0, correspond to sequences of k composable elements
ai, . . . , a,k of E(X). Each fc-cell is naturally isomorphic to the standard k-

simplex, because its vertices are naturally ordered. Note however that many
oriented edges may have the same initial vertex and the same terminal
vertex. The category such that X is the geometric realization of its nerve
will be denoted by C(X). As a set it is the disjoint union of E(X) and
the set V(X) of its objects identified to the set of morphisms which are
identities.

A subcomplex XQ of X is the geometrical realization of a subcategory
of <7(X). It is again an ordered simplicial cell complex. Note that for
instance the 1-skeleton of X, considered as a cell complex, is not a
subcomplex if dimX > 1.

The dual X019 of an ordered simplicial cell complex X is the geometric
realization of the opposite of the category C(X) (obtained by reversing the
arrows). As a cell complex, X0

^ is canonically isomorphic to X.
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For examples, see fig. 1, I5 and fig. 2, V.

If we start from a usual simplicial complex X, then its barycentric
subdivision X' is naturally an ordered simplicial cell complex : V{X') is
the set of barycenters and E(X

f
) is the set of edges a of the barycentric

subdivision oriented so that the initial point i(a) is the barycenter of a
simplex of X whose dimension is higher than the dimension of the simplex
whose t(a) is the barycenter.

A simplicial map / : X —»• Y of ordered simplicial cells complexes
X and Y associated to the categories C(X) and C(Y) is by definition the
geometric realization of a functor from C(X) to C(Y) corresponding to /
(still denoted by /).

Note that the direct product of two categories without loop is again
a category without loop, so that the product of two ordered simplicial cell
complexes is again an ordered simplicial cell complex.

1.3. Dual complexes Dy. — For a vertex a of X, we denote by Da

the ordered simplicial cell complex associated to the following category
C(Da) without loops : the objects are the morphisms a of C(X) with
t(a) = a and the morphisms are the 2-uples of composable elements (a, (3)

of C(X) with t(a) = cr; we define z(a,/?) = a/3 and t(a,f3) = a. The
composition of two composable morphisms (a,/?)(a',/3') is (a,/?/?'). There
is an obvious deformation retracting linearly Dy on a. There is a natural
projection ja of Dy in X induced by the functor mapping (a, f3) on /?; it is
injective on the union of the open simplices whose closure contains a (see
fig. 2 and 2'). For a € C(X) with i(a) = a and t(a) = r, there is a natural
simplicial map ja : Da —> Dr mapping (a',/?7) € Dy on (aa',/37) € Dr.

By definition, Lka is the full subcomplex of Dy containing all vertices
of Dy except a; therefore Da is the cone a * Lky with vertex a and basis
Lk^

In fig. F, Lkff consists of three points and in fig. 1, Lky is empty.
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a! ai

A category C without loop

Da =a

Figure 1

Its opposite C^

^

D.=

Figure 1'

Ordered simplicial cell complex X

homeomorphic to S
2

(elements with the same label
should be identified)

Figure 2

Its opposite

Figure 27
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Dually, we define D^ and Lk° by replacing in the preceding definitions
the category C(X) by its opposite (reverse the arrows). For instance, if X
is the barycentric subdivision of a combinatorial cell complex and if a is the
barycenter ofan-cell e, then Lk^ is homeomorphic to a sphere of dimension
n-1.

2. Complexes of groups on X.

2.1. Action without inversion of a group on an ordered simplicial cell

complex. — The general definition of a complex of group will be better
justified by the particular case of complexes of groups associated to an
action (called developable complexes of groups).

Let X be an ordered simplicial cell complex which is the geometric
realization of a small category without loop C(X). An action without
inversion of a group G on X is an action of G on X through simplicial
homeomorphisms of X such that, if an element of g fixes a vertex o", then
it also fixes every edge a of X with t(a) = a. The quotient X of X by
the action of G is again an ordered simplicial cell complex and the natural
projection p of X on X is simplicial; moreover p is injective on the union
of open cells of X whose closure meets a vertex a.

We want to give some data on the quotient X which are sufficient,
when X is simply connected, to reconstruct the group G and its action
onX.

Choose for each vertex a of X a vertex a of X projecting by p on a.

As the action is without inversion, this determines, for each edge a € -E'(X),
an edge a € E(X) projecting by p on a and such that i(a) = i(a) ".

Choose for each a € E(X) an element ha of G such that t(h(a)) =
t(a) ". For each a € V(X), let Gy be the subgroup of stability of a and, for

each a € £'(X), let ^a
 :

 G^a) ~~^ ^(a) be the homomorphism mapping g

to ha.gh^
1
. For two composable elements a, b of £'(X), let ga,b = hah^h^.

The complex of groups associated to the action of G on X (and the choices

above) is determined by the groups G^, the homomorphisms ^a.
 8Ln(

^ ^ne

elements ga,h ^ G^a)' We can check that the two conditions 2.2,i) and ii)
below are satisfied. This justifies the following general definition.
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2.2. DEFINITION. — A complex of groups G(X) on an ordered

simplicial cell complex X is given by the following data :

1) for each a € V(X), a group Ga

2) for each a € E(X), an injective homomorphism ̂ a '- G^a) —^ ^(a)

3) for each pair a,& € E(X) of composable edges, an element

9a,b € Gt(a) such that

i) M(ga,b)^ab = ^a^b (Ad(^a,&) is the conjugation by ga,b)

ii) ^a(9b,c)9a,bc = 9a,b9ab,c for each triple a, &, c € E(X) of composa-

ble edges (cocycle condition).

Graphs of groups over a graph X correspond to complexes of groups
on the barycentric subdivision of this graph (cf. Serre [11]).

A complex of groups G(X) associated to an action without inversion
as in 2.1 is called developable. If dimX = 1, then any complex of groups
over X is developable (cf. Serre [11]). Sufficient conditions for developability
in terms of non positive curvature are given in Stallings [12] and Haefliger
[5]. A much better condition than in [5] is given by J. Corson [4] when
dimX=2.

Consider a map associating to each edge a € E(X) an element
9a € G^a). The complex of groups G'(X) on X given by G'y = Ga,

V^ = Ad{ga)^a and g^ = 9a^a(9b)9a,b9a^
 is said to be deduced from

G(X) by the coboundary of {9a}*

2.2.1. PROPOSITION. — Assume that the category C(X) has an

initial object ( T ; this means that for each object r there is a unique

a(r) € C(X) such that i{a(r))) = a and t(a(r)) = r. Then any complex

of groups on X can be modified by a suitable coboundary so that pa,6 = 1-

Indeed, modify the given complex of groups G(X) on X by the

coboundary of go = 9a
l
a(i(a)y

2.3. Examples.

a) Let G(X) be a complex of groups on X. Assume that r is a sink

if the group Gr is not trivial (this means that there are no a € E(X) such
that i(o) = r).

Then the map associating to (a,&) e E(Lkr) the element pa,6 of Gr

defines a functor of C(Lkr) in Gr, thanks to the cocycle condition. On
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each connected component L of Lkr, this defines a homomorphism of the
fundamental group of L in Gr well defined up to conjugation. Conversely,
the collection of those homomorphisms completely determines G(X) up to
a coboundary. In particular, if each component of Lkr is simply connected
for every sink r, then G(X) is completely characterized up to a coboundary
by the collection of the groups Gr.

b) On the ordered simplicial cell complex X described in fig. 2,
consider a complex of groups G(X) such that Gr and Gr

1 are finite abelian
groups and the other vertex groups are trivial. We can assume up to

coboundary that only ga,b and pa',&' are possibly non trivial. This describes
an orbifold structure on the 2-sphere X with two conical points at r and

r ' if and only if pa,6 and ga
f
,b

f are generators of Gr and Gr
1 respectively.

The complex of groups G{X) is developable if and only if ga,b and pa',6'
have the same order.

2.4. The category CG(X) associated to G(X). — For a € C(X),

define ̂  as before if a € E(X) and as the identity of Go otherwise. For
a,/? composable elements of C'(X), define pa,/? as before if a, f3 € E(X)

and the identity element of G^\ otherwise.

We define a small category CG(X) with V(X) as set of objects; the
set ofmorphisms is the set of pairs (p, a), with a € C(X) and g € G((a), and
i(g, a) = i(a), t(g, a) = t(a) (the pair {g, a) will be denoted by (1, a) ifg is
the identity of the group G((a)? and by g if i(a) = t(a)). The composition
of two composable elements (g, a) and (h, f3) is defined by :

(g,a)(h,f3) = (g^a(h)ga^at3) .

The map (g, a) —> a is a functor p of CG(X) on C(X). The map
associating to a € C(X) the element (l,a) e CG(X) is a lifting ofp; it is
a functor if and only if all the elements pa,6 are trivial. More generally, we
can define a functor s from C(X) in CG(X) such that ps is the identity of
C(X) if and only if one can modify G(X) by a coboundary so that all the
elements ga,b become trivial. In that case one could say that CG(X) is a
semi-direct extension of C(X).

Note that if the complex of groups G'(X) is deduced from G(X) by the
coboundary of {pa}, then the 1-cochain {ga} determines an isomorphism
ofCG(X) on CG"(X) mapping (p,a) on (gga\a).

From the category CG(X), we can reconstruct the category C(X)

as well as the complex of groups G(X) up to a coboundary. The category
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C(X) is the quotient of CG(X) by the equivalence relation which identifies

7 to 7' if there is an element h € G((^) such that 7' = /ry. This gives the

functor p of CG(X) on G(-X'). The groups Ga are the groups of elements 7
with ^(7) = ^(7) = a. For each element a of £'(X) choose an element a of

CG(X) such that p(a) = a; then ^a is defined by the relation ^a(h)a = a/i
for A e Gi(a). If a,& are composable elements of E(X) with ab = c, then
ga,b is defined by pa^c = afr.

The categories G = CG(X) associated to complexes of groups G(X)

can be characterized as follows :

i) for each object a of (7, Hom(<r, a) is a group G<y,

ii) if a is a morphism with i(a) = a and t(a) = r, if p,p' e Gr, and
fa,/i' € G<r, then the equality pa = p'a implies g = g ' and the equality
a/i = aft' implies h = A',

iii) for each a € Hom((7,r) and h € G^, there is an element ^a(/0 e
Or such that ^a(/i)a = a/i (^a(h) is unique by ii) and ^a'- Go —> Gr is
an injective homomorphism of groups),

iv) if a € (7 is invertible, then a € G^a).

Such a category has a canonical quotient Go which is a category

without loop. Namely it has the same set of objects and two elements

a, a' € G are identified if i(a) = z(a'), ^(a) = t(a') and a' = pa for some g

in G((a).

A category satisfying i), ii) and iii) is called a precomplex of groups.
It is always equivalent to a category satisfying i) - iv), well defined up to
isomorphism.

2.5. Homomorphism of complexes of groups. — Let / be a simplicial
map o f X i n V (i.e. a functor from C(X) in G(V)). A homomorphism (p of
a complex of groups G(X) on X in a complex of groups G(Y) on Y over /
is a functor y from CG(X) in GG(V) projecting on /.

Explicitely y? is given by the following data : for each a e V(X), one

gives a homomorphism (py : Ga —^ Gf^ and for each a e E(X) an element

9a € Gf(f(a)) such that

i) Ad(^a)^/(a)^t(a) =^(a)^a;

and for each couple a, b of composable elements of E(X)

ii) ^t(a)(ga,b)gab=ga^f(a)(9b)9f(a),f(b) .
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The corresponding functor ip of CG(X) in CG(Y) maps (p, a) on

(^t(a)(^)pa,/(a)).

Let [0,1] be the simplicial cell complex with two vertices 0 and 1
and one edge a with i(a) = 0 and t(a) = 1. An homotopy connecting two
homomorphisms y?o and <^i of G(X) in G(Y) projecting on an homotopy
F : X x [0,1] —> Y connecting /o to /i is a homomorphism G(X) x [0,1] —^
G(Y) over F and whose restriction to X identified to X x {i} is <^, i = 0,1.
This amounts to give a natural transformation of the functor y?o to the
functor y?i.

2.6. Pull back, fiber product and glueing. — If / is a simplicial map
of X in V, and if G(Y) is a complex of groups on V, then the pull pack

f*G(Y) of G(Y) by / is the complex of groups on X such Ga = G/(<r)»

^a = ^/(a) ̂ d ^a,6 = 9f(a),f(b)' There is a canonical homomorphism over /
of f*G(Y) in G(Y). If G(X) is a complex of groups on X, a homomorphism
</? of G(X) in G'(y) above / corresponds to a homomorphism of G(X) in
f*G(Y) above the identity of X.

A particular case is when / is the inclusion of a subcomplex XQ in
X; then f*G(X) is the restriction of G(X) to XQ and will be denoted by

G(X)\Xo.

The fiber product is a generalization of those constructions. Let
^ : G(X) -> G(Y) and ^ : G(X

/
) -> G(Y) be two homomorphisms of

complexes of groups over / : X —> Y and /' : X' —> Y. The fiber product

G(X) XQ(Y) G(X') is the complex of groups over X Xy X
/ (defined up to a

coboundary) associated to the subcategory of CG(X) x CG(X
/
) consisting

of pairs (7,7') such that ^(7) = y?^'). There are natural homomorphisms
of G(X) XG(Y) G(X

f
) in G(V), G(X) and G(X

f
).

Let X be a simplicial cell complex which is the union of two simplicial
cell complexes Xi and X2. Let Xi2 be the intersection of Xi and Xs. Let
G(Xi) and G(X2) be complexes of groups over Xi and Xa and let y?2i
be an isomorphism of G^Xi^X^ on <3(X2)|Xi2 over the identity of Xi2.
There is a complex of groups G(X) over X, characterized uniquely up to
isomorphism by the existence of isomorphism <^ : G(Xi) —^ G(X)|X» over

the inclusions o f X i i n X , z = = l , 2, such that y?2i Is equal to (^^F1 restricted
above Xi2. The complex of groups G?(X) is called a glueing of G'(Xi) and
G(X2) over Xi2.
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2.7. Fundamental group and covering theory.

2.7.1. DEFINITION. — The fundamental group 71-1 (G(X), a) of a

complex of groups G(X} on a ordered simplicial cell complex X based

at a vertex a of X is the fundamental group of the geometric realization

BG(X) of the nerve of CG(X) based at a. Hence it behaves functorially

with respect to homomorphisms of complexes of groups.

2.7.2. Presentation. — The usual presentation of the fundamental
group of a cell complex gives in this particular case the following presenta-
tion.

Let T be a maximal tree in the 1-skeleton of X. This gives a corres-

ponding maximal tree in the 1-skeleton of BG(X}. Then the fundamental

group 7Ti(G(X),r) has the following presentation, cf. Haefliger [5] (the

change of signs and orders follows from the convention on the composition
of paths).

The generators are all the elements of Go for each a € V(X) and all
edges a € E(X).

The relations are :

1) the relations in the G^s

2) for a € E(X), h e G^), then ^a(h) = a-^ha

3) for a pair (a, b) of composable edges with ab = c, then c = baga.b

4) a == 1 for a € T.

Recall from [5] that G(X) is developable if and only if, for each vertex

a, the natural homomorphism of Ga in 7Ti(G(X),r) is injective.

When X is the geometric realization of the barycentric subdivision
of a combinatorial cell complex X, one can give a more economical

presentation of the fundamental group of G(X) as follows.

Let T be a maximal tree in the 1-skeleton of X. Each oriented edge

e of X is the union of two edges a and a' of X with i(a) = z(a'), the

barycenter of e. The edge e with the reversed orientation will be noted e.

The generators are the elements of the groups Gr, where T runs over
the set of vertices of X, and the oriented edges e of X.
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There a four types of relations :

1)' the relations in each Gri

2)7 for each edge e of the 1-skeleton of X, union of a and a' with

i(a) = t(a') = cr, with the orientation given by a, one has

e^o(/i)e = ̂ a'W for each h e G^ ,

3)' for each 2-cell of X which is a polygon with k sides whose
barycentric subdivision is as in fig. 3 (some sides might be identified), one

has

^ai^o^ • • • ̂ a^b^bz = 1

4') e= 1 for e € T.

Figure 3

2.7.3. Covering theory. — The isomorphisms classes of coverings of

a complex of groups G(X) are in bijection with the isomorphism classes

of the coverings of BG'(X), or with the equivalence classes of morphism-
inverting functors of the category CG(X) in the category of sets (cf. Quillen

[6], p. 82) (or with the equivalence classes of functors of 7ri(G'(X), a) in the

category of sets when X is connected).

Let us briefly indicate how one can associate a complex of groups to
a morphism-inverting functor ip of CG{X) in the category of sets (i.e. a
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functor </? such that each (^(7) is invertible). Let C be the category whose
set of objects is the set of couples (cr,^/), where a € V(X) and ^/ belongs
to the set y(cr). The set of morphisms is the set of pairs (7,t/), where

7 € GG(X) and i/ € ^(7)), and i^,y) = (i^),y), t(^,y) = (<(7)^(7h/).
The composition of (7,z/) with (7',z/), whenever it is defined, is equal to
(77', y). This defines a precomplex of groups C (cf. 2.4); the corresponding
covering will be a complex of groups G(X) such that CG(X) is equivalent to
this precomplex of groups, and the natural projection ofCon CG(X) gives
a surjective homomorphism of G(X) on G(X). One could also characterize
directly the homomorphisms G(X) —^ G(X) which are covering maps like
in Bass [1].

An explicit description of the universal covering is given in [5] (we
take this opportunity to correct a misprint in [5], p. 525 : the end of line
14 should be Wa6c(G,(e)), a, be)").

3. The classifying space BG(X) of a complex of groups.

Complexes of spaces.

3.1. The local retractions. — Let G(X) be a complex of groups on
X. For each a € V(X), let G(Da) be the complex of groups on Da induced
by the projection ja of Da in X. The elements of CG(Da) are the triple
(o;,^,/3) with (a,/3) € C(Da) and g € G^). We can identify Ga with
the subcomplex of groups of G(Da) restricted to the vertex a = (a, a) of
Da. We have a deformation Ra : G(Da) x [0,1] —» G(Da) connecting the
identity to a retraction Ta on Ga and projecting on the natural deformation
of Da on a. Namely

J^(a,p,/3,0)=(a,^,/3),

Ra(a,g,f3,l) = (a, ̂ a(g)9a^^) and

-R<y(a, ̂ , /3,5) = (a, ̂ a(^)pa,/3, <^/?)? where 5 is the unique edge of [0,1],

ra(a,g,/3) =^a(g)9a,f3'

Note that if a € E(X), we have a natural homomorphism of G(D^a))

in G(-D((a)) over the natural map ja of -Di(a) m -^t(a) (c^- 1-3)-

3.2. The classifying space BG(X).

3.2.1. — Consider the geometric realization BG(X) of the nerve of
the category CG(X). The functor CG(X) —^ G(X) gives a projection



288 ANDRE HAEFLIGER

p : BG(X) —> X = BC{X). One has a canonical lifting s of the 1-skeleton
X^ in the 1-skeleton of BG(X) mapping an edge a on the 1-cell ((l,a)}
ofBG(X).

For each vertex a of X, the fiber of p over a is the Eilenberg-Mac
Lane complex BGa and BG(D^) is canonically the pull back of BG(X) by
the projection ja of Da in X. The homotopy J?^ gives a deformation of the
identity map of BG(Da) to a retraction still denoted by Ta on the central
fiber BGa' Each edge a with t(a) = a gives a well defined isomorphism
of the fiber BG^a)

 on the fiber of BG(Da) above the vertex labelled a in
Da; this isomorphism composed with Ta gives the map of BG^a) m BGt(a)

induced by the homomorphism ^a of G^a)
 m ^((a)' Moreover an edge b of

X with t(b) = i(a) gives an edge (a,fr) of BG(Da) corresponding to the
lifting s(b). Its image by the retraction Ta is the loop in BGa representing
the element g~^\ 6 7T^(BGa,s(a)). This shows that one can reconstruct
G(X) from the projection p of BG(X), the partial section s and the base

point preserving retractions Ta.

Note that the modification of G(X) by a coboundary amounts exactly
to choose another section 5.

3.2.2. Remark. — If G(X) is locally constant, i.e. the groups Go

are all isomorphic to a group G and all the homomorphisms ^a
 are

isomorphisms, then p : BG(X) -^ X is a locally trivial bundle with

fiber BG.

3.2.3. PROPOSITION. — Assume that the complex of groups G(X)

is associated to an action without inversion of a group G on a ordered

simplicial cell complex X. Then BG(X) as the same homotopy type as the

Borel homotopy quotient BG XG X, where BG is the universal covering

ofBG.

3.2.4. COROLLARY. — If X is contractible, then BG(X) is an

Eilenberg-Mac Lane complex K(G, 1), where G is the fundamental group

ofG(X).

Proof. — Let C(X) be the category whose classifying space is the

ordered simplicial cell complex X. We consider the small category GKC(X)

whose set of objects is the set of objects V(X) of C(X) and the set of
morphisms the set of pairs (g, a) € G x C(X) with projections i and t on
V(X) defined by i(g,a) = i(a} and t(g, a) = gt(a).
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If i(g,a) = t(g',oi
1
), then the composition (g.a)^,^) is defined by

(99
f
.9

f
~

l
Wa

f
).

Let G(X) be the complex of groups on X = G\X associated to the
action of G on X as in 2.1 (we keep the same notations). We have chosen for
each vertex a e V(X) a representative a e V(X). Then CG(X) is in fact
the full subcategory of G x C(X) with set of objects the union of the a's

and the inclusion of CG(X) in G x C(X) is clearly an equivalence, hence
induces an homotopy equivalence on the classifying spaces. Therefore the
proposition with follow from the following lemma.

We first introduce some notations. Given a group G, we denote by G

the category whose set of objects is G and the set of morphisms the set
G x G, the maps i and t of G x G on G being defined by i(g, g ' ) = g

1 and

^fiQ = 99'• The composition of two composable morphisms (gi,g[) and
(92,92)

 is
 (9192,92)' The classifying space BG is contractible, G acts freely

on it, and BG is the quotient of BG by this action (cf. Segal [10]).

LEMMA. — The classifying space B(G x C(X)) is naturally homeo-

morphic to the quotient ofBG x X by the diagonal action ofG.

Proof. — Consider the bisimplicial set whose set of simplices of type
(p, q) is the set of commutative diagrams

pi 92 9p
00,<? ^—— 0-1,9 <—— • • • ^—— OTp.g

^.gj, J, J^p.g
Pi 92 9p

^0,9-1 ^—— ^l^-l
 <(—— * * * <<—— ^,9-1

^o.q-lj, [ i^p^-l

îj, J, J,ap,l

Pi P2 Pp
00,0 ^—— ^1,0 ^—— • • • •(—— O'p,0

where ov,a € l^(X), o;y.,a € C'(X) with <(ar,a) = ̂ -i; 1(0^5) = ^r,a,
^ € (? and ^r(<^r,a) = Q'r-i,a.

The i-th face operator in the p-(resp. g-)direction deletes the i-th

column (resp. line) and compose the morphisms if necessary.

The diagonal simplicial set is the nerve of the category G x C(X). To
construct its geometric realization (cf. Quillen [6]), one can first construct
the geometric realization of the bisimplicial set in the ^-direction, which
is the nerve of the simplicial topological category G K X, and take the
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geometric realization of the nerve of this category, which is precisely
BGxcX,

3.3. Complex of spaces.

3.3.1. — Before giving the general definition, inspired by Scott-Wall
[9], Stallings [12] and more generally J. Corson [4], we introduce some
notations. Let V be a topological space with a continuous projection TT
on the ordered simplicial cell complex X. For each vertex a of X, let
Y(a) be ̂ (a); denote by Y(Da) the subspace of Da x Y of pairs (x, y)

with j^x) = 7r(?/), by ̂  : Y{Da) —^ Da the projection (x,y) -^ x and
Y(ja) : Y(D^) -^ Y the projection (x,y} -^ y. We identify the fiber
Y(a) = Tr'1^) with the fiber of TT^ above the vertex of Da mapped by
ja on a. If a e 2?(X) is an edge with i(a) = a and t(a) = r, then the
natural map ja : Da -^ Dr (cf. 1.3) Ufts to a map Y(ja) : Y(Da) -^ Y(Dr)

sending (.r, y) on (ja(x), y). Suppose that a section 5of7r over the 1-skeleton
X^ of X is given. In particular each fiber Y{a) has a base point s(<r). For
each a € V(X), this induces a section Sa of TT^ over the 1-skeleton of Dy.

3.3.2. DEFINITION (Compare with Corson [4]). — A complex of

space over X is a topological space Y with a continuous projection TT on X

and a section s : X^ —^YofTT over the 1-skeleton ofX such that with

the above notations :

i) for each a e V(X), the fiber Y(a) is connected and there is a

retraction Ty : Y(Dcr) —^ Y(a) C Y(Da) which is homotopic to the identity

relatively to Y(a) and which is compatible with s, namely r^s^x) = s(a)

forxeD^\

ii) ifG^ == 7ri(y(<7),s((7)) and if a e E(X) with i(a) = a, t(a) = r,
then the homomorpbism ^a '- Ga —^ Gr, induced by the base point

preserving map Y(a) —> Y(r) denned by y —^ rrY(ja)(y), is injective.

For two composable edges a, b of E(X) with t{b) = r, let g^\ be the
element of 7ri(y(r),5(r)) = Gr which is the homotopy class of the loop
image of the edge (a, b) of Dr by the map VrSr-

3.3.3. PROPOSITION. — The groups Go, the homomorphisms ^a ''

Gi(a) -^ Gt{a}
 and the elements ga,b determine a complex of groups G(X)

onX.

Proof. — Let us check the cocycle condition. Let a, &, c be a triple
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of composable edges, with t(a) = and i(a) = a = t(b). Consider in Y(D^)

the loop (, obtained by following first the path 5<y(a,6c) in the opposite

direction, then the path s^(&, c) and the path Sa(a, b). The homotopy class
of the image of t by the retraction Ta is the element g^ € Ga. As Va is
homotopic to the identify of Y(Dy\ the maps TrY(ja) and rrY(ja)ra are

homotopic. The homotopy class of (. is sent by the first map on 9a,bc9af^c9ai

and on ^a(^^) by the second one.

3.3.4. DEFINITION. — We say that the complex of groups G(X) is

associated to the complex of spaces TT : X —^ Y (together with the partial

section s : X^ —> Y), and that Y is a topological realization of G(X).

If moreover Y is a cell complex and TT a cellular map such each cell of Y

is mapped on a cell of X, then we say that Y is a cellular realization of
G(X). In case each Ya is an Eilen berg-Mac Lane complex, we say that Y

is a cellular aspherical realization of G(X).

The cell complex BG(X) is an example of a cellular aspherical

realization of G(X); it is functorial with respect to the homomorphisms
of complexes of groups.

3.3.5. Example. — Let TT : Y —^ X be an oriented Seifert fibration
with k exceptional fibers above the points r\,..., Tk of the compact oriented
surface X of genus g. We can assume that X is realized as an ordered
simplicial cell complex such that each Ti is a vertex which is a sink. We

choose a section s : X^ —^ Y above the 1-skeleton of X. The orientation
of the fibers gives a canonical isomorphism of the fundamental group of

each fiber with Z.

To each vertex a of X is associated the group Gy = 71-1 (y(o-), s(a)) =

Z. For each sink r, the complex Dr is a cone over the bary centric
subdivision of a cell subdivision of QDr = Lkr which is a circle. We can find

a retraction Tr : Y(Dr) —>
 Y(r) such that TrSr maps an edge (r, a) of-Dr on

the base point s(r). The map TrSr maps an edge of Lkr on a loop in the fiber

YT whose homotopy class will be denoted by —^a,6 € T^i{Yr', s(r)) e Z. We
get in this way a complex of groups G(X) on X with each group Gy = Z,

all the homomorphisms ^a are the identity, except if t(a) = Ti; in that
case it is the multiplication by a positive integer a». The degree of the map

rnSn restricted to Lk^ is an integer —/^, and the pair (a», f3i) is the Seifert
invariant associated to the singular fiber Y{ri) (see for instance Jankins-

Neumann, Lectures on Seifert manifolds, Brandeis Lecture Notes 2, 1983).

The integer f3i is up to sign the sum of ^ga^bj ? where (aj, bj) runs over the
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edges of Lkr^ with the sign + or — according to the concordance of the
orientation of the edge (aj.bj) with the orientation of Lkn or not. Note
that such a complex of groups comes from a Seifert fibration if and only if
the integers a,,/^ are prime to each other. The complex of groups G(X)

on X associated to the base space considered as an orbifold is defined by
Ga = 1 if a ̂  Ti and equal to Z/c^Z if a = n; if t{a) = TI, then pa,fr is the
reduction moda^ of^a,&-

For instance if g = 0, we can assume that X is the simplicial cell
complex associated to the category described in figure 4, where the vertices
or the edges with the same label have to be identified. Up to coboundary
(i.e. with a good choice of the section s), we can assume that only the
elements gcn,bi may be non trivial. Let h be the canonical generator of

Ga = Z and hi the canonical generator of Gr. = Z. Then ^a. W = h^ (we
use the multiplicative notation) and ga^bi = /^/?i. According to 2.8.2, we
get the following presentation

(^/ii,...,^;^^^1,...^^^,^1,...,^^!}

of7Ti(G(X),a)=7ri(y,5(a)).

(Elements with same label
should be identified

Figure 4

3.4. Construction of aspherical realizations. — The following is a
generalization of previous constructions of Scott-Wall [9] and J. Corson
[4]. J. Corson has informed me that he has also obtained an analogous
statement which should appear in a forthcoming paper.
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3.4.1. THEOREM. — Let G(X) be a complex of groups over X.
Choose for each a e V(X) a cell complex Y(a) with base point s(a) which

is an Eilenberg-Mac Lane complex with fundamental group Ga' Then one

can construct a cellular aspherical realization TT : Y —»• X of G(X) such

that each Y(a) is the given cell complex. Moreover, for each k-simplex e of

X with initial vertex cr, the ceils of dimension k + r of Y projecting on e

are in bijection with the r-cells ofYy.

Proof, — We begin with a few remarks. Let (X,a;o) and (Y,yo) be
two Eilenberg-Mac Lane cell complexes with base points and let G =

7Ti(X,:co) and H = 7Ti(y,?/o). For every homomorphism (p : G —> JEf, one
can construct a base point preserving cell map / : X —> Y inducing the
homomorphism </? on the fundamental groups; this map is unique up to a
base point preserving homotopy.

Let J^ be the cube [0,1]^ with base point (0,..., 0) and let 9I
k be

its boundary. Let f : X x 9^ —^ Y be a base point preserving cell map.
We discuss the possible cell maps extensions F : X x J^ —^ Y of /.

If k = 1, let fo(x) = f(x, 0) and fi(x) = f(x, 1). The homotopy class
of an extension F, relative to X x 91, is completely characterized by the
homotopy class h e H of the loop F({xo} x J), and the homomorphisms

<^o»^i '- G -^ H induced by /o and /i are conjugated by A. Conversely, if
(po and (pi are conjugated by fa, then there exists a cell map extension F

such that h is the homotopy class of the loop F({xo} x I).

If k = 2 the extension F exists if and only if the homotopy class of
the loop f({xo} x 9I

2
) is trivial. If k > 3, the extension F always exists

and for k > 2, the homotopy class of jF relative to X x 9I
k is unique.

To construct V, we first choose for each a e E(X) a base point
preserving cell map G(a) : Y(i(a)) —^ Y(t(a)) such that the induced
homomorphism on the fundamental groups is ̂ a. For two composable edges
a,6 e E(X), we choose a cell map G(a,&) : Y(i(b)) x I -^ Y(t(a)) such
that G(a,b)(y,0) = G(ab)(y), G(a,b)(y,l) = G(a)G(b)(y) and such that
the homotopy class of the loop t —> G(a, b)(s(i(a)), t) is g^\.

We shall construct successively, for k = 0,1,..., an increasing
sequence of cell complexes Y^ with a cell projection TT^ of Y^ on the
Jk-skeleton X^ of X.

Case k= 0,1.

Y^ will be the disjoint union of the Y(aYs for a e V(X) with
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the obvious projection 71-̂  on X^. Then Y^ will be the quotient of
the disjoint union of Y^ and the products Y(i(a)) x J, a e •E'(X),
by the equivalence relation which identifies (2/5 0) € y(z(a)) x I with
i/ € V(z(a)) and (y, 1) with G(a)(y) € V(<(a)). We have a natural cell map
F(a) : Y(i(a)) x I —^ Y^ for the product structure). The composition
7r^F(a) restricted to {y} x I will be the natural simplicial map on the
edge a of X^. We also have a natural section s : X^ -^ Y^.

Case k = 2.

For each pair 02,01 € E(X) of composable edges, let /(a2,ai) :
y(i(ai)) x 9I

2 —> y(1) be the cell map sending (z,t\,t^) on
jF(ai)(^i) f o r t 2 = = 0

^(^2ai)(^^2) for^i =0
F(a2)(F(ai)(^l)^2) for ti = 1

G(a2,ai)(z,^i) fort2 = 1 .

One checks easily the compatibility of those definitions.

Let Y(a^ai) = V((ai)) x J2. Then Y^ will be the quotient of the
union of Y^ with the disjoint union of the Y(a^, ai)'s (where (02? ̂ i) runs
over the sequence of composable elements of E(X)) by the equivalence
relation identifying (^1,^2) € Y(a^,.a^) with f{a^a\}{z,t^,t^) € y(l)

for (^1,^2) e 5J2. We shall denote by F(a^a\) the natural map of
^(02,01) = Y(i(a^)) x I

2 in y(2).

Case k = 3.

Let 9'J3 be the boundary of the cube I
3 minus the face ^3 = 1. For

each sequence (a^a^iO'i) of three composable elements of E{X), consider
the map ofV((ai)) x 9 ' I

3
 -^ Y^ sending (^1,^3) on

F(a2,ai)(^*i^2) f o r < 3 = 0
F(aza^a\)(z,t\,tz} for t^ = 0

F(a3, a2fli)(^, <2, ^3) for ^ i = 0
F(a^a^(F(a^)(z,ti)^t3) for ^i = 1 .

F(a3)(F(a2,ai)(^ti^2),<3) for t<i = 1 .

Again one can check the compatibility conditions on the common
faces. The restriction of this map on the boundary of the square ^3 = 1 is
the map in Y(t(a^)) given by

(5(0302, cn)(z, t^) for ^ 2 = 0
G(fl3,a2)(G(ai)(^2) for <i = 1
G(a3, a20i)(^, ̂ 2) for ti = 0

G(a3)(G(a2,ai)(^i) for <2 = 1 .
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By the cocycle condition and the remarks at the beginning of this
proof, this map can be extended to the square {^3 = 1} C 9I

3 as a
map in Y{t(as)) C Y^\ We obtain in this way a map /(as, 02,01) :
Y(i(ai)) x9I

3
 -^ y(2).

Let y(o3,02,oi) = y(z(oi)) x J3. As above we define Y^ as the
quotient of the union of Y^ and the disjoint union of the Y{a^ 02,01)
(where (03,02,01) runs over the sequence of three composable edges of

E(X}) by the equivalence relation identifying (^1,^2^3) ^ ^(03,02,01)
with its image by /(o3,02,01) for (^1,^3) € 9I

3
. We shall denote by

^(03,02,01) the natural map of y(o3,02,01) in the quotient Y^.

Case k > 3.

We argue by induction. Assume Y^ and the cell maps

F(o,,...,oi):y(o,,...,oi)=y(i(oi))xr—y^1)
already constructed for 3 < i < k — 1. For each sequence (o^,..., 01) of k

composable elements of E(X), let /(o^,..., 01) : Y(i(ai)) x 9^ -^ y^-1)
be the cell map sending (^, < i , . . . , tfe) on

F(ofc-i,..., oi)(<2;, <i , . . . , tk-i) for tk = 0
F(ofc,.... o,+io^,..., oi)(^, ̂ i , . . . . ti,.... ̂ ) for ^ = 0 and 1 < i < k

F(ofc,...,Oi+i)(F(o,,...,oi)(z,^i,...,^),^+i,...,4))

for <i = 1 and 1 :< % < k

by any cell map extension in Y(i(dk)) C y^~1) compatible with the above

maps for tk = 1.

One has to check that those formulas agree on the intersection
of two faces. Then V^ will be the quotient of the union of y^-1)
with the disjoint union of the y(ofc,... ,oi) = y(i(oi)) x J^ (where
(ojk,. . . ,oi) runs over the sequences of k composable elements of E(X)

by the equivalence relation which identifies (^,ti , . . . , tk) € Y{o,k,..., 01)

with /(ojk,...,0i)(^i,...,4) € V^-^ for (ti,...,4) € 91^ Finally
jF(ofc,... , 01) will be the natural map of Y(a,k,..., 01) = y(i(oi)) x J^ in
y^).

We still have to define by induction on k the projection TT^ :
y(fc) _, ^(fc) ^s restriction to y^-1) wiU be Tr^-1). The composition

of F(ojk,..., 01) with TT^^ will be the composition of the projection on the
second factor J^ with a simplicial map r^ of J^ on the fc-simplex (ofc,. . . , 01)
of X^ described as follows. This fc-simplex is naturally isomorphic to the
standard ordered fe-simplex A^ whose vertices will be denoted by 0,1,..., k
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(the edge between i — 1 and i corresponding to a^). We consider J^ as the
ordered simplicial set which is the fc-fold product of the complex I . Then r^
is the simplicial map sending (0,..., 0) on 0, and (^ i , . . . , ̂ _i, 1,0,..., 0)
on the vertex z, for i = 1,..., k.

To construct the retraction Tr : Y(Dr) —^ Y(r), we precede as follows.
Each fc-cell of Dr is labelled by a sequence (0,0^,... ,ai) of composable
elements of C(X), with t(a) = r and a» € £'(X). We have a natural map
Fa(ak,... ,ai) : y(i(ai)) x ^ —^ Y(Dr) whose composition with y(jr) is
F(ajfc, . . . ,ai) The retraction r^. will map Fa(ajk,... , ai)(z, < i , . . . , 4) on

F(ak,...,ai)(z, < i , . . . , 4-1) f o r a = = r

F(a, a f e , . . . , ai)(^, ̂ i , . . . , 4,1) for a = a e £'(X) .

3.5. Universal property ofaspherical realizations.

3.5.1. DEFINITION. — LetTT :Y -^ X be a cellular realization of

a complex of groups G(X) on X and let TT' : V -» X
/
 be an aspherical

realization of a complex of groups G"(X') on X\ Let s : X^ —> Y and

s
/
 : x^ -^ V be the given sections. Let y : G(X) -^ G'(X') be a

homomorphism of complex of groups over a simplicial map f : X —> X'

(we use the notations of 2.6).

A realization of <p is a cell map F : Y —^ V such that

i) for each cell e ofX, then F maps Tr'^e) in ^"^(/(e));

ii) for each vertex a of X then F(s(a)) = s
f
(f(a)) and the homo-

morphism 7Ti(Y(cr),s(a)) -> 71-1 (V (/(a)), 5'/(o-)) induced by F is ̂ ;

hi) for each edge a of X with t(a) = a- and ^(l,a) = (^a,/(a)) e
CG(X

/
), the loop in ̂ (/(cr)) obtained by restricting rf^F to the oriented

edge a represents the element g^ € Gy(^) = ̂ (V^/^)),^^)).

3.5.2. THEOREM. — With the above notations, every homomor-

phism (p admits a realization; it is unique up to homotopy.

The proof of this theorem uses the considerations made at the
beginning of the proof of theorem 3.4.1 and the construction of F is made
successively on the Y^'s. We leave the details to the reader.

It follows in particular that any aspherical realization of G(X) has
the same homotopy type as BG(X) (this leads to another proof of 3.2.3).

3.5.3. COROLLARY. — Let G(X) be a complex of groups over a
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finite ordered simplicial cell complex X. Assume that each Gy is the

fundamental group of a finite aspherical cell complex. Then BG(X) has the

homotopy type of a finite complex and its Euler-Poincare characteristic is

given by

x(BG(X))^^(l-x(Lk^)x(G^).

4. Homology and cohomology.

4.1. G(X)~modules.

4.1.1. Left and right G(X)-modules. — A left G(X)-module is a
covariant functor M from the category CG(X) in the category of abelian
groups : to each a € V(X) is associated an abelian group M(a) and to each
7 € CG(X) is associated a homomorphism M(^) : Af(^(7)) —> Af(t(7)) of
abelian groups, such that M(7) is the identity if 7 is the identity of an
object, and M(7)M(7') = M(77') for two composable morphisms 7,7'
(for m C M(%(7)), the element M(7)(m) will be often denoted by 7 • m).
More specifically, to each a € V(X) is associated a left G^-module M(a)

and to each a € E(X) a ^a-equivariant homomorphism M(l, a) of M(i(a))

in M(t(a)) such that for two composable edges a,b and m e M(i(b)) we
have g^bM(l,ab)(h) = M(l,a)(M(l,fr)(/i)).

A right G(X)-module M is defined similarly as a contravariant functor
from CG(X) to the category of abelian groups. If 7 is an element of CG(X)

with 1(7) = a and ^(7) = r, and m € M(r), then m • 7 will denote the
image of m by the homomorphism M(7) : M(r) —> M(a).

4.1.2. Locally constant G(X)-modules. — A left G(X)-module M
is locally constant if all the maps M(7) are isomorphisms. When X is
connected, all M(cr) can then be identified to a fixed abelian group A and M

is given by a functor of CG(X) in the group Aut(A) of the automorphisms
of the abelian group A (or up to isomorphism by a homomorphism of the
fundamental group of G(X) in Aut(A), when X is connected, cf. 2.8.3).
Then M is called a locally constant system A. It is called constant if all
At (7) are the identity of A. For instance Z will denote the constant G(X)-

module with all Z((r) equal to the ring of integers Z. It can be considered
as a left or a right G^X^module.
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4.1.3. Pull back. — Let (p : G(Y) ̂  G(X) be a homomorphism of
complexes of groups over a map / : Y —^ X, and let M be a left G(X)-
module. Then <^*M is the G(y)-module associating to a € V(Y) the group
M(f(a)) and to 7 € GG(V) the homomorphism M((p(^)).

If / : y —> X is simplicial map and M a G(X)-module, then f*M will
denote the f*G(X)-module </?*M, where <^ is the canonical homomorphism
of /*G(X) in G(X) over /.

4.1.4. tlomG(x) and ®G(X)- — A homomorphism / of a left G(X)-

module M in a left G(X)-module N is a natural transformation of the
functor M in the functor N. Explicitely for each a 6 V(X), a Gy

module homomorphism fy : M(a) —> N(0) is given such that, for each

a e E(X), we have N(l,a)fi(a} = /((a)M(l,a). The set Hom^x^M,^)
of homomorphisms of M in N is naturally an abelian group and it is easy
to check that the G(X)-modules form an abelian category. The functor
M —>• Homo(^)(Af,JV) is a contravariant functor of the category of left
G(X)-modules in the category of abelian groups. It is left exact.

Given a right G(X)-module M and a left G(X)-module N, we define

the abelian group M 0G<x) N which is the quotient of the direct sum of
the M(a) ̂ N(a) by the equivalence relation which identifies m-70n with
m (g) 7 • n, where 7 e GG(X), m € M(t(^)) and n € M(i(^)).

We define two functors M —^ MQ(^) and M —^ M
0
^^ from the

category of left G(X)-modules in the category of abelian groups.

The first one associates to M the quotient MG(^) of the direct sum
of the M(a) over the a € V(X) by the subgroup generated by the element
of the form m — 7 • m, where 7 € GG(X). One calls M(^(^) the group of

co-invariants of M. Note that MG{X) = Z 0G(X) ̂ i where Z is considered
as a constant right G(X)-module. The functor M —> MQ(X)

 ls a covariant
functor which is right exact.

The second one associates to M the subgroup of the product of the
M(a} over the a € V(X) made up of the families m^ € M(a) such that
7 . m^) = mi(^) for all 7 € GG(X). Note that M°^ is the group
Homc(^)(Z, M), where Z is considered as a left G(X)-module. The group
MGW is called the group of invariants of M. The functor M —^ M0

^ is
a contravariant functor which is left exact.

4.1.5. free modules. — For r € V(X), we define the left G(X)-

module ZG^^ associating to a € V(X) the free abelian group on the set
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of elements 7 e CG(X) with ^(7) == cr and 1(7) = r. The homomorphism
associated to an element 7' of CG(X) with ^(7') = a maps 7 on 7'7.
By definition a free G(X)-module is a direct sum of modules of the type
ZG(Xy.

A basic example is the left G(X)-module ZG(X) which is the direct
sum of all the ZG^Xy, r € V(X).

Given a left G(X)-module M and an element m e M(r), there is
a unique G(X)-homomorphism of ZG(X)T in M mapping the element
7 € 7^G(X)

r
(a) on 7 • m. This shows that every free module is projective

and that every module is the quotient of a free module.

4.2. Cohomology.

4.2.1. DEFINITION USING THE STANDARD RESOLUTION (Compare

with Quillen [6], p. 83). — Given a left G(X)-moduie M we consider

the complex G*(G(X), M) ofcochains on G(X) with coefficient in M. By

definition a (normalized) k-cochain f € C
k
(G(X), M) is a map associating

to a sequence 71,..., 7A; of k composable elements of G(X) an element

/(7i,..., 7fc) € M(t(a)) which is zero if one of the elements 71 is the identity

of an object The coboundary 6f € G^^GpQ, M) is defined by
k-i

<V(7o,..., 7fc) = 7o(/(7i» • • -»7fc) ) - ̂ (-l)^,..., 7HH-1. • • • . 7fc)
1=0

-H-l)^,...^-!).

By definition ^(G^^Af) is the fe-th cohomology group of the
complex of normalized cochains. In particular H°(G(X),M) = M

0
^.

Remark. — If we drop the condition that /(7i,... ,7fc) = 0 when
one of the 71 is a unit element, we get a bigger cochain complex which
gives the same cohomology (cf. Mac Lane [7], p. 236).

A G(X)-module homomorphism of M in a G(X)-module M' induces
a homomorphism of ^(G(X), M) in ̂ (GW, M7). If <p : G(Y) ̂  G(X)

is a homomorphism, then it induces a homomorphism (p* of Hk
(G(X)^ M)

in H
k
(G(Y), (/?*(Af)). Those homomorphisms are obtained from the natural

associated homomorphisms of the cochains complexes.

A locally constant G(X)-module M gives a locally constant system
of coefficients on BG(X), still denoted by M, and H

k
(G(X),M) =

H
k
(BG(X),M) (cf. Quillen [6], p. 83).
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4.2.2. PROPOSITION. — To an exact sequence 0 —> M' —> M -^

M
11

 —> 0 of left G(X)-modules is associated a long exact sequence of

cohomology groups

0 — ff°(G(X); M') — ff°(G(X); M) — ff°(G(X); M")

-^^(G^M')—....

The proof is standard.

4.2.3. Example. — Let Y be a subcomplex of X such that if an edge
a of X has a terminal point in V, then a eY. Given a left G(X)-module
M, we define Mo as the submodule of M defined by Mo(a) = M{a) if a
does not belong to Y and zero otherwise. If 7 € GG(X) is such that 1(7)
does not belong to V(Y), this is also the case for ^(7) and Mo(7) = M(7)
Denote by G(Y) (resp. M\Y) the restriction ofG(X) (resp. M) to V. Then
H*(G(X),M/Mo) is naturally isomorphic to H*(G(Y),M\Y). Therefore
the exact cohomology sequence takes the form

... — ff^x), Mo) — J^(G(X), M) — ff^v), M\Y)
^H

k
^(G(X),Mo)—.-'

Let us apply this to see how to compute H*(G(X),No), where No

is a left G(X)-module with support on a vertex r of X, i.e. No{a) = 0 if

a ^ r .

First we note that the natural projection jr of Dr in X induces an
isomorphism of H*(G(X),NQ) on H*(G(Dr),No), because it induces an

isomorphism on the level of cochains.

Let Tr be the retraction of G(Dr) on Gr (see 3.1), and let N =
r^No) As observed before 4.2.2, N corresponds to a locally trivial system
of coefficient on BG(Dr) with stalk the abelian group No(r) and the
cohomology of X with coefficient in this local system is isomorphic to
H*(G(Dr), N); this implies that the retraction Ty induces an isomorphism
offf*(G(Z^),M) on H^{Gr,No(r)).

The above exact sequence gives the exact sequence

• . . —^ H^GW.No) -^ H^Gr^N^r)) —^ H^GWr^N^kr)

—^^(GW.M))^---

Assume that G(X) is the trivial complex of groups on X. Then
Jf^X,^) is isomorphic to the reduced cohomology group fffc'~l(£fcT,

M)(T)).
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4.2.4. DEFINITION USING PROJECTIVE RESOLUTIONS. — The

cohomology can alternatively be defined using protective or free resolutions,

as the left derived functor of the functor M -^ Homc(x)(Z, M) = M^W.

Namely H*(G(X), M) is the cohomology of the complex Hom^x) (F , M),
where F is a projective resolution of the left G(X)-module Z.

Similarly, the homology H, (G(X), M) can be defined as the homology

of the complex F 0G(X) M, where F is a projective resolution of the

constant right G(X)-module Z. In particular Ho(G(X), M) = MG(X).

The definition 4.2.1 corresponds to the choice of the canonical free
resolution of Z, associated to the canonical aspherical cellular realization
BG(X)ofG(X).

4.2.5. Construction of a free resolution from a cellular aspherical

realization ofG(X), — Let TT : Y -> X, together with a lifting s : X^ -^
y, be a cellular aspherical realization of G(X) as defined in 3.3.4. Each cell
e of Y projects by TT on a cell (ai,..., a^) of X; the terminal point t(e) will
be the vertex t(a^} For each cell e of Y we choose a path 4 contained in
Tr^T^e) and joining the base point s(t(e)) to an interior point of e.

4.2.6. PROPOSITION. — To the cell structure ofY and the above
data we can associate a free resolution F

0 —>Z —>FQ —> Fi —>F^ —> • • •

of the constant left G(X)-module Z. For a € V(X), Fk(a) is the free

abelian group on the pairs (7, e), where e is a k-cell ofY and 7 € CG(X)

such that ^(7) = a, t(e) = 1(7). For 7' € CG(X), Fk(Y) maps (7,0) on
(7'7,e).

Proof. — We first show that there is a bijection between the pairs
(7, e) with ^(7) = a and the cells of the universal covering Y(D^) of Y(D^)

constructed as the space of homotopy classes of paths starting from the
base point Sa(a). Suppose that 7 = (g, /?); we use the notations of 3.3.1; to
(7, e) is associated the fc-cell e' of Y(Da) projecting by Y(j^) on the fe-cell
e and by 7r<y on a cell with terminal, point the vertex of Dy labelled /?; we

also have a path £^^)
 m

 Y(Da) Joining the base point s(a) to an interior
point of e' obtained by composing a loop in Y(a) representing 7~1, then
the edge s(l3) in the opposite direction and then the path ̂  projecting on
4 by y(j<y). This determines a lifting of the cell ef in Y(D^) and it is clear
that any lifting can be obtained in this way because there is a bijection
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between the elements of the fundamental group of Y(D^) and the elements
7ofCG(X)withp(7)=/?.

Therefore Fk(a) can also be considered as the free abelian group over
the^set of fe-cells of Y(Da), in other words as the group of cellular fc-chains
of Y(D(y). If e : FQ{a) —> Z is the augmentation, the complex F,{a) of
cellular chains of Y(Dy) is an acyclic resolution of Z because Y(Da) is
contractible. One can check that for 7 € CG{X), ^(7) is a chain map of
F (1(7)) in F. (^(7)). Clearly Fk is a free G(X)-module with basis the set of
fc-cells of V.

4.3. Cohomological dimension, type FL and FP.

4.3.1. DEFINITION. — A complex of groups G(X) on a finite di-

mensional ordered simplicial cell complex is of finite cohomological dimen-

sion (in brief cdG(X) < oo) if the constant G(X)-module Z admits a

projective resolution of finite length.

If X is a finite complex, we say that G(X) is of type FP (resp. FL)

if Z admits a projective (resp. free) resolution of finite type.

4.3.2. COROLLARY. — A complex of groups G(X) on a finite

complex X is of type FL) if and only if each vertex group Go is of type

FL.

Proof. — If a group G is of type FL, then there is a finite dimensional
cell complex which is a K(G, 1) (cf. Brown [3]). Hence the first part of the
corollary follows from 3.4.1 and 4.2.6.

Conversely, one observes that if P is a finite free G(X)-module, then
P(<r) is a finite free G^-module for each vertex a of X, because X is finite.

Remark. — One should be able to construct directly a resolution
of G(X) using free resolutions of the G^s without using the geometric
construction of 3.4.1.

4.4. A spectral sequence.

4.4.1. — Given a left G'(X)-moduIe M, we define a complex
C'{G(X), M) of right C'(X)-modules (recall that C(X) is the category such
that X = BC(X)) :

0 —^ C°(G(X), M) — C
1
(G(X), M) -^ C

2
(G(X), M) —^...
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as follows. C'(G(X), M)(a) is the complex of cochains C'(j^G(X)J^(M)),

where jy is the natural projection of D^ in X. For a e C(X) with
i(a) = a and t(a) = r, then ^(^(JO.Af^Q!) is the homomorphism

^ : C^WX^j^M) — C^CTO.^M) (note that j^ =j;).

The cohomology of this complex in degree fe is a complex ^of right
C(X)-module denoted by ^(G(X),M).

The following in an analogue of the Leray spectral sequence for the
projection BG(X) -> X.

4.4.2. THEOREM. — Given a left G(X)-module M, there is a
spectral sequence converging to Jf*(G(X); M) and with

E
P
-

q
=H

P
(X,W(G(X),M)).

Proof. — Consider the natural double complex

@C
P
(X,C

q
(G(X),M)).

p»9

The following lemma shows that the inclusion of the complex C*(G(X), M)

in the total complex associated to the double complex induces an isomor-
phism in cohomology.

4.4.3. LEMMA. — H°(X^(G(X),M)) = C
q
(G(X),M) and

HP(X^(G(X),M)) = 0 forp > 0 .

Proof. — We first prove it for q = 0. To simplify the notations, we
denote C°(G(X), M) by M°. We claim that the sequence

Q-^C
O
(G(X),M)^C

O
(X,M

O
)-

6
^C

1
(X,M

O
) -^C^X.M

0
) -^...

is exact, where L maps c € C°(G(X), M) on the 0-cochain LC e C°(X, M°)

associating to a the 0-cochain tc(cr) on Da defined by ic(a)(a) = c(i(a)).

An element of C^X.M0) can be identified to a map / associating to
a sequence ai,...,ap+i of composable elements of C{X) an element
/(ai,... ,ap+i) € M(i(ap-n)). With this identification we have

P
<V(^o,ai,... ,ap+i) = /(ai,... ,ap-n) - ̂ (-l)7(ai,... ,0^+1,...) .

o
It follows that the above sequence is exact, hence the result for q = 0.

Note that in the above argument, we used only the M(crYs and not
the G(X)-module structure on M. Hence it applies by replacing the family
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M(a) by the family N(a), where N(a) is the group of functions associating
to a composable sequence ao,ai,...,c^ an element of M(i(a^)}. This
shows the lemma for q > 0.

The E^-term of the spectral sequence associated to the first filtration
of the double complex gives the result.

4.4.4. PROPOSITION. — Assume that the G(X)-module M is lo-

cally constant Then the right C(X)-module H
q
{X,M) is defined by

^(X, M)(a) = H
q
(Ga, M(a)), and the homomorphism associated to a e

E(X) with i(a) = a- and t(a) =risthe homomorphism ofH
q
(Gr, M(r)) in

H
q
{Gff, M(a)) induced by the homomorphisms ^a and M(l, a) (cf. Brown

[3], p. 79).

Proof. — The j^G(X)-modu\e j^M is isomorphic to r^M(<r), where
To is the retraction of Da on a (cf. 1.3). Using the deformation Ra,

one can show that Ty induces an isomorphism of H
q
(Ga,M(a)) on

^(j^G'(X),j^M). Alternatively, the module j^M gives a locally constant
system on B(j^G(X)) which retracts by deformation on BGy and this
retraction induces an isomorphism in cohomology (cf. Quillen [6]).

5. Extensions with abelian kernel.

5.1. DEFINITION. — Assume that (p : G(X) -> G(X) is a sur-

jective homomorphism over the identity of X with abelian kernel, i.e.

each homomorphism ̂  : Gy —> Go is surjective and its kernel A(a)

is abelian. Then we get a G(X)-module A called the kernel of (p : if

7 = (g,a) € CG(X), then A(^) is the injective homomorphism ol A(i{^))

in A(t(^f)) given by A(g)(n) = Ad(g)^a(n), where (g, a) is a lifting of(g, a)

in CG(X) (equivalently for 7 e CG(X) and n € A(z(7)), 7. h is defined

by ^(7) ' n for a lifting 5(7) € CG(X) of 7, cf. notation of 2.5); this ho-

momorphism is independent of the choice of the lifting because A(t(^)) is
abelian.

Another extension ̂ ' : G^X) —^ G(X) with the same abelian kernel

A is called isomorphic to y if there is an isomorphism ofG(X) on G'{X)

projecting on the identity ofG(X) and which is the identity on A.

5.2. THEOREM. — The isomorphism classes ofextensions of'CG(X)

with the abelian kernel A are in bijection with the elements ofH
2
(G(X), A).
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Proof. — Given an extension with abelian kernel A, choose a lifting
s ofCG(X) in CG(X) such that s(la) = l<y. To s is associated a 2-cocycle
c € C

2
(G(X),A) defined by

c^y^-y^ 5(7)5(7') .

If s is replaced by another lifting 5' defining a 2-cocycle c' then
5'(7) = 6(7)5(7) where & e C'^G^X^A) and c and c" differ by the
coboundary of 6.

Conversely, given a 2-cocycle c with coefficient in A, we construct an
extension CG(X) whose morphisms projecting by y? on 7 € CG(X) are the
pairs (^,7) with n € A(^,7)). The composition is defined by

(^ 7)(^, 7) = (^(7 • n')c(7,77), 77') .

We omit the details which are formally as in the classical case
(cf. Brown, [3]).

5.3. Example. — Assume that G(X) is the trivial complex of groups
denoted by X (in that case CG(X) = C(X)). Then A is a functor of C(X)

in the category of monomorphisms of abelian groups. An extension of C(X)

by A is a complex of groups G(X) on A with Gy = A(<r) and ^a = A(a).
The isomorphism classes of extensions correspond to the choices of the 2-
cocycle ga,b up to coboundary. For instance if r is a sink, i.e. a vertex such
that no edge has its initial point at r, and if A has its support on r (i.e.
A(a) = 0 if a -^ r) then H

2
(X,A) is isomorphic to H^(LkT,A(r))^ where

A(r) denotes the constant coefficient system isomorphic to A(r) (cf. 4.2.4).

As a specific example, let X be the 2-sphere which is the geometric
realization of the category without loop given in fig. 2. Then up to
isomorphism, the extensions of C(X) by A are in bijection with the
elements of .H^(X, A) which is isomorphic to the quotient of A(r) © A(r')
by the subgroup image of A(cr) by A(a) (B A(a').

5.4. Central extensions by Z. — Assume that A is the constant
G'(X)-module Z and that all groups Go are finite. We can use the spectral

sequence 4.4 to compute H
2
(G(X), Z).

In that case W°(G(X), Z) = Z, ̂ (^(X), Z) = 0 and the right C{X)-

module ^(G^X), Z) associates to each a the group Jf^G^, Z) of central
extensions of Ga by Z. The spectral sequence gives the exact sequence

0-^ff2(X,Z)-^ff2(G(X),Z)-^fl^o(X,7<2(Gr(X),Z))-^ff3(G(X),Z)
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which can be interpreted as follows in terms of extensions.

An element of H
2
(G(X),Z) comes from an element of H

2
(X,Z) if

and only if the corresponding extension of G(X) by Z induces the trivial
central extension of each group G<y. In that case this extension is the pull
back by the projection p : G(X) —^Xof the complex of groups on X for
which the vertex groups are all isomorphic to Z and which is determined
up to coboundary by the element of H

2
(X^ Z).

To give an element of H
O
(X,^-i

2
(G(X),Z)) is equivalent to give for

each vertex a a central extension of Ga by Z in a compatible way; if
a € E(X) with i(a) = a and t(a) = r, then the central extension of Ga

should be induced by ^a from the central extension of Gr- In general such
a data does not come always from a central extension of G(X) by Z; the
obstruction is measured by an element of H^(X, Z) which is not trivial in

general.

Here is an example. We start from an ordered simplicial cell complex
XQ which is a projective plane; it is the quotient of its universal covering XQ

(topologically a 2-sphere) by a free action of the cyclic group Zs of order
2. Let X be the ordered simplicial cell complex which is the suspension
of XQ : we add two suspension vertices r and r ' to V(Xo) and from each
vertex a of Xo, there are extra edges a and a' with i(a) = i(a') = a and
t(a) = T, ^(a7) = r'. On X we consider the action without inversion of
the cyclic group Za which is the suspension of its action on XQ. On the
quotient X (which is topologically the suspension of a projective plane) we
get a complex of groups G(X), whose fundamental group is Zs.

There is only one non trivial central extension of G(X) by Z. Indeed
H

2
(G(X),Z) is isomorphic to H

1
(G(X),R/Z) = Hom(7Ti(G(X),R/Z) =

Za (consider the short exact sequence of trivial G'(X)-modules 0 —> Z —>
R _ R/Z -^ 0 and observe that ^(Gp^R) = H

2
(G(X),Ii) = 0).

For this extension G(X), the groups associated to the two vertices of the
suspension are both Z, while they are Z 0 Za for the trivial extension. If
we associate to one of the suspension vertex of X the group Z (D Za and
the group Z to all other vertices, we get a coherent system of extensions
for the groups Gy which does not come from an extension of G(X).

Complexes of groups associated to Seifert fibrations are examples of

central extensions by Z. For instance if G(X) is the complex of groups
associated to an orbifold structure on a surface X, then the complex of
groups associated to a Seifert bundle TT : Y —»• X with base space the

orbifold X (cf. 3.3.5) is a central extension of G(X) by Z. Conversely such



EXTENSION OF COMPLEXES OF GROUPS 307

an extension is associated to a Seifert bundle with base space the orbifold
X if for each vertex r the central extension of Gr by Z is isomorphic to Z.

6. Extension of complexes of groups

with locally constant kernel.

In this paragraph, we generalize to complexes of groups the Eilenberg-
Mac Lane theory of extension of groups (cf. Mac Lane [7] or Brown [3]).

6.1. — Let X be a connected ordered simplicial cell complex and let
(p be a morphism of a complex of groups G(X) on a complex of groups
G(X) over the identity of X. We assume that all the homomorphisms (pa

are surjective and that ^o induces an isomorphism of Ker (pi(a)
 on Ker <pt(a)

for each edge a of E(X). Therefore we can identify each Ker<^o t° a fixed
group N and we denote by fia the automorphism of N given by ^a. If a is
the identity of a vertex of X, then p,a will denote the unit element of the
group Avit{N) of automorphisms of N.

Let Out(N) be the quotient of Aut(N) by the subgroup Int(N) of
inner automorphisms. We have an exact sequence

0 —> C —>N —> Ant(N) —> Ont(N) —> 1

where C is the center of N.

We get a functor p, of CG(X) in Out(JV) mapping {g, a) on the image
of Ad(g)pa in Out(JV), where (g,a) is a lifting of (g,a) in CG{X). The
kernel of </? will be the pair (TV, JJL).

6.2. DEFINITION. — A homomorphism y : G(X) —^ G(X) as

above (with an identification of each kernel of (pa with the group N )

is called an extension of G(X) with kernel (N^p.). Another extension

^ p ' : G'{X) —> G(X) with the same kernel (N^p,) is called equivalent to

(p if there is an isomorphism ofG'(X) on G(X) projecting on the identity

ofG(X) and whose restriction to N is the identity.

Aut(TV) acts on N leaving invariant the center C of N and as lnt(N)

acts trivially on C, we get an action ofOut(TV) on C. Therefore p defines

a left G(X)-module which is locally constant with stalk C.
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6.3. THEOREM. — Let G{X) be a complex of groups on X, let N

be a group and p, be a functor ofCG(X) in 0\it(N). Let C be the center

of N, considered as above as a locally constant G(X)-module. Then

i) there is an extension of G(X) with kernel (N, p) if and only if a

certain element of H
3
(G(X)^C) vanishes;

ii) given an extension ofG(X) with kernel (^V,/i), the set of equiva-

lence classes of such extensions is in bijection with H
2
(G(X)^ C).

Proof. — Suppose we have an extension ^ : CG(X) —^ CG(X) as
above with kernel (N^p.).

Choose a section s : CG(X) -^ CG(X) of^p. This defines two things :

a) a map fi '. CG(X) -> A\it(N) defined as follows : if (g, a) € CG(X)

and if s((g, a)) = (g, a), n e N, then

il(g,a)(n) = Ad(^)^(n) .

The composition of /A with the homomorphism A\it(N) —>• 0\it(N)

is fi.

b) a map F : CG(X)^ -^ N, where CG(X)^ is the set of pairs of
composable elements of CG(X)^ defined by the equality

5(7i)5(72) = ^(71,72)5(7172) .

They satisfy two identities :

(1) Ad(F(7i,72))/A(7i72) = ^(71)^(72)

which measures the non functoriality of /A, and the cocycle condition

(2) ^(71,72)^(7172,73) = A(7i)(^(7i,72))^(7i,7273)

for all triples 71,72,7s of composable elements of CG(X) (this follows from
the associativity in CG(X)).

Given p, and F verifying (1) and (2), one can reconstruct an extension

CG(X) as follows. Its morphisms are the couples (71,7) where 7 e CG{X),

n € N. The composition (n,7)(n',7') is defined if 77' is defined and is

equal to (^/^^n')^7). The homomorphism y? maps (n,7) on 7. The
identification with the given CG(X) maps (71,7) on {n,t(j))s(^).

Conversely, given the functor ^ : CG(X) -^ Out(^), we try to
construct maps p. and F satisfying (1) and (2). We choose any lifting
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ft : CG(X) —)• Ant(N) of /z mapping the identity of any object on the
unit element of Aut(TV). Then a map / : CG(X)^ -^ Int(N) is defined
uniquely by the equation

/(7i, 72)^(7172) =A(7i)Ai(72) .

Note that /(7i, 72) = 1 if 71 or 72 is an identity.

If F : CG(X) —^ N is any lifting of / with respect to the homomor-

phism Ad : N -^ lnt(N) such that ^(71,72) = 1 if 7i or 72 is an identity,
this equality can be written as

(1)' Ad(F(7i,72))^(7i72) = A(7i)A(72) .

Using the associativity property in CG(X), one can define a unique
map c: CG(X)^ -4 C by

(2)' Ad(/i(7i))(F(72,73))^(7i, 727s)= 0(71,72,73)^(71,72)^(7172,73) .

It is easy to check that c is a normalized 3-cocycle on CG(X) with

coefficient in the locally constant G(X)-module C determined by /x. This
means that we have, for any sequence 7i, 72,73,74 of composable elements
ofCG(X):

(3)' c(7i 72,73,74)c(7i,72,7374) = /^(7i)(c(72,73,74))c(7i,72,73)

c(7i,7273,74) .

The cohomology class of c is independent of the choice of the liftings
fi and F. More precisely, if F is another lifting of /, then there is a unique

map b: CG(X)^ -. C such that ^(71,72) = ^(7i,72)&(7i,72). Then the
3-cocycle c associated to F is the 3-cocycle c modified by the coboundary
of the 2-chain b with coefficient in the local system (7, namely

c(7l,72,73)=/A(7l)(6(72,73))&(7l,72,73)~lfc(7l,72,73)&(7l,72)~l

0(71,72,73) .

Therefore, if the cohomology class of c is trivial, we can choose b

such that c = 0. Then the identities (1) and (2) are satisfied and we can

construct as above the extension CG(X). This proves the first part of the
theorem.

Suppose <// : G(X) -^ G(X) is another extension with kernel (N,p,).

We can always choose the section 5' : G(X) —> G'{X) so that the map
J i : CG(X) —> Aut(N) determined by the analogue of a) is equal to fi. The
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analogue of b) gives a map F
f
 : CG(X)^ —^ JV, and there is a 2-cochain

d (E C2
{G(X),C) characterized by

^/(7l,72)=^(7l,72W7l,72) .

It is easy to check that d is a 2-cocycle whose cohomology class is
independent on the choice of F

i
\ Its vanishing implies the existence of an

equivalence between the extensions <^ and ^ p ' . Conversely given a 2-cocycle

^(7i? 72)? the above formula defines a map F ' verifying the identity (2); as
observed before, this gives an extension (// with kernel (N^u). This proves

the second part of the theorem.

6.4. COROLLARY. — If the center C of N is trivial, then there is

a unique extension with kernel (N, fi).

This extension can be constructed as follows. Let Aut(JV) and Out N
be the constant complex of groups on X. Then CG(X) is the fiber product

of the two homomorphisms Aut N —^ Out N and p.: CG(X) —^ Out N.

6.5. Remarks.

1) If the functor p, lifts as a functor p, : CG(X) —»• Aut(^V), then by
choosing F to be the trivial map, one gets an extension CG(X) which is
the semi-direct product of CG{X) by N corresponding to fi.

2) More generally the obstruction in H^(G(X)^ C) is the pull back by
the homomorphism ^ : G(X) —^ Ont(N) of the element of H

3
 (Ont(N,C)

characterizing the crossed module N —> Aut(AT) (cf. Brown [3]). For

instance if G(X) is simply connected, then the obstruction is always trivial.

3) If G(X) is the trivial complex of groups on X (i.e. CG(X) =
G(X)), then the isomorphism classes of extensions with locally constant
kernel N are in bijection with the isomorphism classes of fiber bundles

with base space X and fiber BN (cf. paragraph 3).
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