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This paper gives some extensions of the selection mathematics based on the covariance 

function published in Price (1970). Application of the mathematics to 'group s.election' is 

briefly illustrated. More about applications will be shown in a later paper concerning 

'Selection in populations with overlapping generations', which will be submitted to this 

journal. To facilitate reference in that paper, the equations in this paper are labelled with 

the letter 'A'. 

The mathematics given here applies not only to genetical selection but to selection in general. 

It is intended mainly for use in deriving general relations and constructing theories, and to 

clarify understanding of selection phenomena, rather than for numerical calculation. 

WEIGHTED STATISTICAL FUNCTIONS 

In this paper we will be concerned with population functions and make no use of sample 

functions, hence we will not observe notational conventions Jqr distinguishing population and 

sample variables and functions. We begin by defining notation for weighted statistical functions. 

Here we generalize and extend notation defined in Price (1971): 

ave",x = (~ wixi)/~Wi' 
i i . -

covw(x, y) = [~wi(xi-avewx) (Yi-avewy)]/~wi' 
i i 

(A 1) 

(A 2) 

(A 3) 

(A 4) 

(A 5) 

Here w, x and y can be any variables, and summations are over all population members. We call 

W the 'weight' or 'weighting variable', and we can speak of these functions as 'weighted 

arithmetic means', 'weighted covariances " 'weighted variances', and so on. If all W i are equal, 

the weighted functions become ordinary unweighted functions, hence what is said about 

weighted functions will apply to unweighted functions as particular cases. It should be noted 

that the value of a weighted function is unchanged if every weight, Wi' is multiplied by the 

same constant. 

It should also be noted that the right sides of equations (A 1) to (A 5) are identical with 

standard expressions for grouped variables, where W i = the number of individuals in the ith 

group. The sole difference is that we are not limiting W to integral values; but of course with 

grouped variables we can approximate weighting by fractional amounts as closely as desired 

by using groups of size CWi , where C is a large constant. Accordingly, any identity that holds 
32-3 
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with unweighted functions will hold with weighted functions, provided we weight each statistical 

function in the equation with the same set of wi weights. 

Two useful identities involving weighted statistical functions are: 

(~ Wi Xi Yi)/~Wi = covw (x, y) + (avew x) (avew y), (A 6) 
i i 

avew x = it + cov(w, x)/W, (A 7) . 

The first gives the relation between product moments around the origin and product moments 

around the means. The second shows the relation between the ordinary, unweighted arithmetic 

mean, x, and the weighted mean, ave,., x. I 
EQUATIONS FOR TYPE I SELECTION PROBLEMS 

We will use P to represent the numerical value of som~froperty <! population members, and 

we define , t, " 
/).Pi = Pi - Pi' /).(avew p) = avew' P - avewp· (A 8) 

We will call 8 a 'selection coefficient', and we define 

(A 9) 

We now expand avew, P' by means of (A 1), and substitute Pi+/).Pi for pi and then substitute 

W i 8i for one of the wi pairs, giving 

avew'p' == 0:: wi8iPi)/~ Wi8i+(~ Wi/).Pi)/~ wi· 
i" i " i i 

Now we multiply the first term on the right of (A 10) by ~WJJ:'Wi' .convert by (A 6), and subtract 

avewp from both sides, to give 

(A 11) 

This equation is an identity for all values of wi, Pi' wi and pi. It is the basic equation for what 

will be called' Type I' selection problems. What we mean by a Type I selection problem, how we 

apply equation (A 11) to such problems, and what the primed .variables represent will be made 

clear shortly, but first two possible ways of simplifying (A 11) will be explained. 

The first is simply a matter of notation. It is often preferable to think of the covariance in 

(A 11) as involving, not the selection coefficient 8 i , but the relative selection coefficient, 8i/avew8. 

We will use a tilde to symbolize such relative variables, involving it variable divided by its 

population mean, so that we define Si = 8Javew8. Hence (A 11) can be rewritten as 

(A 12) 

A further simplification that is permissible in many applications is to omit the /).P term, giving 

the very simple form 
(A 13) 

This holds if pi = Pi for all i. Also, if the expected value 6"(Pi) = Pi for all i, and if the population 

size is large, then avew'(/).p) will generally be negligible relative to the covariance term so that 

(A 13) will hold as a very good approximation. 

~ 

~ 
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Still further simplification occurs with selection problems where all the Wi are equal. This 

-- reduces the covariance to the unweighted form cov(s,p), giving selection equations like equa­

tions (1) and (4) of Price (1970). 

A GROUP SELECTION EXAMPLE 

The best way to explain the meaning and uses of the basic Type I selection equations is 

through an example. Currently 'group selection' is a highly controversial topic in evolutionary 

biology. (There is an enormous literature on group selection, of which I will cite just one sample 

paper: Wright, 1949.) Our example will be to derive a 'group selection' equation covering the 

limiting case of reproductively isolated groups with no intergroup migration. We imagine a large 

population, n, that is subdivided into a number of subpopulations or groups. For simplicity we 

will assume that different generations do not overlap. Let ni = the population of group Gi in 

the parent generation, and let ni = the population of group Gf, in the offspring generation. Let 

8f, = ni/ni = the mean number of offsprip.g per parent generation member of group Gi (when 

each parent is given credit for half of each - offspring~onceived). Let Pi = the population fre­

quency of gene A in group Gf, in the parent generation, and let pi = the frequency in the off­

spring generation. Similarly, let P = the. population frequency of gene A in the total population 

n in the parent generation, and let P' = the frequency in n in the offspring generation. Our 

problem is to determine the change M = P' -Po 

It can easily be seen that 

P = aven p, P' = aven , p',- (A 14) 

so that!1P = !1(aven P).Consequently, since (A 12) is anidentity for all w, p, w' and p' (provided 

that 8 i = Wi/Wi)' it follows that 

!1P = covn(s, p) +aven , (!1p). (A 15) . -
Here n is of course playing the role of W in equation (A 12). It should be noted that (A 15) does 

not depend upon any assumptions about mechanisms of heredity or anything else of that sort, 

but holds because it is an identity no matter how n, p, n' and p' are defined (provided that 

8 i = !l'ilni in accordance with equation A 9). 

-We define a Type I selection problem as a problem where the aim is to determine the change 

. in an arithmetic mean (weighted or unweighted) caused by selection. We use primes in the sense 

of 'successor' or 'later' to indicate variables after the' operation of selection. In general, W is some 

sort of measure of amount or 'value', p can be any finite quantitative. property, and Si' for 

values of 8 that do not exceed unity, can be thought of as describing the fraction of set member i 

that is 'selected'. The first term on the right in equations (A 11), (A 12) and (A 15) gives the 

change in weighted mean p caused by selection; the second term gives the change in mean p 

due to 'property change'. It should be noted that this mathematical treatment of selection 

implies a one-one relation between pre-selection and post-selection set members, with a com­

mon system of i index numbering. Such one-one relation always' exists' in any case of selection, 

though sometimes it 'exists' only in a mathematical sense. It should also be mentioned that the 

'Type I' category is a far broader problem category than one might at first assume. 
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INTERPRETATIONS AND EXTENSIONS 

Returning to the group selection example, we can use equation (1) of Price (1970) to evaluate 

the change, !J.Pi' in gene A frequency within each group. In our present notation that equation 

can be written as 
!J.p = cov(s,q) = cov(z,q). (A 16) , 

Here P is population gene frequency,q is 'individual gene frequency' (see Price, 1970, 1971) . 

Z is the number of offspring conceived by a particular individual, when we credit each parent i, 

with a full offspring, and s is half of z (giving each parent credit for half of each offspring). '~ 

Substitution from (A 16) into (A 15) gives 

(A 17) 

Here s has the meaning defined for equation (A 15), and we have expressed (A 16) in the z form 

in order to avoid confusion between the (A 15) and (A 16) uses of s. In (A 17) the covn(s,p) term 

can be thought of as representing group selection (or, more precisely, intergroup selection), for 

it shows what part of the change !J.P is due to differences among the mean fecundities of the 

groups Gi . The last term shows the part of the change!J.P that is caused by intragroup selection 

due to differences among individuals within a group. We can speak of (A 17) as a 'two-level' 

selection equation involving two different 'levels' of selection. T;he procedure involved in going 

from (A 15) to (A 17) shows how a property change (!J.P, !J.p or !J.q) at one selection level can 

often be interpreted as due to selection at a lower level. 

Covariance treatment gives maximum simplicity with Type I equations, but conversion to 

regression or correlation form may make them more intuitively understandable. Equation 

(A 13) can be expanded by (A 4) or (A 5), giving 

(A 18) 

and similar expansions can be used with other forms such as (A 11). Equations (A'18) can be 

interpreted in terms of the following pattern: 

effect of selection = intensity of selection x variation on which silection acts. 

Possible measures of the 'variation on which selection acts' are varw P, O"w(P), or O"w(s}, O"w(P), 

Possible measures of the 'intensity of selection' are flw(s,p), /lw(s,p)O"w(p), or Pw(s,p). These 

measure selection intensity in relation to property p, whereas Haldane's (1954) measure of the 

'intensity of natural selection' is a measUre of the range of Si orzi values existing in a popula­

tion, without regard to how these variables relate to any property. Thus the types of measure, 

though similar in name, are fundamentally different in the selection characteristics that they 

measure. 

Once again returning to the group selection example, we use the first of the two (A 18) 

expansions to put (A 17) into this form: 

I:!:.P = fln(s,p) varnP+aven , [fl(z,q) varq]. (A 19) 

Using the first of the three suggested interpretations of the 'variation on which selection 

acts' and the interpretation of the' intensity of selection' that belongs with it, \ve can interpret 

(A 19) as saying the following: the change in gene A frequency in the total population is equal 

to the intensity, fln (s, p), of intergroup selection on gene A multiplied by the intergroup variance 
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of gene A population frequencies, plus the weighted mean of the products of intragroup selection 

intensities multiplied by intragroup variances of gene A individual frequencies. The current 

'group selection controversy' hinges on the question of whether the intergroup variance, yarn p, 

is likely to be of significant magnitude under realistic natural conditions, so that there can be 

significant increases (Ill' ~ 0) in the frequency of a gene that is 'group-benefiting' (Pn (8,p) > 0) 

but not' individual-benefiting' (P(z, q) ~ 0). Thus (A 19) 'maps' transparently the different 

factors in group selection, which may (hopefully) help to clarify the main issues in the contro­

versy. (Of course, group selection is just being used here as an example, and it is not the inten­

tion of this paper to try to 'settle' the group selection controversy.) 

Another useful extension of the Type I selection equations is to continuous timeinodels. Let 

us suppose that in a selection problem unprimed variables p and w apply to a certain time t, 

and primedp' and w' apply to a later timet' = t+At. We define a new variable, r, which can 

be called the 'selection rate coefficient '1 defined as 

(A 20) 

Hence Si = 1 +riAt. Making this substitution in the first term on the right of (A 11), we obtain 

covw(s,p)/avew 8 = covw(r,p)At/(l +avewrAt); 

so that (A 11) can be put into this form: 

A(avew p)/At = covw(r,p)/(l + avewrAt) + avew,(Ap/At). 

Now suppose that we set At = dt. In this case (A 20) becomes 

ri = d log wi/dt. 

and the denominator 1 + avewrAt becomes 1 + avewrdt = 1, so that (A 21) becomes 

d(avew p )/dt = cOVw (r,fr) + avew,(dp/dt). 

(A 21) 

(A 22) 

(A 23) 

In applying (A 22) and (A 23) in population genetics, where changes in numbers Wi or n i will be 

discontinuous, we can use expected values rather than actual values, or if the population is very 

large, we can imagine the discontinuously varying p and w replaced by continuous variables. 

In applications where the (A 12) simplification is permissible - which should be true of the 

-majority of population genetics applications - equation (A 23) takes the pleasingly simple 

form 
(A 24) 

SUMMARY 

General equations are derived for changes in weighted population means caused by selection. 

Some new ways of measuring 'selection intensity' are suggested. Application of the selection 

equations in population genetics is illustrated by a simplified treatment of 'group selection', 
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Note added in proof. I have recently learned that Dr Alan Robertson published covariance 1 

.~ 

selection equations similar to equation (1) of Price (1970) in 1966 in a paper on 'A mathe-

matical model of the culling process in dairy cattle' in Animal Production 8,95-108. I believe 

that the present extensions are new. It should also be mentioned that equation 5. 11. 6 of 

J. F. Crow and M. Kimura (1970), An Introduction to Population Genetics Theory (New York, 

Evanston, and London: Harper & Row), has some similarity to my equation (A17), though 

their equation involves variance rather than covariance and fitnesses instead of gene 

frequencies. 
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