EXTENSION OF CR STRUCTURES ON PSEUDOCONVEX
CR MANIFOLDS WITH ONE DEGENERATE EIGENVALUE

SANGHYUN CHO

ABSTRACT. Let M be a smoothly bounded orientable pseudoconvex C'R manifold of finite type
with at most one degenerate eigenvalue. Then we extend the given C'R structure on M to an
integrable almost complex structure on the concave side of M. Therefore we may regard M as the
boundary of a complex manifold.

1. INTRODUCTION

Suppose that M is an abstract smoothly bounded orientable C'R manifold of dimension
2n — 1 with a given integrable CR structure S of dimension n — 1. Since M is orientable,
there are a smooth real nonvanishing 1-form 1 and a smooth real vector field Xy on M so that
n(X) =0 for all X € S and n(X,) = 1. We define the Levi form of S on M by in([X’, X' ])

X', X" € S. We may assume that M C M in C'*° sense, where M is a smooth manifold.

In [5], Catlin has studied an extension problem of a given C'R structure on M to an integrable
almost complex structure on a 2n—dimensional manifold €2 with boundary, b2, so that the
extension is smooth up to the boundary and so M lies in b§2. Under certain conditions on the
Levi form (cf. [5, Theorem 1.1, Theorem 1.3]), this shows that an abstract C'R manifold can
be locally embedded in C™ [1,13,16].

In this paper, we study an extension problem of a given C'R structure on M when M is a
pseudoconvex C'R manifold of finite type with one degenerate eigenvalue and dimg M = 2n—1.
For a given positive continuous function g on M, where g = 0 on bM, the boundary of M, we
define

Sy ={(z,t) e M x[0,00); 0<t <g(x) }.

Then our main result is the following theorem:

Theorem 1.1. Let (M,S) be a smoothly bounded pseudoconvex CR manifold of finite type with
at most one degenerate eigenvalue and dimg M = 2n—1. Then there exists a positive continuous
function g on M and a smooth integrable almost complex structure L on S; such that for all
x €M, LiyoyNCTM = S,. Furthermore, if Jp : TS} — TS/ is the map associated with the
complex structure L, then dt(J-(Xo)) < 0 at all points of My = {(z,0) ; z € M}.

Note that we extend the given CR structure on M to the concave side (instead of convex
side) of M. When dimg M = 3, the author proved the same result when M is a pseudoconvex
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C'R manifold of finite type [8]. We also note that if M is strongly pseudoconvex, this case was
handled in [5, Theorem 1.1].

In general, Theorem 1.1 does not imply that the given CR structure can be locally embedded
in C™ [12]. On the other hand, a theorem of Newlander-Nirenberg [14] shows that an integrable
almost complex manifold is a complex manifold. Therefore if we let (M, S) be as in Theorem
1.1, then we have the following corollaries.

Corollary 1.2. We may regard (M,S) as a boundary of a complex manifold.

Corollary 1.3. Let D be a complex manifold with C* boundary, bD, and dimc D = n.
Suppose that the almost complex structure on D extends smoothly to a manifold M C bD,
where M is a smoothly bounded pseudoconver CR manifold of finite type and the Levi-form
of M has one degenerate eigenvalue and dimgr M = 2n — 1. Then D can be embedded into a
larger complex manifold €0 so that M lies in the interior of 2 as a real hypersurface.

Remark 1.4. In [6], the author showed that any smooth compact pseudoconvex complex mani-
fold D of finite type with dim¢ D = n, n > 2, can be embeded into a larger complex manifold 2.
Corollary 1.3 is a generalization of this result to some special non-compact complex manifolds.

Remark 1.5. If (M, S) has at least three positive eigenvalues, Catlin [5] has extended the given
CR-structure of S to the pseudoconvex side of M [5, Theorem 1.1]. If M is also pseudoconvex,
this result implies the local embedding of CR-structures in C".

In [5], Catlin has introduced certain nonlinear equations which stem from deformation theory
of an almost complex structure (Section 2). The linearized forms of these equations are simply
the 0-operator from A @710 to A®2®T1C (Section 2). To overcome difficulties in subelliptic
estimates for d near bM, we choose a Hermitian metric on Sg+ so that S; takes on the form
S. = M x [0,¢]. To this end, we choose, for each xg € M, a noneuclidean ball that is of size
§ = g(z0) in the transverse holomorphic direction and of size §'/2 in strongly pseudoconvex
tangential holomorphic directions, and of size 7(z¢,d) in the weakly pseudoconvex tangential
holomorphic direction. We choose the metric so that the unit ball about zg € M corresponds
to the above noneuclidean ball with § = g(xz).

To show that 7(xg,d) is invariantly defined (i.e., independent of coordinate functions), we
choose special coordinates defined near ¢y € M (Proposition 3.1). These change of coordinates
shall have an independent interest in studying weakly pseudoconvex CR manifolds of finite type.
In terms of these special coordinates, the weakly pseudoconvex tangential holomorphic vector
field L; has a special representation so that we can define another quantity p(x,d), which is a
smooth function of § and x and it is obtained by taking sucessive brackets of L; and L; and
hence defined invariantly. A technical difficulty is to show that the brackets mixed with L; and
the strongly pseudoconvex tangential vector fields are not major terms in determining u(z, d).
Then we show that 7(z,d) ~ u(x,d) (Proposition 3.5), and hence 7(z,d) is defined invariantly.
To get an 0 < & < 1/2 subelliptic estimates (other than 1/2 estimates of Catlin [5]), we also
need some precise estimates for n([L1, Ly]), 2 < k < n. This difficulty comes from the fact
that we have a Dirichlet condition on M{ and hence we need to control the boundary integral
terms, which were not occured in dimension three case, on My (In usual O-estimates we deal
with forms which vanish on M, and hence there are no boundary integral terms). Section 3, 4
and 5 contain these estimates in detail.

After this, we technically construct a family of plurisubharmonic functions with large Hessian
using the properties of 7(x,d) and u(z,0). In performing the subelliptic estimates, we use
(n — 2)-positive eigenvalue conditions on M, to handle the boundary integral terms on M,
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and we use the existance of a family of plurisubharmonic functions with large Hessian to handle
the components vanishing on M,. This will give us uniform 1/m subelliptic estimates for 0
on each non-euclidean ball. Then we get the estimates, so-called “tame estimates”, which
are required in the Nash-Moser theorem [14] for the approximate solution to the linearized
equation.

2. DEFORMATION OF ALMOST COMPLEX STRUCTURES

Let (M,S) be a CR manifold as in Section 1 and set Q@ = M x (—1,1). In this section
we extend the given C'R structure S on M to an almost complex manifold (€2, £), and study
a deformation problem of the almost complex structure £ on 2 so that the new (deformed)
amost complex structure is integrable (or close to be integrable).

Assume that £ is an almost complex structure on €. Let A be a smooth section of T''(£) =
A%Y(L)® £, where A%1(L) denotes the set of (0, 1) forms with respect to £. Observe that if A

is sufficiently small, then the bundle £4 = {L+ A(L) ; L € £ } defines a new almost complex
—/

structure and if I and I are sections of Z, then I + A(f/) and L + A(L") are sections of
LA, Similarly, if w is a section of AM0(L), then w — A*w is a section of A¥?(L£A4), where the
adjoint A* maps from A1°(L) to A®!(L) and is defined by

(2.1) (A"w)(L) = w(A(L))
for all L € £ and w € AV, We want to choose A so that
(w—A*W)([L' + AL, L" + A(L")]) = 0.
By linearizing, i.e., by ignoring terms where A or A* appear more than once, we obtain
(2.2) w([L', AL")]) + w([A(L), L"]) = A"w([L, L"]) = —w([L', L"]).

Let L =L + L”_ denote the decomposition of a vector L € CT, where L'el,and " €L..
For sections Ly, Ly of L, we define

(2.3) (D2A)(L1, Ly) = [L1, A(L2)) — [La, A(Ly)) — A([L1, Lo]").

Note that this definition is linear in L; and Lo, and hence Dy A is a section of I'2 = A0’2(£) QL.
It follows from (2.1) and (2.3) that (2.2) is equivalent to the equation

(2.4) DyA = —F,
where F is a section of I'? defined by
(2.5) F(Ly,Ls) = [Ly1, Lo’

Note that F' measures to what extent £ fails to be integrable. If £ defines a C'R structure on
M and if we want L4 to define the same C'R structure on M, then this means that A must
satisfy A(f,) — 0 on M whenever L is a section of £ that is tangent to M. This is a Dirichlet
condition on some of the components of the solution (2.4).

If we define D3 : I'? — ' = A%3(L) @ L by

(2.6) D3B(Ly, Ly, L3) =[L1, B(La, L) — [L2, B(L1, L3)]" + [L3, B(L1, L2)]’
— B([L1, Ly)", L) + B([L1, Ls])", L) — B([L2, L3])", Ly)

for B € T'?, then it follows that D3F = 0 [5, Lemma 3.2]. Then we have the following formal
solution of the extension problem [5, Theorem 4.1].
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Theorem 2.1. Suppose that M is an orientable CR manifold of dimension 2n — 1 such that
the CR dimension equals n — 1. Then there exists an almost complex structure L* on Q =
M x (=1,1) such that L* is an extension of the CR structure on M, and such that it is
integrable to infinite order at M in the sense that if w is a section of A¥(L*) and Ly, Lo are
sections of L, then w([L1, Ls]) vanishes to infinite order along M.

Let M and Q be as in Theorem 2.1. The next theorem shows that the above formal extension
is essentially unique [5, Theorem 4.2].

Theorem 2.2. Suppose that L and X are almost complex structures on ) that extend the
CR-structure on My = {(x,0) ; x € M}, and that are integrable to infinite order on My. Then
there exists a diffeomorphism G of Q0 onto itself that is the identity when t = 0 and such that
G X approrzimates L to infinite order near My in the sense that if X is a section of L, then
G, X differs from a section of L by a vector field which vanishes to infinite order on M.

By Theorem 2.1, we have an almost complex structure £* on 2, that is integrable to infinite
order along My = {(x,0) ; x € M}. Let n be a smooth non-vanishing one form on M that
satisfies n(L) = 0 for all L € S,, x € M, and that defines the Levi form of M as in Section
1. We can clearly extend 7 to all of 2 so that it still annihilates S, for all (z,t) € Q,
where S(; ;) now denotes the space of vectors in D(k . that are tangent to the level set of the
auxiliary coordinate t. Then we have the following theorem which is a formal solution of local
embedding problem. One can refer a proof to, for example, [3, Proposition 3].

Theorem 2.3. Let xog € M. Then there are a small neighborhood U of xy and a constant
¢ > 0 so that for each x € M NU, there are almost holomorphic functions f1,... , fn defined
on U so that if F, = (f1,...,fn), then F.(z) =0 and

(a) |dFy| > c on U, and
(b) Lf; vanishes to infinite order at xo for each L € L.

Remark 2.4. Suppose L € S(;0). Then (Fy,).L differs from a section of TH9(F,,(M)) by a
vector field which vanishes to infinite order at 0. Therefore the image F, (M) is a smooth real
hypersurface in C™ with defining function given by r(w) =t o F, *(w).

In order to define the type of zy € M, we use the (almost) holomorphic function F, con-
structed in Theorem 2.3:

Definition 2.5. Let (z¢,U, F,,) be as in Theorem 2.3. Then we define the type of z( is equal
to the type of Fy, (z¢) =0 € C™ in the sense of D’Angelo [9].

Set T'(zg) = the type of o € M, and set
T(M) = max{T(xg) ; zo € M} = m.

Under the assumption that the Levi-form of M has (n—2)-positive eigenvalues, we may assume
that m is an even integer.

Let us take (€2, £*) constructed in Theorem 2.1. Choose a smooth real vector field X, on 2
that satisfies Xot = 0 and n(Xp) =1 in Q. Set Yy = —J,+(Xo) so that Xy + iY] is a section
of L* that is transverse to the level set of t. Let G : 2 — () be a diffeomorphism such that G
fixes My and

0
G*YO|(z,o) - x e M.

E | (z,0)>»
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Since M is orientable, we may assume that dt(Jz+(Xo)) < 0. Thus dt(Yy) > 0 along My, which
shows that G preserves the sides of My, i.e., G maps QT = {(z,¢) ; 0 <t < 1} into itself. If
we set LY = G,L*, then clearly Z = —iG. (X, +1Y)) is a section of £° such that along M,

~ 0

7= —iXy+ =.
0t o

We write Z = X + g(z,t)0/0t where Xt = 0, and set L,, = g~*Z. Then L, = 8/t + X, where

Xt = 0. We fix a smooth metric (, )¢ that is Hermitian with respect to the structure £° on

Q). Note that along M, we have L,, = 0/0t —iXy and dt = (1/2)(dt + in) + (1/2)(dt — in),

which implies that 0t = (1/2)(dt + in). Hence 0t(L) = (1/2)dt(L) + (i/2)n(L) and

— 7 .
O0t([X1, X2]) = gn([X1, Xo])
for all X, X2 € S(,¢), along M.

3. CONSTRUCTION OF PLURISUBHARMONIC FUNCTIONS

Let M, ©Q, X, and £° be as in Section 2. In this section, we will construct a family of
plurisubharmonic functions with large Hessian (Theorem 3.6). For this purpose, we first con-
struct special coordinate functions defined in a neighborhood of g € M so that the coefficients
of the weakly pseudoconvex tangential holomorphic vector fields satisfy some necessary esti-
mates in new coordinates (Lemma 3.7 and Proposition 3.8).

Assume that oy € M. Then there are coordinate functions x1, ...z, defined on a neigh-
borhood U of Z, with the property that zs, =t and that

xk(x/7t) = .Tk(III/,O), k< 2”7

for (2/,t) € U, and that
0

336271—1

at all points of U N M. We take an orthonormal frame {El, . ,En} of £° defined on U. Let
xog € M NU be fixed for a moment. If L; is replaced by L; = Z;ll Ujr Ly, where U = (Ujy)
is a suitably chosen unitary matrix so that

=X,

(3.1) %n([Ljazk])(x0> = 0k d;(z0) = dj 1 (20), 1<jk<n-1,

where 0 < d; < dy < ... < d,—1, and d;(xp) is a smooth function defined on U satisfying
do(z) > do > 0 on U for a uniform constant dy > 0, while d;k is a Dirac delta function.

There is an affine transformation C,, : R*® — R2" such that if (2/,0) € R?" are the
coordinates of x € M, then

C:co(wla t) - (Paf)o (ml - mi)),t) = (uh s 7u2n> = u,
where the (2n — 1) x (2n — 1) constant matrix P,, is chosen so that in terms of u-coordinates,
0 .0
i :
Qugk—1  Ougp

0

8u2n—1

(3.2) Litlwy = 1<k<n,

XO|.CC() -
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Note that the second equality of (3.2) actually implies that Xo|(, 0y = —0/Oua,—1 at all
points of M N U, and hence that

0 0

+
8U2n_1 ot

Ly =—i

along M NU.

We also note that the matrix P, is uniquely determined by the condition (3.2) and uniformly
non-singular on U, and depends smoothly for all o € M NU. In terms of u-coordinates, the
vector fields Ly, 1 < k <n — 1, can be written as

(33 L=l 3 b a2
' b aqu—l — J 3Uj g 3U2n—1
(9 2n—2 i 6 a
Ouay, N Z bj () du; T bu(u )3U2n—1 ’

where a?, b;?, ar,br are smooth real valued functions which vanish at 0. In the sequal we let
0;, 1 <1 < n, denote the holomorphic partial derivatives in the [-th variable of local complex
valued coordinates. When we change the local coordinate functions, this partial derivative
operator will be written in new coordinates. We also let 3 denotes dg or 55.

Proposition 3.1. For each xo € M NU and positive integer m, there are smooth complex

valued coordinates ¢ = (C1, ... ,Cn), Co = t+ixan_1, defined near xy such that in ¢-coordinates,
the vector fields Lq,... ,L,_1 can be written as
a n—1 — ( ) a
3.4 Li=—+ e(¢) +1id ,
(34) S 8 - Zl () +id(Q) ) 5=—
S = ( ) )
Lo=—+—+ €a + Z.da ’
3 ; 2} 8 z ©) O) P

where 2 < a <n — 1. Also, the coordinate functions satisfy

09\ bi(0) = 9]0y ap (0) = DO B(0) =0,  j+k<m, 2<l<n-1,
(35)  95019,e(0) =0, i=0,1, i+j+k<m, 2<B<n-—1,
(81 — 51)Sd( ) (81 51)5(3&(0) = (81 — gl)sda(O) = 0, S S m.

Proof. Let us take the vector fields Lq,..., L, and smooth coordinates u defined near xy so
that the vector fields Li, 1 < k < n — 1, have the representation as in (3.3). Therefore (3.4)
and (3.5) hold for m = p = 0.

Assume by induction that there are smooth complex valued coordinates ( = ((1,...,(p)
defined near zo € M so that in terms of (-coordinates, we can write the vector fields L,,
1 <v<n-1,asin (3.4) where the coefficients satisfy the estimates in (3.5) for m replaced
by p > 0. Set

Toj-1 = (j +Zj7 T2j = —i((; _Zj)a 1<j<n,

Lon—1 = _Z(Cn - En)a Top = t,
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and set 9
Dp=—. 1<k<2n—1.
8$k
In z = (x1,...,%2,-1,1t) coordinates, each vector field L,, 1 <v <n —1, can be written as

2n—2 8
b= (a@v 1 + Z ‘i e (@) 3932n—1>

=1

2n—2 8
(8$2y * Z i dv(2) 5’£U2n—1> ’

=1

where ¢, d] ,e,,d, are smooth real valued functions. Set

ii = Ty, = 1 2
I =z — Z Z D]D2 ¢ (0)a) 2k 2o, + DIDEAY (0)2d by,
v=2 j+k= p+1 :

for=3,...,2n — 2, and set

~ 1 ik +1
ZTon—1 =T2n—-1 — Z ZIERE] [D{Dzel(o)@"{ 552]
Pt (7 + 1)&!
2n—2
1
-2 X G [PPiPse 0] ety
B=3 jt+k=p U

1 1
B Z {FDQH o (0)ah gy 1 + mDQHdu(O)l’gH@u

- G O
If we set
1

_ — . 1 —
§($2j—1 + iTa;), 1<j<n—-1, wy, = §(t+ iZ2n—1),

then in w-coordinates, the vector fields L., 1 < a < n — 1, can be written as

wj:

o = o =y, L0 ~ ]
L, = Fur + 4 @l(w)a—wl + ;bl(w)é)—wl + (e(w) + Zd(w))my
a n—1~ 8 n—lN a _ 8
Loz - > e 3 e ~a ) o ~ 9
o + lzzlal (w) o + ; b (w) = + (o (w) + idg(w)) T

where for 2 <[, a,3 <n — 1, we have
A0 0i(0) =0, 9s0]8,6(0) =0,  j+k<p,
010,35 (0) = 9]0, b (0) = 9]8,e(0) =0,  jH+k<p+1,
(01— 91)°d(0) = (1 — 91)%€a(0) = (1 — 91)*du(0) =0, s<p+1L
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We perform the following change of coordinates:

gl = wq,

1
G=w= ) m[alalbl( 0w, wf],  2<l<n-1
Jj+k=p+1 ’

Then in terms of (-coordinates, we may write the vector fields Li,...,L,_1 as in (3.4) and
the coefficients of L, 1 < a < n — 1, satisfy (3.5) where m is replaced by p+ 1. If we proceed
up to m-steps, we will get a proof of the proposition. O

For each xg € M NU and § > 0, we want to define a quantity 7(xg,d) in such a way that
the sucessive derivatives of the coefficients of Ly, 1 < k < n — 1, up to a certain order (less
than or equal to m), change by no more than ¢ on a nonisotropic ball about xy. We use the
special coordinates ¢ = ({1, (2, .. .,(,) defined near xy as in Proposition 3.1.

Assume g € M NU. In terms of (-coordinates, we write Ly, 1 <k <n—1, as in (3.4) such
that the coefficient functions satisfy the estimates in (3.5). Note that we may assume that m
is an even integer. Let b(() = e(() + id({) be the coefficient function of 9/0x2,_1 in Ly, and
set

. 1 =k —k —k
bm1(Q):=2iRe | > SHo{0dO)AG | = D bx(a0)d{G
1§j+kgm—1]' ) 1<j+k<m-—1
Then, by virtue of the estimates in (3.5), we may write:
- n—1 e
(3.6) b= D bl +iRe | Y > 0 (w0)¢ (1,
1<j+k<m—1 B=2j+k<m/2-1
+O(GI™ + I NGE + [T+ [Cal),
where ' = (0,(2,... ,(n-1,(n). For 2 <v <n—1, let us write
v j =k m
(3.7) (=Y a dG+0o(GlE + (),
1<j+k<m/2-1
where a,’s are coordinate functions of 0/9¢, in L. Let z = (x1,...,Z2,-1,t) be the real

coordinates of ¢ and set Dy = 0/0xy, 1 <k < 2n — 1.
Note that —ib;,—1(¢) is a smooth real valued function which is an (m—1)-th order polynomial
in ¢; and ;. We let a(¢) be a real valued function defined by

0 0 -
8x1( ibm—1) = Im {acl m— 1} = Z aj7k§fclf.

0<j+k<m—2

(3.8) al¢) =

Using the coefficient functions vo

i k0 @1, and aj . defined in (3.6)-(3.8), we set

Ai(xo) = max {|aji|; 7+ k=1}, [=0,1,2,... ,m— 2,
Ey(x) = max {|aj ], |bfk| s i+k=U,8v=2...,n-1}, 0<l'<m/2-1,
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and for each § > 0 we define

(3.9) 7(20,0) = min {(5/Al(x0))1/(l+2)7 (51/2/El/($0))1/(z/+1)}.
o<i<m-—2
0<l'<m/2—1

Set 7(xg,0) = 7 for a convenience. Then it follows from (3.9) that
(3.10) 78 a(0)] < 7= UHHD ik <m -2,
and for 2 < 8, <n —1, we have

(3.11) 178, a, (0)] < 61/27— (k1)
(3.12) |558{5’1€b(0)| < §Y/ 2=kt j+k < fraem2 — 1.

If we combine the estimates in (3.10) with the fact that D3bn,—1(0) = 0, s < m ( because
(01 — 01)°d(0) =0, s < m ), we obtain, from the expression of a({) in (3.8), that

(3.13) |5ga{5’fb(0)| < VUMD =01, iem/24j+k<m—1.

From the estimates in (3.10)—(3.13) together with the fact that n(L;) = 0 it follows, by
induction, that

kO ,
(3.14) () O £8P0, ek <m/2 -1,
1
because 17(0/0¢,)(0) =0,1 <a<n -1, and §'/2 < 7.
Set w™ = 1/2(dt + in). Since S is integrable it follows that w"([L1, L,]) = 0 along M and
hence we have

(3.15) KoL, La])(0) =0,  j+k<m.

Combining the estimates in (3.5), (3.10)—(3.15) with the fact that n([L1, Ls])(0) =0, 2 < a <
n — 1, one obtains that

BT da(0)], [T ea(0)] < 0Y2rL, k<1,
1 1

and hence that 5
_k _ .
Iaiam(%)(())l <oVETL jak <L

If we use again the estimates in (3.5), (3.10)—(3.15) together with the fact that n(L,) = 0,
1 < a < n—1, we obtain, by induction, that

316) T OIS 8P, G kw2

(3.17) 1070, da(0)], 10905 ea(0)] <637~ 0HR) i>1 j+k<m/2-1
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—l
for 2 < a < n —1. To obtain the estimates for the derivatives of the form 0; for [ > 2, we
note, from the estimates in (3.5), that

(3.18) (01 — 0)%d(0) = (01 — 0)°eq(0) = 0, s <m, 2<a<n-1
Since we can write .
@1 —01) =0, + Y ¢;,s0) 9],
j=1

where c¢; s’s are integers, we conclude, from the estimates in (3.16)—(3.18), that

(3.19) T 5O S 30, k< m2-,
(3.20) 1078, da(0)], 21Ty ea(0)] < 620~ 0HR) 4k <m/2—1

for 2 < a <n—1. By virtue of the estimates in (3.11)—(3.13) together with (3.19) and (3.20),
we obtain by induction that

0

f)(0)| SO 2GRk 201, iem 245+ k<m—1.
1

~ ik
(3.21) 1050101 n(

These estimates are essential ingredients to obtain a uniform subelliptic estimates for @ in
dilated coordinates.
Set 7(zg,d) = 7 for convenience and let

Rs(zo) ={C€C™; |G| <7, |Co| <0V2r712 g=2... .n—1, |¢u] <6},
and define a dilation map Ds : C* — C™ by
Ds(¢) = (771, 07 Y%, 07V 1,071,) = (Wi, wp) = w.
Define
Qs(w0) = Ds(Rs(20)) = {w € C"; |wi| <1, lwg| <77Y2, B=2,... ,n—1, Jw,| <1}

and set L{ = 7(Ds).Li. Then, from the expression of L; in (3.4), we have

0 0 0
) __7 v 1/2 Y
L 5w + a1 (Ds(w ))awl + b1(Ds(w 8w1 + E 76 “ay(D (w))awl
n—1 8 a
§ —-1/2 D— 1
+ 7-5 bl( ) ( )) awl + T6 b( ( )) ay2n—1 9

where w,, = Yo, + iYon_1. Set ns = § 1. Therefore, 15(0/0y2,_1) =1 on M NU.
Set B(w) = b(Dj ' (w)). Recall the expression of B(w) defined in (3.6). So we can write:

Téle(w) = Z bjk(aco)é*lTijkJrlwl@’f
1<j+k<m—1

n—1
+17 Re Z Z b@k<$0)5—1/27j+k+1w1@1@ﬁ + O(7).

7
B=2 j+k<m/2—1
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Then as in Section 2 of [7], the non-negative condition for i/2ns([L, fi]) on Qs(xo) N M forces
that

(3.22) 612D ()| S 7Y << 1, jH k< % ~1,

where v = (10 x (m/2)!)~!. Therefore the bﬁ s, in the Taylor expansion of b(¢), are not the
major terms in the deﬁmtlon of 7(x0,9) in (3 9) and the estimates in (3.22) show that

(3.23) 9500000(0)] < Y27~ GHEHD+Y i ik <m/2-1, 2<B<n-—1.

By using the estimates in (3.5), (3.14), (3.15), (3.22) and (3.23) together with the fact that
n(L,) =0,1<v <n-—1, we can also show, by the method leading to (3.19) and (3.20), that

L 0 o
(3.24) \5{51?7(%)(0)\ <SSP
(3.25) 198, du(0)], [010rea(0)] < §Y2r—FEY G4k <m/2 - 1.

Using the estimates in (3.5) and (3.23)—(3.25), we can also show that
(3.26)  [810en([L1, Ta))(0)] < 62— UHk+D+Y 4k <m/2-1, 2<a<n-—1.

Now we want to show that the coefficients a, () of L satisfy the estimates similar to those
n (3.26). Recalling the expression of L; in ¢ coordinates as in (3.4), we set

—ZQV(C)L,,, za:La, 2<a<n-—1.

Then Zl can be written as:

n—1
0
— 5 y( ,
f= 8(1 lzzlal 8(1 Zl 8(1 )333271—1

=1

where, from the estimates in (3.5), (3.11) and (3.23)-(3.26), we have

(3.27) 9100w (0) = Ho 0(0) =0, j+k<m-—1, 2<I<n-—1,
(3.28) 93, 5(0)] < OGR4k <m—1,
(3.29) 195, 5(0)] < 62— GHkDEY G k< m2 1

for 2<pB<n-1.
If we combine the estimates in (3.27)—(3.29) and apply the methods leading to the estimates
n (3.26), we obtain that

(3.30) |a{5’fn([il,fa])(0)| < 52Utk Ay jH+k<m/2-1, 2<a<n-—1.
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Note that

where
~0([Ley, La])(0) = calxo) > do > 0, 2<a<n-1,

for an independent constant dy > 0. If we use the fact that i/2n([Lq, Lg])(0) = 0 for a # 33
together with the estimates in (3.11) and (3.26)-(3.30), we obtain that

(3.31) 98, 0, (0)] < 6V/27=UHk+D+Y Gk <m/2 -1, 2<v<n—L
Now set
T=1L Li=— — ne .
1+ L 92, + Z al(-fl?)@xl + agzp—1(x) D1

Then from the estimates of ag,—1 in (3.5), and of a;, 3 <1< 2n — 2, in (3.31), it follows that
(3.32) T 0 (0)] < §Y2r— DY ik <m/2-1, 3<I<2n—1.

From (3.31), we conclude that the functions a, () are also not the major terms in the definition
of 7(z¢,d) in (3.9). Therefore we conclude from (3.23) and (3.32) that

(3.33) 7(x0,0) = min {(6/A4;(20))*%; 0<1<m -2},
and hence it follows that §/2 < 7 < §Y/™ and if 6’ < §”, then
(3.34) (6"/6" V%7 (20,0 ) S 7(w0,0") S (8 /8" ™7 (o, 6.

In order to study how 7(z¢,d) depends on xg, it is convenient to introduce an analogous
quantity p(z,0) that is defined more intrinsically. Let us cover M by a finite number of
neighborhoods U, v = 1,... , N, in Q so that in each U,, Proposition 3.1 holds. Let {x,} be
a partion of unity subordinated to the coordinate neighborhoods {U,} of 2, and let m be a
given positive integer.

For any j,k > 0, 7 > 1, we define

v U1k
L) = S Tn(LL T @), w el

and set

Cr(z)= > ILym@)?  1<Ii<m-1,
j+k=l

and

Ci(z) =Y x.Cf (x).
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Set M = (m + 1)!, and for each 6 > 0, define

(3.35) ZCM/ZH 5 2M/l+1) 1/2M

Note that >°;", Ci(xz) > 0 if the type at x is less than or equal to m. Therefore u(z,d) is
defined intrinsically as a smooth function of § > 0 and z, for z satisfying ;" , Cy(z) > 0. Let
us fix xg € M NU and take the smooth complex valued coordinates ¢ = ((3,...,(,) defined
on M NU as in Proposition 3.1, where

1 . . 1 .
§($2j—1 + ix9;), 1<j<n-—1, Cn = 5(“‘ iTon—1)-

G =
For each 6 > 0, set 71 = 75 = 7(x0,0) and 7, = 612 3 <k < 2n — 2, and define
(3.36) Ps(xo) = {x € R*™ ; x| <7, 1< <20 —2, |wan_1| <6, |t] <6}

Without loss of generality we may assume that there is vy € {1,2,... , N} such that zo € U,
and x,, > 1/N on Ps(zy). Recall that Ly can be written, in ¢ coordinates, as

e 9
Ly =—+ a —|— bi( ,
LT oG z:; : Z : 6Cl )3$2n—1
where, from the estimates in (3.5), (3.23) and (3.31), we have

101y (0)], |950]0,b(0)] S 8V 2~ UHREDRY Gk <m/2— 1,
(3.37) 98 b(0)] < rUTRHD | ik <m -1,
HOh(0)=0, j+k<m, 2<LB<n—1.

Therefore may write

- d - 0
(339 £3an€) = =018} [1m (250 ) 0 (52 )| + By,
837271—1
where FE; j, satisfies, from the estimates in (3.37), that
(3.42) 500 0Y By (0)] S 8172~k
fori=0,1,and i-m/2+j+k+1; +1o <m—1. From (3.37)-(3.39) it follows that
(3.40) 1350087 Lm(0)] S 8127 Ukttt ),

fori=0,1,and i-m/24+j+k+ 11 +1ls <m—1. By (3.39), (3.40) combined with a simple
Taylor’s theorem argument, we then have

(3.41) 1L, xnm(Q)| S or~UFRED ¢ € Py(ay).
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By virtue of the definition of u(z,d) in (3.35), (3.41) implies that
(342) /L(.I‘, 5) Z T($0, 5)7 T E Pé('TO)‘

Conversely, let us show that p(z,0) < 7(xo,d) for z € Ps(xo). Recall that 7(z0, d) is actually
defined as in (3.33). Set

(3.43) T(z0,68) = min{l ; (6/A;(z0))Y"*2 = 7(z0,0)}.
Therefore there must exist integers jo, ko with (jo — 1) + ko = T'(xo, ) such that

v v 9
(Jo — 1)!ko! (Jo — 1)ko! 0C1

Assuming that x,, > 1/N, we obtain from the estimates in (3.38), (3.39) and (3.44) that

(344) 0{'0‘15?%(0)’ :’ 718, [ Im —B](0)| = g0 —ko =1,

Vo 1 - —Ao—ko—l
1250 g 1@0)] 2 5 (o — 1T (o, 8) 00,

provided that ¢ is sufficiently small. Again, by using the estimates in (3.38)—(3.44) and the
Taylor series method, we obtain that

(3.45) 1LY, n(z)| = d7(xg,§) Fo ko1 x € Ps(xo).

Jo,ko

If we combine (3.45) and the definition of u(x,d), we obtain that
(3.46) w(z,6) < 7(20,6), @ € Ps(xo)-

Combining (3.42) and (3.46), we have proved the following proposition.
Proposition 3.2. If x € Ps(xg), then

(3.47) 7(20,0) ~ p(x,9).

Corollary 3.3. Suppose x € Ps(xg). Then

(3.48) 7(20,6) = 7(x, 6)

Proof. If we set x = xq in (3.47), we see that p(x,d) ~ 7(x,d). Since this holds for z¢ = z, it
follows that u(x,d) ~ 7(x,d). Hence (3.48) follows. O

Remark 3.4. u(z,0) is defined intrinsically. That is, it does not depend on the choice of a
specific coordinates. Propositions 3.2 and Corollary 3.3 show that the quantity 7(x,d) is also
defined invariantly, up to a universal constant, with respect to the coordinate functions.

Now we want to construct a family of plurisubharmonic functions with large Hessian. The
existence of these functions will be a crucial ingredient in the subelliptic estimates for O-type
equation. Note that we are free to choose xog € M and § > 0. Now assume that ¥ € M.
Let us take the special coordinates ¢ = ((i,-..(,) defined near z¥ and write the vector fields
Ly,...,L, asin (3.4) satisfying (3.5). Also, let T'(x,0) be defined in (3.43). Let = = (2/,t) be
the real coordinates for ¢, where (z¥,0) = 2¥ € M. Set 1, = 7(2¥,6), 78 = §1/2,2<p<n—-1,
and 7, = 4§, and put a = (aq,...qy,).
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Proposition 3.5. Suppose ¥ € MNU. Then there exist a small constant a > 0 and a smooth
function hyv 5 on M NU which satisfy the following:

(1) |hgr s(z)| <1 and hyy 5 € C°(Ps(z?)).

(ii) If |t| < ad and if hyv s is not plurisubharmonic at x = (2',t), then

T(z',ad) < T(z",0).

(iii) If z € P,s(x”), |t| < ad, and if the inequality

n

O0hgv s( H 72’bk‘2

fails to hold at x = (2',t) for L =737, b;L;, then T(z',ad) < T(z",9).
(iv) For all x € Ps(x") and all L =3"7_, b;L; at x,

(00hv 5(L, L) S T 7 210wl
k=1

(v) |D%hge 5(x)| < Co [Tr—y 7o, where D* = 819" ... 0P8)", oy = Bi + .

Proof. We use the definitions of u(x,d), 7(x, ), T(x,0) and the fact that 7(z",0) ~ p(zx,d) for
x € Ps(x¥). Then the proof of (i)—(v) follow the same lines as in the proof of Proposition 3.1
in [7]. O

For each ¢ > 0, we set . = M x (—1,e) and S(¢) = M x (—¢,¢). By adding up the
functions h,v s constructed in Proposition 3.5, we can construct bounded plurisubharmonic
weight functions so that the Hessian of these functions satisfy certain essentially maximal
bounds in a thin strip S(e) of M. The heart of these construction is the so-called “doubling
property” of Ps(zp), which comes from the relation in (3.48). For a detailed proof of the
following theorem, one can refer to Section 3 of [4]. For each small § > 0, we set 7 (z) =
7(x,0), 72(x) = ... Tp_1(z) = 62 and 7,(x) = § as before.

Theorem 3.6. For all small § > 0, there is a plurisubharmonic function s € C°°(Qs) which
satisfies

(i) [o(x)| <1, € UNQ,.

(ii) For all L = Z?:l b;L; at x € UNS(0),

(3.49) DO (x: Z|b )77 (x), and

(iii) | DYs(x)| < Ca TIr—y 70 “* (x), where D* = 879" ... 0P8)", oy = Bi + .

In Ds-equation, we will assign a Dirichlet condition on one side of bS +, and the Neumann
condition on the other side of bS;r. This fact leads us to another difficulty which was not
occurred in 1/2 -subelliptic estimates of Catlin in [5]. To overcome this difficulty, we need
the following Lemma 3.7 and Proposition 3.8 which will be used in the proof of subelliptic
estimates for Ds-equation in Section 5.



16 SANGHYUN CHO

Lemma 3.7. Let 2¥ € M NU and set ¢y, = w"([L1,Lx]), 1 < k < n. Then for each small
0 > 0, we have

(3.50) [y (@) S o7(a”,0)72,  x € Ps(a”),

(3.51) ()] < Y20 (2, 6)7 1Y, xe Py(a¥), 2<k<n,

where v = (10 x (m/2)!)~!

Proof. Along M NU, we have dt = 1/2(dt +in) + 1/2(dt — in) and L,, = /0t — i0/0x2n_1,
which imply that 9t = 1/2(dt + in). Hence (3.50) follows from (3.41). Since LY is integrable
to infinite order along Mj, it follows that

i g . 0
(352) 6875(L1, ) 6875(L1 + Ll,L ) = 577 (|iL1 -+ Ll, ot +1 8513271 1})

along M NU. Note that we can write Ly +Ly =T =T, +tTs + x9,_1T5, where the coefficient
functions of T; does not depend on t or x5,_1. From (3.5) together with the estimates of the
coefficient functions in (3.37) it follows that

0

390271—1

—k 0
o3, =n(T)(0)|.

=k
(3.53) 879,

U(TI)(O)‘ SOV UHkDEY G e <my2 1.

Since (L1 + L1) = n(T) = 0, we have

k0 k0
(3.54) 213}, =-(T)(0) = 10}

axZn—l

Combining (3.53) and (3.54), we obtain that

1073 (o) (0)], 2]y n(Ts)(0)] < 627~ GHRDTY 4 <m/2— 1.

Therefore it folows that

0 0
J
|a 8177([ a + 81’2” 1

N0)| < Y2 Utk G e <m/2 — 1,

and this proves (3.51) for k = n.
When 2 < k <n — 1, we use the estimates in (3.26). O

For each § > 0, let 15 be the function constructed in Theorem 3.6. We need the following
proposition which will be used to prove Lemma 5.6 that is necessary for the estimates of (5.39)
and (5.40) in the subelliptic estimates of Dy operator in Section 5.

Proposition 3.8. For all small 6 > 0 and for each a = (a1, ... ay,) we have

n

(3.54) | (2)Ds (2)| < Codr(z,8)~ H

(3.55) el (z) D%Ps(x)| < C’Oéé%T(m,é)*ler H T2, §)
k=1
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forx € S(6)NU. Here 1(x,0) = 7(x,9), mi(x,8) =62, 2 <k <n—1 and 7,(x,6) = 6.

Proof. Note that the functions 15 in Theorem 3.6 were constructed by adding up functions
hyv s, ¥ € M N U, constructed in Proposition 3.5, with supp h,v 5 C Ps(2¥). By virtue of
(3.48), there is a small ¢ > 0, independent of § > 0, so that we can arrange points x¥ = z”(J) €
MNU, v e I, satisfying

S(d)ﬂUCUVEIP(;(:EV)? and Pcé(x’/)mPc(s(xM) :(D if V%:u

Then, as in the proof of Lemma 3.3 in [4], there is a fixed integer N (independent of §) such
that any (N + 1) intersection of Ps(z")’s are empty.

Now assume that = € S(6)NU. Then there are vy,... ,i; € I,1 < N, such that x € Ps(z"7),
1 < j <. By virtue of (3.48) again, it follows that

T(x,0) = 7(z",0) ~ ...~ 7(2",0),

independent of 9. If we express the vector fields Ly, ... , L, in terms of the special coordinates
in each neighborhood of z*#, i = 1,... ,[, then (3.54) and (3.55) follow from (3.50) and (3.51),
respectively. 0

4. SPECIAL FRAMES FOR ALMOST COMPLEX STRUCTURES

Assume M C M and let ¢ € C°°(M) be a smooth real-valued function such that ¢(z) > 0
for z € M, and p(z) = 0, dp(z) # 0 for z € bM. We can extend ¢ to 2 by requiring that it
be independent of ¢. Let us denote by 7T}, the type at a point p € M and define

T(M) =max{T, ; p € M}.

Since the type condition is an open condition, it follows that T'(M) is well-defined and is finite.
In the sequal, we assume that T'(M) = m < co. We define r € C*°(2) by r(z,t) = t(¢(z))>™
and for any ¢, 0, 0 <e <o <1, define

(4.1) Seo={(z,t) €Q ; p(x) >0 and 0 < r(x,t) <eo*™}.

Remark 4.1. The quantities ¢ and o will be fixed later. If we set g(z) = & - 0™ - p(x)*™, then
g is the required positive function in the definition of S; in Section 1 and S; , equals to S;F.

We define a subbundle of £° on Se,o by letting R, +) = {L € E?m’t) ; Lr = 0}. Clearly, the
map H defined by H(L) = L—(Lr)(L,r) 'L, defines an isomorphism of S onto R (at all points

of S..o). Set py(x) = pu(w,ep(2)*™), pa(z) = ... pn_1(x) = e20(x)™, pn(x) = ep(x)*™. We
define a weighted metric (, ) on £° by the relations:

(H(Ly), H(Ly)) = 5 (@) @) MLy Lo, 1<jk<n—1

<Ln7 Ln) = 57290('%)74?”7

(Ln,H(L;)) =0, 1<i<n-1,
where L; € §, 1 <1 < n—1. Since u(z,d) is a smooth function of x and 9, it follows that
(, ) is a smooth Hermitian metric on £°. Now, using Proposition 3.1, we shall cover S , by

special (dialated) coordinate neighborhoods such that on each of them, there is a frame £ that
satisfying required good estimates.
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Proposition 4.2. There exist constants eg and oy such that if 0 < € < eg and 0 < o < 0y,
then on S; , there exists for all xog € M with ¢(xo) > 0 a neighborhood W (xy) C S , with the
following properties:

(i) On W (xg) there are smooth coordinates yi,. .. ,Yan so that W(xo) ={y; || <o,0 <
Yo < 02™}, where y' = (Y1, Y2, ... »Y2n_1) is independent of t and the function ys, is
defined by ya, = e tp(x)~2™t. Thus, Mo N W (x¢) and M, N W (zq) correspond to the
points in W (xg) where ya, = 0 and 0®™, respectively. Moreover, the point (xg,0) € 2,
which we identify with xo, corresponds to the origin.

(ii) The above coordinate charts are uniformly smoothly related in the sense that if W(po)
and W (xg) intersect, and if y and yo are the associated coordinates, then

1D (70 (y0) )| < Cla

holds on that portion of R®™ where yo(yo) "' is defined. The constant C\q is independent
of €, o, and xg.

(iii) On W(xo), there exists a smooth frame {L1,... ,L } for L such that Zf {wh, ... ,w"}
is the dual frame, and if Li, and w* are written as Z br;0/0y; and Z dijdy;, then
Jj=1 Jj=1
sup  {|Dybr;(y)| + | Dydi;(y)]} < Clay,

yEW(.’Eo

where C|o 1s independent of xo, j, k, € and o.
(iv) With the frames as in (iii), set ¢y = w"([L1, L)), | = 2,...n. Then there is a constant
C > 0 independent of xg, € and o such that

(4.2) sup |cfy(y)| < Co®™,
yeW (z0)

(v) There are constants ¢ > 0 and C > 0 independent of xo, € and o such that if By(x)
denotes the ball of radius b about x € S, , with respect to the metric { , ), then

(4.3) Bco-(xo) C W(.ﬁlfo) C BCU(.I'()),
and if Vol By(xo) denotes the volume of By(xo) with respect to ( , ), then

(4.4) > 1o < Vol By(xg) < oy n—1g2m,

Proof. We first cover M by a finite number of neighborhoods V,,, v = 1,..., N, in Q such
that in each V,, there exist coordinates (uq,... ,us,) with the property that us, =t and that
ug(u',t) = ug(v',0), k < 2n, for (v',t) € V,, and that 9/0ug,—1 = — Xy at all points of M NV,,.
Also, we can arrange the neighborhoods V,, so that Proposition 3.1 holds on each V.

For any point g € M NV, we take coordinate functions ¢ = (¢}, ..., (}) constructed as in
Proposition 3.1. Let us set (¥ = ¢ and denote by L, the vector fields Ly, 1 < k < n, written
in ¢Y-coordinates, and let x = (z1,...,Z2,-1,t) be the real coordinates of ¢. In (-coordinates,
we may write:

n—1 D) P
k .
Ly = r +lz;az ;bz (C)ﬁ_fl+ (ek(C)Jrzdk(g)) Toa 1<k<n,
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where the coefficients af, bF, ex, dj. satisfy the estimates in (3.5) and (3.37).

Set § = ep(z0)*™, and let us write b(¢) = e1(¢) + id1(¢), where e1(¢) and d; (¢) are smooth
real valued functions. Recall the Taylor expansion of b(¢) at xg (i.e., at { = 0) in (3.6). We then
take the quantity 7(xo,0) and the corresponding quantity u(z,d) defined in (3.9) and (3.35),
respectively. By Proposition 3.5, it follows that u(zg,d) = 7(x,d), and hence the estimates in
(3.37) imply that

45 BT b0)] < Su(w0,0) 1 jrk<m—1,
1¥1 ~
(4.6) 1350]0,b(0)] < 6210, 6)" UYL k< m/2 1,

where 55 =0dgordg, 2<B<n—1,and Oy = 9/0(, 1 <k <n, and v = (10 x (m/2)!)~!
Set u = p(xo, d) for a convenience. We define new coordinates y = D. 5, () = (y1,.-. ,Y2n)
by means of dilation map D, ;, : R*" — R?" given by

—2m

(47) Y= (N_lxlnu_l'an(s_l/Qxiiu"' 75_1/2$2n—255_1x2n—116_190(x) xQn)7

where () is the function ¢ expressed in the z-coordinates of xg. In terms of the y-coordinates
we define an open set Wy(xg) by

(4.8) Wy(zo) ={x € Vu N Seo; yr(x)] <b, 1 <k <2n—1,0 <yap(z) < 02”7’}.

Note that in Wy(xg), y2n, = 0 and yo,, = o?™ coincide with r = 0 and r = 0™, respectively,

on the boundaries of S. ,. We define a frame {L1,...,L,} in W;(zo) by setting

(49) Ly = plw0)(LY — 1Y) = plw, 6 H(LY),
Ly = Y %p(x)™ (LY — riLY) = Y2 p(x)™ H(LY), 2<k<n-1,
L, = 590(x>2le;m

where rp, = (L¥r)(LY%r)~!, and LY is the vector field Ly written in z-coordinates of V,,. Set

n

2n—1 2n—1

v a 1%
V= Z_ZI ekl(a:)a—xl, 1<k<n-1, and Ln— —|— Z ent(z 8901

In terms of dilated coordinates y in Wy(xg), we set Ex; = eg;-D
and ®; = (0p/0x;) - D}

g,xo "
By a direct calculation, one obtains that

€x07Rk:TkDELE0’¢ SO‘D&‘ZB()

92 2n— 1 q)mel(I) "
(4.10) Ry = —2Em 2z = Wn - 1<k<n-1
1+2emy ;"] B, 92 1®ys,

We set
= sup {|Dy f(y)| ; y € Wi(x0), |a| <k},

and extend this norm to vector fields and 1-forms by using the coefficients of 9/0y; or dy;. By
virtue of Proposition 3.2, it follows that for all z € Wy(x¢), we have

(4.11) w(z,0) ~ 7(x0,0) S 0Y/™ = /M p(x0)2.
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Combining (4.10) with (4.11), we conclude that for each s > 0 there are C independent of
zo and ¢ such that

(4.12) 07 (@, 6) Risls wiy(ao) < Csbe™™, 1<k <n-—1.

Therefore L can be written, in y-coordinates, as

(e, 6) 2 o 2n—2 o
4.13 L, =12 By, — ,0)e /2 —m Ei,—
(4.13) ! M(xo,é); 1,18yl+u(w )e M Pp(we) ™ > Lo

_ —om 0 ~
+ p(z, 8)e to(w0) " F1 901 5 + O(E),
Yon—1
where
(414) |E1,1 - 1|3,Wb(x0) S C/L(I'(],(;), &) S m,

|E1,2 + 7:|S,I/Vb(:1:0) < C,U(-Z'(), 5)7 s < m,

and E satisfies, from the estimates in (4.12), that

(4.15) |Els,w, (w0) < cel/m, s < m,

for an independent constannt C' > 0. By virtue of the estimates in (3.31), we also have
(4.16) |z, 0)e 2 0(20) T Er ik wy(2o) < OT(20,0)Y,  k<m+1, 3<I1<2n-2.

Observe that the diameter in the x—coordinates of Wy, (z¢)is O(bu(xo,0)) < ¢(xo) by (4.11).
Hence it is clear that p(z,d)u(zg,d) ™! and ®p(x¢) ! are very close to 1 (independent of zy and
) in Wy(zo) if b is small. We also observe that u(x,d) is defined independently of coordinate
functions and that 7(xg,0) ~ 7(x,d) ~ p(x,d) if © € Wy(xzp). Therefore it follows that
1(wo,6) ~ p(po,8) and p(xo) = @(po) if Wi (o) N Wiy(po) # 0. These facts prove (ii).

Now set

1 ‘ 1 .
wy = §(y2k—l — zka), 1 < k S n — 1, and Wy, = _(y2n - Zy?n—l):

2
and define D; = 9/0y;, 1 <1 < 2n, and By,—1(y) = byp—1 © D;;O(y), where b,,,_1 is the
(m — 1)-th order polynomial of b(¢) in ¢; and (; as in (3.6). We recall that the real part e(¢) of

the coefficient function of 9/0x2,_1 in Ly satisfies the estimates in (3.5). Hence, by combining
(4.12)—(4.16), we obtain that

0 1 0
(417) L1 = 8_11)1 + ,u(.’]f(), (5)5 Bm—l(y) 8y2n71 + O(E),
(4.18) X+ = -2 1o,
oY1
where

(4'19) |E|s,Wb(m0) < CSE’Y/ma |,u(x07 5)5ile71|s,Wb(mo) < (s
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for an independent constant C' > 0. Combining (4.17)—(4.19), we conclude that if b < /o,

lim
o—0

=0, s<m+1.
S7Wb(m0)

0 0
L= (G o803 Ba () -

aanfl

Setting W (zo) = W, (x¢) for sufficiently small o, we obtain (i) and (iii).
To prove (iv), we recall that L,, = /0yan, — 10/0y2n—1 + y2n T, where Tys, = 0, and that
L is integrable to infinite order along M,. Hence
0 .0
—1
Oyan OY2n—1

(4.20) . =w"([L1, L)) = w" ([Ll + Ly, }) + O(y2n)-

Combining (4.18) — (4.20), we conclude that

(4.21) sup |ef, (y)| < Cr(e™ + 0™,
yGW(mo)

where v = (10 x (m/2)!)~!
For the estimates of c};, [ = 2,... ,n — 1, we need the estimates in (3.26). Then it follows

that |7, (y)| < C1e7/™, along My. Since L; and L; are tangential vector fields, for 2 <1 <n—1,
it follows that

(4.22) ()] < CLE™ + lyan]) < Co(E™ + ),y € W(xo),

Now we assume that ¢ < o™ 7" Then (4.2) follows from (4.21) and (4.22).

By Proposition 3.5, it follows that 7(xg,0) ~ u(x,d) for x € W(xg). Since {Li,...,L,}
is orthonormal with respect to (, ), we conclude that (4.3) and (4.4) hold if ¢ is sufficiently
small. U

Using the special coordinates y1,. .. , y2, and the special frames Ly, ... L,, defined in (4.9),
we want to define L?-operators with mixed boundary conditions. In the process of subelliptic
estimates for Dy-operator, we will see that certain boundary integral terms on My occur. To
handle these boundary integral terms, we need the following lemma.

Lemma 4.3. There are a frame {X1,..., Xy} for £ and its dual frame {nt,...,n"} so that
if we set ¢t =n"([ Xk, Xn]), 1 <k <n-—1, then

Crn =0 on Wi(xg), k=2,...,n—1,
(4.23) |5 () < Cso™™

Proof. With the frames Ly,...,L, and w',... ,w™ defined on W (xg) in (4.9), we let by (y),
2 <k <n—1, be the smooth function satisfying

(4.24) w"([Li, L Zbl (L, L)) (y) =0,  y € W(xo).
Since the Levi-form of Lo,...,L,_; is always positive definite, (4.24) is solvable on W (xzg).
Set

n—1
X = Ly, k=1,...,n—1, and X,=L,+» byl
=2
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Then its dual frames n*, k = 1,... ,n, are given by

n

n* = Wk — by (y)w", k=1,...,n—1, and n" =uw".
In terms of the new frames it follows from (4.24) that

n—1
crn = 1"([Xp, X)) = " ([Li, Ln]) + Y 0w ([Li, Ln]) =0,  2<k<n—1,
=2

on W(xg) and

n—1

(4.25) cty = W™ ([X1, X)) = W™([La, Lo]) + Y bu(y)w" (L1, L)),
1=2
Therefore (4.23) follows from (4.25) and (4.2). O

Recall that a deformation of £° is a section A of the bundle I'' (S. ). In terms of the special
frames in W (xg), we write A = Z;L,l=1 Aj@' ® Lj, and then define

AWl = > > IDgAuw)l,

la|<s 7,l=1

|[Als,w(zo) = sup{|A(y)]s ; y € W(xo)}-
We suppose that A satisfies
(4.26) |Almt2nt3,W(z0) < €0

for a sufficiently small ¢y > 0.

We define A(S.,) to be the space of sections A € T'%!(S., ; 0) such that along Mj,
A(L) = 0 whenever L € T%! N CT My. From now on, we assume that A € A(S. ). Then we
can define a deformation £4 of £° by

L'={Z+AT); TeLl, =zeS.,}.

In terms of the frames Xi,...,X,, and its dual frames n',... ,n™ in W(zg) constructed in
Lemma 4.3, we define B
X=X +A(X;), j=1,...,n,

and let nf;‘ be the dual frames. Set

A _ 1/4 A A A N—1vA . A __ A
(4.27) Lj—a/(Xj—(X-r)(X r) X), 1<j<n—-1, ILA=X

J n n

and

(4.28) wf;‘ = 0_1/47)f4, 1<j<n—1, wi =%+ (XAr)(XAr)_lni‘
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Obviously, the frames wf;{, for j=1,...,n, are dual to Lf, and L;“r =0for1<j<n-—1.
Note that we can write L,, = 9/0y2n, — 10/0y2n—1 + Y2, T, where Tys, = 0. Assuming that
A satisfies (4.26) for sufficiently small ¢y < o2m* 7 it follows from Lemma 4.3 that

(4.29) sup Wi (LA, Ta)(y)| < CoM/* A,  2<k<n-—1,
yeW (zo)
n —A m
(4.30) sup Wi (L4, Ta))(y)| < Co2m i/
yEW(J}o)

where the constant C' > 0 is independent of g, o and e.
In order to measure how LJA, j=1,2,...,n, depend on A, we define

N
Py(y; A) = > 1T 1AWk, -
ki,....kn v=1
|k1]+-+kn| <k

In the sequel, we assume that A satisfies (4.26) for sufficiently small gg.

Lemma 4.4.. Fory € W(xq), the following pointwise estimates hold:
(4.31) |L]1;1 - 01/4Lk|s < CsPs(y; A), |w§1 - 0_1/4wk|s < CsU_l/4ps(y; A)
for1<k<n-—1 and

(4'32) |L7/3 - Ln|s < CsPs(yQA)a |WZ - wn|s < CsPs(y;A)-

Proof. From the expression of Li} and w% in (4.27) and (4.28), the error terms are the finite
product of derivatives as in (4.31) and (4.32). O

For the subelliptic estimates on the non-euclidean balls W (xg), we still have to construct
a family of plurisubharmonic functions with maximal Hessian in dilated coordinates y defined
in (4.7). By virtue of Theorem 3.6 there is a family of plurisubharmonic functions {¥s(x)}s>0

defined on Qs NU = {(2/,t) ; t <6} NU. We may assume that there is an open set W (xg) =
Wee(xp), for some C' > 1, such that W(xg) = Wy(z9) € W(xg) € Pus(xo), provided o is
sufficiently small. We define

Sp =1y €QNU ;s [yan| <p},
and set 6y = d(zg) = €¢(w0)?™ and

(4.33) (@) = pla,0o), pela) = 2p@)™,  2<k<n—1,
() = ().

For any p > 0 we set

(4.34) ph (@) = p(x, pdo), ph(x) = (ps)'/?,  2<k<n-—1,  uh(z)=pdo.
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Theorem 4.5. For each small p > 0, there exists a C*° plurisubharmonic function X\, defined
on W(xo) > W (xg) satisfying the following:

(i) |\, <1 in W(x).

(ii) Forallye S,N W(:co), and LA = PR L, we have

00N, (y) (LA, T Z!bk\

(i) [LAN,[2 < 007, () (LA, 7).

(iv) [DNp| < Co TThey 1 () (1) =, where D* = 013," ... 95"9,", o = Bi + ;.
Proof. Let {15, }p5,>0 be the family of plurisubharmonic functions constructed in Theorem
3.6. Set A\,(y) = ¥ps, © D' (y), where Dy, is the dilation function defined in (4.8). It is clear
that A, is plurisubharmonic and satisfies (i). Note that the orthonormal frame {Ly,...L,}
defined in (4.9) can be written as L; = p;(z)(LY —r;L;), 1 <j<n—1, and L, = pn(x)L;.

If we let L =37 | b;L;, then it follows by functoriality that

(4.35) 0N, (y)(L, L) =00¢ s, (x)(dD,' L, dD, ' L)
=000 pso (£) (D bipi LY, Y bipunLy)
j=1 k=1

n—1 n

—2Re | Y > 1ibibui 00,5, () (L, L)
j=1 k=1

n—1

+ > riTkbibip k0N s, () (L, Ly ).

Jk=1
From the expression of ri(x) in (4.10) and (4.12) it follows that
(4.36) (@) S €™ (pdo) - plw,60) ™t for |t < pdo.

If we combine (4.36) with the properties (ii) and (iii) of Theorem 3.6, we conclude that

n

(4.37) 00N () (L, T) ~ 3 i 2u (1) 2.

k=1

Note that the vector fields L}‘"s and its dual frames w;"s were written in terms of L;’s, and

7’)’s as in (4.27) and (4.28). By virtue of the expressions in (4.31) and (4.32) we can write

(4.38) 90N (y) (L, T) = 007, (y)(L, I) + O(A%p~% + Ap~3/?)|L ]

Recall that A = 0 along M and satisfies (4.26). Hence |A|y < e9p? provided |ya,| < p.
Therefore it follows from (4.37) and (4.38) that

90A,(y) Z|bk| p (@) () 2.
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This proves (ii). (iii) follows from the estimate

n n B B A
LN S D bwPILEA P S > owlPpun(2)? () ~2 ~ 00, (y) (LA, L7).
k=1 k=1

(iv) follows from the property (iii) of Theorem 3.6. O

Next, we show that there exists a smooth Hermitian metric on S; , such that for all z¢ €
M the frames L{',... L4 given by (4.27) are orthonormal. For L € £° and A € A(S.,)
satisfying (4.26), define a bundle isomorphism P4 : £° — LA by P4(L) = L + A(L). Define a
homomorphism H, : £4 — R4, where RA = {L € L4 ; Lr =0}, by

Hy(L)=L - .
A( ) X;LAT n Lgyzn n

Then H, o P, is an isomorphism of R onto R*. We define a metric ( , )4 on £4 by

((Hgo Pa)Ly,(Ha o Pa)Lo)a = (L1, L), Ly, Ly € R,
<L£’L£>A =1,
<(HAOPA>Zl,L;?>AZO, Il €R.

Note that L is actually globally defined, so that the above conditions determine a metric on
LA, Since L;, 7 = 1,2,...,n — 1, defined in (4.9), are an orthonormal basis of £, it follows
that Lj‘ = (HgoPa)Lj, j=1,2,... ,n—1, are an orthonormal basis of L4 with respect to
< ) >A'

Let dV denote the volume form associated with the Riemannian metric (, ). In the coor-
dinates (y1,...,Y2n) in W(xo) we can write dV = V(y)dy, where dy = dy; . . . dy2,, and where
V satisfies

Vs,w(zo) < Cs and inf V(y) > ¢ >0,
yeW (zo)

where c is independent of o, ¢, and xyg. We will define the inner product for two functions g,
h e C*(S:;s) by

(9,h) = /95 dv.
Let A%4(S. ,; A) denote the space of (0, ¢)-forms with respect to £4 on S. ,, and set
194(S, ,; A) = A%9(S, ,; A) ® LA

Now let us define, for a given structure £4, where A satisfying (4.26) for small &y, the L2-
operators corresponding to D, : T4 — '+ and its adjoint. We define £29(S. »; A) to be
the set of smooth sections U of I'%9(S. ,; A) such that support of U is a compact subset of
Se.o. Let Eg’q(Seya; A) denote the set of sections of £29(S. ,; A) with compact support in the
interior of S: . Suppose that U =", > 1= U/w?) - L is an element of T%4(S, ,; A) with
compact support in W (zg). We define

(4.39) |U)? = /3 S wfRav,

=7 l=11J|=q
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where dV is the volume form given by the metric of £°. Since {L4!,... LA} is an orthonormal
frame, the quantity in (4.39) is independent of the frame neighborhood W (x). Thus, by using
a partition of unity, it follows that the norm in (4.39) extends to all of T'%9(S. ,; A). Let
L2(5e.0, T1°) denote the set of sections of I'%9(S. ,; A) such that (4.39) is finite.

Define B (S: ,;A) to be the set of forms in £29(S. ,; A) such that U/ vanishes on M,
whenever n ¢ J. (This is also independent of the frame neighborhood W (zg).) Similarly, define
B% (S .+; A) to be the set of forms in £29(S; ; A) such that U;/ vanishes on M, whenever n € J.
We now define the formal adjoint D) of Dy on £29(S:,»; A) by DU = G € £317 (S, 5; A) if
for all V € 97 (Sz.0; A),

(U, D,V) = (G, V),

where (, ) corresponds to the norm in (4.39). By combining (2.3) with (2.6) together with
integration by parts, it follows that if U = 3. U, L4 € T%¥(S.; A) is supported in W (), then

—* — —A —A
(4.40) DU=>) (90U, Z Za LT (LS U | L,
where

(4.41) U, =— Z S (LPUY + e U )wy
_k—

=1
§ : § : § : A A 'LJK—EK
(UA L L U A

|K|=k—2 (=1 i<j

We now extend the definition of the operator D, and Dy, to the L?-spaces. Define L2(S: ,; A)
to be the set of all sections U of T%*(S, ,; A) for which |U||?> < co. We define an operator

T: L2 1 (Se0; Th°) = L2(Se,0s Ty°)
by the condition that U € Dom(T) and TU = F € L2(S. »;T°) if for all V € BL(S. »; A),

we have

(U,D)V) = (F,V).

Similarly, we can define S : L2(S.,0;Ty") — L2,1(S-,»;T4°). Note that these definitions
imply that if U € Dom(T) (or Dom(S)), then TU = D,U (or SU = D,11U) as in the sense
of distribution theory. Let T* : L(S. ,; T4°) — L2_ (S »;Ty°) and §* : L2, (Se 0: T1") —
Lg(SE,J;T j"o) be the Hilbert space adjoints of T" and S, respectively. It follows that if U €
Dom(T*) and V' € Dom(S*), then

(4.42) T*U = D, (U) and S*V =D, (V),
as in the sense of distributions. Therefore it follows that
EXT(Se.03 A) NDom(T) = B (Sz.05 A),
E29(S..03 A) N Dom(T™) = BY(S..0; A).
Similar relations hold for S. Set
BY(Se,0; A) = BL(Se,05 A) N BL(Se 05 A).

Then we can approximate U € Dom(S) N Dom(7™) by U, € B%(S.,+;A) in the graph norm of
S and T™ [5, Lemma 6.4].
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Lemma 4.6. Let U € Dom(S) N Dom(T™). Then there exists U, € BY(S; ; A) such that

Jim (|0, = Ul +1|8U, = SU|| + |[T*U, = T*U]) = 0.

Finally, suppose that we have proved the estimate
(4.43) IU[1* < c(T*U|* + [ISU|?)

for all U € B(S;,»; A). Then Lemma 4.6 shows that (4.43) holds for all U € DomT* NDom S.
Then from the usual d-Neumann theory it follows that for all G € Lg(S&J; T j"o), there exists
an element NG € Dom(7T*) N Dom(S) such that

ING|| < C?|G],

and
(G,V)=(T*"(NG), T*V) + (SNG, SV), V € Dom(T™) N Dom(S).

We will call N the Neumann operator associated with D,.

5. THE SUBELLIPTIC ESTIMATE FOR D,

In this section we prove a subelliptic estimate for the D,-Neumann problem with almost
complex structure £4. We set ¢ = 2 in this section.
We first define tangential norms that will be used in the estimates. For any s € R, set

AR = [ [ € s+ ) dyen,

where f(€,y2,) = o e~ W Ef(y 4o, )dy . For any integer k > 0 and any s € R, set

k 2

o f

1112 =3 || 2
=0 O s—j

Then, for any integer m > 0 and f € C°°(W(2')), set
£l = > 1Dy fI%

la|<m

By using the coefficients of U, we can easily define all of the above norms for any section U
of I'%4. We recall that A(S. ) is the space of sections A € T%1(S. ,;0) such that along M,
A(f) = 0 whenever L € T%' N CTM,. We let C > 1 and 0 < ¢ < 1 be independent constants
which may vary in various estimations. Then the goal of this section is to prove the following
subelliptic estimate:
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Theorem 5.1. Suppose T(M) = m < oo and that A is a section of A(Se ). Then there exist
small positive constants o1 and €1 so that if e < e1, 0 < 01, and |Al ;4243w (20) < €, then the
D,-Neumann problem on S. , with coefficient o for the almost complex structure LA satisfies
the following estimate for all forms U € BY(S¢ »; A) that are compactly supported in W (zo)

(5.1) o2 |UN? + LAW) + o= |[UNA , < CISUIP + IT*U|P?),

where LA(U) is defined by

n—1 n

n—1 n
(5.2) LAU) = IZR U7 |2 + DN 17
k=1

k=1 (=1 |J|=q I=1|J|=q
n¢J
n
+Y > L/ ||2+Z > ILATY )R
t=117|=¢ t=117|=¢
neJ nQJ

We first state some necessary lemmas for the proof of Theorem 5.1 [5, Lemma 7.5].

Lemma 5.2. Let X; = Y, a;0/0xk, j = 1,...,¢, be smooth compactly supported vector
fields in R%, and suppose that there exist a set K € R? and a constant ¢ > 0 such that for all
r e K,

¢ < inf{z (Xl + > In((Xe XD 5 n € T3, Inl = 1},

1<J

Then there erists a constant C independent of X1, ..., Xy such that for all u € C§°(RY) with
suppu C K and any integer s > (d +5)/2,

y4
clullfyy < C | D IXgull® + llull® Y llajel?
j=1 ok

If n > 3, then the (n — 2) positive eigenvalue condition on the Levi-form of M guarantees
the existence of at least one positive eigenvalue. Set X5 1 = ReL/,‘;1 and Xqp = ImL,? for
1<k <n-—1. Then Lemma 5.2 and the expression of L,f in (4.27) show that

Lemma 5.3. Assume that n > 3. Then for all f € C3° (W (x)),

n—1
A —
(5.3) A NIAIB < (IEAFI2 + ILEFI2) + CIIR.
k=1
For convenience, in what that follows we omit the notation A from the frames L{,... , L4,
and wl, ... ,w%, and LA. Note that in W (xg), we have technically chosen coordinates in such
2m 2m

a way that ys, = 0 and yo, = 0°™ coincide with r = 0 and r = 0™, respectively, on the
boundaries of S, ,. Then the following lemma can be proved by modifying the proof of Lemma
7.7 in [5].
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Lemma 5.4. Suppose that f € C3° (W (xo)) and f vanishes either on My or on M,. If o is
sufficiently small, say o < o1, then there exists a constant C' independent of €, o, and xg such
that

(5-4) o AP < CUAIR jm + 120t 117),

where En =1L, orL,.
To handle the commutator terms, we need the following lemma.

Lemma 5.5. Assume that n > 3. Let U € B,(S: »; A) be compactly supported in W (zqy) and
assume that |K| = ¢ — 1 with n ¢ K and that 1 <k <n—1. Set ¥ = w"([Ly,Ly]) and
d", =w"([Ln, Ly]). Then

(eLA(U) + o HU|),

(eLAU) + a7 H|U]?).

(5.6) [(ckn LaUF ™ U < €
(5.7) (i, LU, U < €
Proof. Note that UFX = 0 on My and UX = 0 on M,,. From (4.29) and (4.30), it follows that
(5.8) cinlos dnglo < Co®™, 1<k<n-1.

Let x be a C* function defined on W(xo) > W (zp) such that 0 < x < 1, x = 0 near My,
X = 1 near M, and satisfies

(5.9) IX]o 7 (ag) < Co2ms, s=1,2,...
Let us write
(5.10) (R LU UMY = (R X DaUP UP) + (1= X)L UPE, U,
By integration by parts we get, from the estimates in (5.8), that
(XL UM UM) = (UM, el xLnUPS) + O(IUP) S 0 - o™ IXLaUP R [P + o H|U .

Using the fact that y = 0 on M, UZ”K =0 on M,, and (5.9), we can perform integration

by parts for the function ||xL,U/*¥||? in a standard way. Then we get

(5.11) IXLo UM N2 = IXLaU] S|P + o= O (|UP S|P + LU)) -
Combining (5.10) and (5.11), we get
(X LU, UM S o LAU) + 0 H|U2.

Similarly, we can estimate (¢}, (1 — x)L,UFX, UM). This proves (5.6). The proof of (5.7) is
similar ]

For each small p > 0, we set

S, ={( yn) 5 lyzn] < p} N W (20),

and let A\, = ,5, o D;()l y) be the plurisubharmonic weight functions constructed in Theorem

4.5, where 0o = e¢(xg)?™.
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Lemma 5.6. For each k, 1 <k <n—1, set dy, = w"([L1,Lx)) and let x = D (y). Then
on S, we have

(5.12) |d7 (L)) ()| S 027 (2, 60) 7 (2, pdo) 2,
(5.13) A (L) ()] < a2 p7 Y 27 (2, 60) 7 (2, pdo) ~H 17, 2<k<n-—1.

Proof. Note that d}, = EZ([L{‘,Z?]), where w?% and L#’s are defined in (4.27) and (4.28).
Therefore it follows that

(5.14) Te(y) = 020" ([Le, Ti)) (y) + O(|AL).

Now assume that y = (v, y2n) € S,. Then z = (2/,t) = D, '(y) satisfies

Zo

t| < peg(z0)*™ = pdo.

Let pg(x) be defined as in (4.33). Then, by functoriality, it follows that

W™ ([L1, L)) () (LnAp) ()
= fin (@)~ W™ ([ (@) H(LY), s (@) H(LY)]) () (2) Ly sy (2)
= pu1 (@) pre(@)o™ (L1, L)) (@) Lthpsy (2) + O(220 Lthps, (),
where we have used the notation in (4.9) and the expression of r in (4.10).

Note that 7(x, do) ~ p(z, 6) ~ u(x,ep(x)?>™), and ug(z) ~ 55/2 on W (zg). Since xz € S(pdo)
(in z-coordinates), it follows from Proposition 3.8 and the property (iii) of Theorem 3.6 that
(set 0 = pdp there)

(5.15) 1 ()2 0™ (LY, L)) (@) Ltps, (2)| S 7(x,60)* (pS0) 7 (2, pdo) > (pdo) "
= 7(a.b0)?7 . pb0) 2

and for 2 < k <n — 1, we have
|1 (@) g (@)™ (LY, L)) (@) L b, ()]

7(2,60)80"% - (p60) /2 - 7(, pSo) "+ (pdo) !
p~ 27 (w, 60)7 (2, pdo) M.

(5.16) <
<

Assuming that A satisfies (4.26), it follows that |A|; < egp? if y € S,. Also, it follows from
the property (iii) of Theorem 3.6 that

(5.17) |@on Lythpsy (1) ST, @ € S(pdo).

If we combine (5.14)—(5.17), then (5.12) and (5.13) follow. O

We now want to prove Theorem 5.1. Assume U = > ", Z|J|=q U/w’ - L € BY(S.,y, A)
with supp U C W (xg). Then from (4.40) and (4.41) it follows that

T*U = DU = BU + C|U,
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where

n

(5.18) BU:—i > Uit Es - L.

I=1 |K|=¢—1j=1

Also, (2.6) shows that

(5.19) SU = DU = AU + C|U],

where

(5.20) AU =) > (L)@ - L.
I=1|J|=q j=1

Combining (5.18)—(5.20), we see that
(5.21) IAU|I” + |BU|I* < 2I|SU|I* + 2| T*U|* + ClIU|I*.

Let us write U = U’ + U”, where

U= Y uvw-L, Uv'=> )Y Uv L,
1=1 |J]=q I=1 |J]=q
neJ n¢J
and set
n n—1 n
LU") = SOILU P+ ) LU,
I1=1 k=1 |J|=q I=1 |J|=q
neJ neJ
n n—1 n
LU") = STUZRU P+ LU 1P + )0 D ILU )P
1=1 k=1 |J|=¢ I=1 |J|=q
n¢J n¢J
Then we can write
(5.22) |AU|? + | BU||> = |AU"||> + | BU"||” + || AU"||> + | BU'||> + E(U',U"),

where E(U’,U") denotes the (sum of) inner products (AU’, AU") and (BU’, BU").
Note that the Levi-form of M, has at least (n — 2)-positive eigenvalues and U” = 0 along
M. Therefore we may proceed in the standard way as in [10,11] for U” and we get

(5.23) |AU"||* + |BU"||* > c(L(U”) +/ |U”\2d8>.
M

o

A typical term of E(U’,U") looks like

(LkUle, LnUan) . (anlea zkz Uan),
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where n ¢ K and 1 < k <n — 1. Since UZkK =0 on My and UZ”K =0 on M,, we can perform
the integration by parts and we get

(5.24) (LpUFE | L, UMY =(L, UFE  TLUM) — (e LU, UPE)
+ (énLkUle7 Uan) + ([Lkv Zn]Ule7 Uan)'

By integration by parts if necessary, the second and the third term of the right side of (5.24)
are bounded by o L(U’) + Cot||U|]?. If we write

(5.25) (i, L] U, UPE) =Y (o LU UMY + > (dy,, LU, UPF),

i=1 =1

where ¢t = w'([Lg, L,]) and di, = ©([Lg, L;]), then when i < n, the each term of right is
dominated by o L(U’) + o~ 1||U||?, by applying integration by parts if necessary. If i = n, then
(dn L,UFE UMY is bounded by o L(U’) + o~ 1||U||%. The remaining term (cf L, UFE UK)
can be handled by using Lemma 5.5. Therefore we conclude that

(5.26) |E(U",U")| < CeLU") + o H|U]?).

—~

Let A € C°°(W(xg)) with |[A| <1, and for f € C°°(W(x¢)), we define

1913 = [ Ieay,
W(zo)
Combining (5.22)—(5.26), we conclude that

4VI? + 18U 2 e (L) + [ jurpav)

1
(5.27) + 3 (IAU'IIX + [1BUI1%)
— CoL(U') = CoH|U|1?,

because e~ > 1/3.
Now let us estimate ||AU’||3 + || BU’||3. As in (4.2.3) of [11], we get

n n—1
(5.28)  [JAU'|X + IBU'|3 = La(U") + > > [(Lka"iy‘UzJ")A — (LU, LU ™A |
=1 j,k=1
n n—1 7 n
where Ly(U') = >, ZIJIZJq S ooy ILRUZ 1R + 300 ZIJIZJq IL. U3
ne ne
With the notation 6, = e*Lye ™, 1 < k <n — 1, we have

n—1
(5.29)  (0xUF™,6;U7"™)x = (LuUF™, L;U{™)x + O (al/4||<LA>U’||2 +ol/y ||LkU{“”||2),
k=1
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where ||[(LN)U'[]? = || 22;11 (LkA)UF™||?. By the standard integration by parts method, we
obtain that

(5.30) IL&U™ 1 = |ILe U™ ~ /M w|UFPdS + O(a L(U") + o~ H|U'|?).
0

As in (5.24), we can write, for 1 < j k <n—1, as
(5.31) (xUF™, 8;U7™)\ = (L;UF™ T U™ s — (en L;UF™, U™
+ (&;0,UF™ U™ )5 + ([6k, L; U™, UT™)x

By integration by parts, if necessary, the second and third terms of (5.31) are bounded by
CoL(U') + Co~Y|U'||2. To estimate ([6y, L;|UF™, U{™)x, we write

(5.32) ([6k, L) UF™ UT™) Z%L n Ui A+Z " U™,
+ (L (LN U™ U™y,

where ¢}; = w ‘([Lk, Lj]), and di,; = w'([Lk, L;]).
If i < n, then (d’JLZUl"m,Uljn)A is bounded by oL(U’) + Co~1||U’||?>. By integration by
parts, we can write

(5.33) (ch; LiU™ U™ = (i (LN U™, U™\ + O(cL(U") + o U |?).

If i = n, then (cQjLnUlk”,Uljn)A is bounded by oL(U’) + Co~t||U’||?>. By integration by
parts again, we can write

(5.34) ( ijnUlknann)A = ( Zj(an)Ulk",Uf")A—/M Zlek”U?ne_’\dS
0
+O(L(U" )+ o H|U'|I?).

Combining (5.28)—(5.34), we obtain that

n—1
|AU"|[X + | BU"|I3 > Z [ (LeNUF™ UM )x 4> (e (LNUF™, U™
J,k=1 i=1
n—1

(5.35) + ) (@ (TN U™ U™

- Z /M ( Zleangn + Cro' Ay U P)e N dS

+ cL(U") = CLo YA |(LNU'|)? = Co™ | U2

With the notation

n—1
90N =) Apw! AT,

Jik=1
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the first sum of the right hand side of (5.35) is equal to Z" ! ()\ijljn, UF™) 5. Now suppose

that [A\| < 1 on W (zo). Let x(t) denote the function o1/4/3C1et and set ¢ = x(A\). Then
X (t) > Cro~ Y4/ (t)?, and we get

n—1 n—1 n—1 2
(5.36) > bitite =X'(t) Y Nrtile + X" ()] Y (Lad)tn
G k=1 G k=1 k=1
01/4 n—1 ~ n—1 2
> W Z )\jktjtk + 010_1/4X/(t)2 Z(Lk)\)tk
1
7,k=1 k=1

Since My is pseudoconvex and dj, > d > 0 for 2 < k <n — 1, it follows that

n—1 ]
(5.37) -y /M (@5 UFT" + Crotdi, [UFP)edS > 0,
=17 Mo

provided that o is sufficiently small. Thus, if we replace A by ¢, then we conclude from (5.36)
and (5.37) that

/4 n—1 ‘ i
90 (AeU7™, U™y
jk—l

(5.38) IAT|I5 + 1 BU[1G >

+ Z (LU U™
7,k=1
+cL(U") — Co™ | U'||2.
Now we take the family {\,},>0 of plurisubharmonic functions with maximal Hessian con-
structed in Theorem 4.5, and replace A in (5.38) by these functions. By Lemma 5.6 and the
fact that 7(z, ) = p(z,d), we have, for y = D, (z) € S,, that

(5.39) (7 (LX) (y)| S oM Pz, 60) (s, pdo) 2,
(5.40) (7 (LX) ()| S 0207 2, 6o ) (e, pdo) 17, 2<k<n-—1

Also, it follows from (4.27) and (4.28) that
(5.41) (d} (LA W) So'2p7h 2<jk<n—1.

By virtue of Theorem 4.5 it follows that (assuming that we first take py < o™ for sufficiently
small o) there is, for each 0 < p < ¢*™, A = )\, such that

(42) 3 Aa)UP () Zw’f“ @) 2 yes,

Jik=1

where () and pf (x) are defined in (4.33) and (4.34), respectively.
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Combining (5.38)—(5.42), we then have that

n—1
JAU'|[? + | BU|? = ea™/? >~ (AU, UF™) + eL(U”)

jk=1
> c(a'Pp7? MU + L(U)),

because ju(x,60)%pu(z, pdo) ™2 = p~ %™ by (3.34). Then, by the theorem of Catlin [2], the
subelliptic estimates of order 1/m holds for U’ and hence we get

(5.43) o PINUN m + LU') < COIAU'|? + | BU|1?) + [|U”].

Combining (5.21), (5.27) and (5.43), we conclude that

B4) SO+ ITUP 2 e (o 201 + L) + [ 078 - co o,

o

If n =2, then U” = 0 on M, and if n > 3, then we have at least one positive eigenvalue.
In this case, we apply Lemma 5.3 for f replaced by U” and get

(5.45) o' UM}, < CLU").
Combining (5.4), (5.44) and (5.45), we conclude that
o2 |UIP + L) + o 2|[UII2 ), < CUSTIP + ITU|?),

for all U € B%(S. ; A), provided o is sufficiently small.
For the estimates of the non-tangential derivatives of U, we note that L7 = 0/0ya, + X,
where X = Z?i}l b;i(y)0/0y;. Therefore a standard argument yields the inequality

(?f 2n—1 .
(5.46) ||I%||I2_1+1/m SO L+ > bl nyanss | WA m + 1T f 12+ 1£17)
j=1

—~

for all f € C§°(W(xg)). This inequality can be applied with f = U/ to obtain (5.1) from
(5.46). This completes the proof of Theorem 5.1. O

We now define Sobolev spaces for sections of T'%9(S; ,; A). Recall that the open sets By (o)
satisfy (4.3) and (4.4) for each zy € M. Choose a set T, = {7 € M ; i € I} such that the sets
Beg2(2f), i € I, cover S », and such that no two points x7 and zf7 satisfy |zf — 27| < co /4,
where | | is the distance function on S. ,. It follows that the sets W (z7), i € I, cover S¢
and that there exists an integer N such that no point of S, , lies in more than N open sets
W (z7). Furthermore, there exist functions (;, ¢; (that are independent of ya,,) € C5°(W (z7))

3
such that > ¢? =1, and if z € supp ¢;, then
i€l

(5.47) ¢/ =1in Buy(x),
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and that both (; and (] satisfy
(5.48) |Gl w @) + 1€ kW (ag) < Cro™ .
Now, let F' be any section of I'%9(S; ,; A). We define

A= Z ||C1'F||i,A,W(m‘i’)7
el

i

where

||CiF||i,A,W(xg) = Z Z ||Cz‘FzJ||i,W(mg)v
=1 |J|=q

n

and F = > Y Flwy - L;‘ is the decomposition of F' in terms of the frame of W (z?).
=117

Moreover, the Sobolev norm || || w(.<) is taken with respect to the y-coordinates of W (z?).

We define ng(Sg,g;Tj"O) to be the set of all sections F' of I'%9(S, ,; A) for which ||F|[xa <

oo. If we define Lg(S&U;le’O) to be the set of all F € I'%9(S. ,; A) such that ||F||? < oo,
then it is obvious that the norms || || and || ||o,.a are equivalent on Lg(SE,J;Tj"O). Since
A(Se.o) C TY1(S, 5;0), we define ||Alx = ||A||k0 for A € A(Sc), and Hy(S: »;.A) to be the
set of A € A(S;,) such that ||Al[r < oco.

We want to get an estimate in global form. Define Q(U,U) = ||T*U||> + ||SU||?>. By using
the partition of unity as defined above satisfying (5.47) and (5.48), and from the estimates in
Theorem 5.1, we obtain the following

Corollary 5.7. There exist a fived small o and a constant €1 > 0 such that for alle,0 < & < g,
and all U € Dom(T™*) N Dom(S),

(5.49) IU|I* < CQU,U).

Now let us fix o > 0 satisfying Corollary 5.7, and set W (xg) = W, (xg). Using Theorem
5.1 and the standard “bootstrap” method, we can get regularity estimates for the linearized
equation. The proof is similar to that in Section 9 of [5]. Here we use 1/m subelliptic estimates
instead of 1/2 subellitic estimates. Set (] = DDy + Dy 1 Dg11. In the sequel, we assume that
A satisfies

(5.50) [All2n+3 < €o.

Theorem 5.8. Suppose that U is the solution of U = G, where G € H,S’q(SE;Tj"O) for all
k > 0. Then
DUk + |1Dg41Ullk S [|Glle + (1 + [[Allk+2)[|Glln+2-

Now set E' = D}, Dqy1U. Then we have the following estimates for the error term E [5,
Theorem 10.3].

Theorem 5.9. Suppose that DU = G, where Dy 1G = 0 and G € H,S’q(SE;le’O) for all k.
Then E = Dy 1Dq1U satisfies

(5.51) 1Elk-1 S IGTRIE nsr + Gt F4
+ (14 | Al |Gl L 1 1.

Note that F4 is Ds-closed. Since g = 2, we immediately obtain
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Corollary 5.10. IfU is the solution with respect to LA of OU = F4, then V' = D3U satisfies
forallk=n+1,n+2,...

(5.52) 1DV = FA e S IF kst lF ngr + [ Alkas | B2 o

6. EXTENSION OF C'R STRUCTURES

In this section we will prove Theorem 1.1 and Theorem 1.4, using the estimates in Section
5. First, we describe the nonlinear extension operator. For details, one can refer to Section 11
of [5].

If A € A(S-,) is sufficiently small and if we set P4 (L) = L+ A(L), then L4 = {Pa(L); L €
L}. If we set Qa(w) = w — A*w, then AL = {Qa(w) ; w € AYO(L)}. We define a nonlinear
operator ® : A(S. ,) — I'%?(S. ) by

(6.1) ®(A) L', I",w) = Qa(w)([Pa(L’), Pa(L"))).

Obviously, if ®(A) =0, then L4 is an integrable almost complex structure on S, ,.
Note that there is a natural map P4 : I'y* — T'%2 defined by

(PaB)(L1, Ly, w) = B(Pa(L1), Pa(Lz2),Qa(w)), Bel%”
Therefore it follows from the definition of F'4 in (2.5) that ®(A) = PA(F4). We also note

that if d and A are small sections of A on S.,, then there exist sections A , and A , of
Ag’l ® Tj"o and Afl;l ® Tg’l, respectively, such that

Para(D) = Pa(T) + A% (Pa(D)) + A5 4(Pa(T)).

Similarly, there exist sections (52 s and 6, 5 of Hom(A}L{O,A}L{O) and Hom(A}L{O,A%’l), respec-
tively, such that

Qa+d(w) = Qa(w) = 0} 1(Qa(w)) — 05 4(Qa(w)).
Then it follows that Ai (d) = Aj 4 both depend linearly on d and that the coefficients depend
smoothly on A, and the mapping d — A 4(d) = A% (d) + A, (d) is invertible. Then ®'(A)(d),
as an element of I'%2, satisfies

(6.2) ®'(A)(d) = (Pa o D3’ o A%)(d) — Palha(d)(FY)),

where ha(d) : Ty° — T4 denotes the adjoint of 6§(d) : AL® — T4°. Since ®(A) =
Pa(F4), we let Uy be the solution of OU4 = —F4, and then set V4 = (D4)*Uy and dgq =
AZ'(Va). Using the error estimates in Theorem 5.9 and Corollary 5.10, we then obtain the
following good estimates for the approximate solution of ®(A) + ®'(A)(d) = 0.

Theorem 6.1. Suppose that A € Hy(S¢ s, A) for all k. Then there exists da € Hi(S¢ s, A)
for all k such that if K > n + 2,
63 dale S 19+ 1AL |24 o
(6.4) 12(A) + @' (A)(da) k-1 S NP1k P(A) Itz + [[All 2| S(A)[72-

Note that properties (6.3) and (6.4) of the nonlinear operator ® are the crucial ingredients
in the application of simplified Nash-Moser iteration process [15].

We recall that F4 vanishes to infinite order along My ( in x-coordinates !). This can be
stated in y-coordinates as follows. The proof is similar to that of Lemma 6.2 in [5].
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Lemma 6.2. Suppose that there exists a section F € F0’2(5+), where QU = {(z,t) €eQ; 0<
t < 1} such that F and all its derivatives vanish to infinite order along M. Then for all
k,N=0,1,2,..., and all xo € M,

(6.5) |FO e w(ao) < Crve™(20)Y,
where FO means that F is written out in W (zo) according to the frames LY, ... | LY, Wb, ... wl
of L.

We can now prove the main theorems of this paper:

Proof of Theorem 1.1. We will show that ||®(0)||p < b for the small b > 0 and the integer
D, which are appeared in the variant of Nash-Moser theorem [15]. The rest properties for the
®(A) in the hypothesis of Nash-Moser theorem can be proved using the relations in (6.3) and
(6.4), and the estimates for [J operator in Section 5.

Note that (5.48) and (6.5) imply that for each i € I,

IG:F[I70 < Crne™p(af)Y,
where (;’s are defined before (5.47). After summing up over z7, we get

(6.6) | FO

2 o\N N
koo < CknN E p(xf) e,
icl

Since the choice of points that was made before (5.48) shows that the balls B.,/s(x7),
i € I, are all disjoint, we can obtain an upper bound on N(I), which is defined to be the
number of i € I such that 2771 < ¢(27) < 27! In fact, in terms of the ( , )o-metric
introduced at the end of Section 2, the volume of B, s(x7) is roughly bounded below by
gnHlgn=142m (o) 2m(nt2) o, gntlgn—142m . 9=2m(n+2) "and the ( , )o-volume of the region
in S, with 2771 < ¢(x) < 27! is roughly bounded above by eo?™-272m! Thus, we conclude
that

(67) N(f) 5 87n07(2n71)22ml(n+1)'
Thus (6.6) and (6.7) imply that if N = 2mf(n + 1) + 1, then
12(Ao) Ik = IFllk.0 S C - €

for sufficiently small €. In particular, if we set £ = D and choose € to be sufficiently small,
then it follow that ||®(A)|p < b. O

Proof of Corollary 1.3. Clearly, M C bD is a C'R manifold satisfying all the conditions of
Theorem 1.1. Therefore we can extend the given C'R structure on M to the outside of D by
Theorem 1.1. Then, by virtue of Theorem 2.2, the extended C'R structure can be patched
smoothly with the given complex structure on D. Therefore Corollary 1.3 follows from the
Newlander-Nirenberg theorem. ([l
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