
EXTENSION OF CR STRUCTURES ON PSEUDOCONVEX

CR MANIFOLDS WITH ONE DEGENERATE EIGENVALUE

Sanghyun Cho

Abstract. Let M be a smoothly bounded orientable pseudoconvex CR manifold of finite type
with at most one degenerate eigenvalue. Then we extend the given CR structure on M to an
integrable almost complex structure on the concave side of M . Therefore we may regard M as the
boundary of a complex manifold.

1. Introduction

Suppose that M is an abstract smoothly bounded orientable CR manifold of dimension
2n − 1 with a given integrable CR structure S of dimension n − 1. Since M is orientable,
there are a smooth real nonvanishing 1–form η and a smooth real vector field X0 on M so that
η(X) = 0 for all X ∈ S and η(X0) = 1. We define the Levi form of S on M by iη([X ′, X

′′
]),

X ′, X ′′ ∈ S. We may assume that M ⊂ M̃ , in C∞ sense, where M̃ is a smooth manifold.
In [5], Catlin has studied an extension problem of a given CR structure on M to an integrable

almost complex structure on a 2n–dimensional manifold Ω with boundary, bΩ, so that the
extension is smooth up to the boundary and so M lies in bΩ. Under certain conditions on the
Levi form (cf. [5, Theorem 1.1, Theorem 1.3]), this shows that an abstract CR manifold can
be locally embedded in Cn [1,13,16].

In this paper, we study an extension problem of a given CR structure on M when M is a
pseudoconvex CR manifold of finite type with one degenerate eigenvalue and dimRM = 2n−1.
For a given positive continuous function g on M , where g = 0 on bM , the boundary of M , we
define

S+
g = {(x, t) ∈ M × [0,∞) ; 0 ≤ t ≤ g(x) }.

Then our main result is the following theorem:

Theorem 1.1. Let (M,S) be a smoothly bounded pseudoconvex CR manifold of finite type with
at most one degenerate eigenvalue and dimRM = 2n−1. Then there exists a positive continuous
function g on M and a smooth integrable almost complex structure L on S+

g such that for all
x ∈ M , L(x,0) ∩CTM = Sx. Furthermore, if JL : TS+

g → TS+
g is the map associated with the

complex structure L, then dt(JL(X0)) < 0 at all points of M0 = {(x, 0) ; x ∈ M}.
Note that we extend the given CR structure on M to the concave side (instead of convex

side) of M . When dimRM = 3, the author proved the same result when M is a pseudoconvex
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CR manifold of finite type [8]. We also note that if M is strongly pseudoconvex, this case was
handled in [5, Theorem 1.1].

In general, Theorem 1.1 does not imply that the given CR structure can be locally embedded
in Cn [12]. On the other hand, a theorem of Newlander-Nirenberg [14] shows that an integrable
almost complex manifold is a complex manifold. Therefore if we let (M,S) be as in Theorem
1.1, then we have the following corollaries.

Corollary 1.2. We may regard (M,S) as a boundary of a complex manifold.

Corollary 1.3. Let D be a complex manifold with C∞ boundary, bD, and dimCD = n.
Suppose that the almost complex structure on D extends smoothly to a manifold M ⊂ bD,
where M is a smoothly bounded pseudoconvex CR manifold of finite type and the Levi-form
of M has one degenerate eigenvalue and dimRM = 2n − 1. Then D can be embedded into a
larger complex manifold Ω so that M lies in the interior of Ω as a real hypersurface.

Remark 1.4. In [6], the author showed that any smooth compact pseudoconvex complex mani-
fold D of finite type with dimCD = n, n ≥ 2, can be embeded into a larger complex manifold Ω.
Corollary 1.3 is a generalization of this result to some special non-compact complex manifolds.

Remark 1.5. If (M,S) has at least three positive eigenvalues, Catlin [5] has extended the given
CR-structure of S to the pseudoconvex side of M [5, Theorem 1.1]. If M is also pseudoconvex,
this result implies the local embedding of CR-structures in Cn.

In [5], Catlin has introduced certain nonlinear equations which stem from deformation theory
of an almost complex structure (Section 2). The linearized forms of these equations are simply
the ∂–operator from Λ0,1⊗T 1,0 to Λ0,2⊗T 1,0 (Section 2). To overcome difficulties in subelliptic
estimates for ∂ near bM , we choose a Hermitian metric on S+

g so that S+
g takes on the form

Sε = M × [0, ε]. To this end, we choose, for each x0 ∈ M , a noneuclidean ball that is of size
δ = g(x0) in the transverse holomorphic direction and of size δ1/2 in strongly pseudoconvex
tangential holomorphic directions, and of size τ(x0, δ) in the weakly pseudoconvex tangential
holomorphic direction. We choose the metric so that the unit ball about x0 ∈ M corresponds
to the above noneuclidean ball with δ = g(x0).

To show that τ(x0, δ) is invariantly defined (i.e., independent of coordinate functions), we
choose special coordinates defined near x0 ∈ M (Proposition 3.1). These change of coordinates
shall have an independent interest in studying weakly pseudoconvex CR manifolds of finite type.
In terms of these special coordinates, the weakly pseudoconvex tangential holomorphic vector
field L1 has a special representation so that we can define another quantity µ(x, δ), which is a
smooth function of δ and x and it is obtained by taking sucessive brackets of L1 and L1 and
hence defined invariantly. A technical difficulty is to show that the brackets mixed with L1 and
the strongly pseudoconvex tangential vector fields are not major terms in determining µ(x, δ).
Then we show that τ(x, δ) ≈ µ(x, δ) (Proposition 3.5), and hence τ(x, δ) is defined invariantly.
To get an 0 < ε ≤ 1/2 subelliptic estimates (other than 1/2 estimates of Catlin [5]), we also
need some precise estimates for η([L1, Lk]), 2 ≤ k ≤ n. This difficulty comes from the fact
that we have a Dirichlet condition on M0 and hence we need to control the boundary integral
terms, which were not occured in dimension three case, on M0 (In usual ∂-estimates we deal
with forms which vanish on M0 and hence there are no boundary integral terms). Section 3, 4
and 5 contain these estimates in detail.

After this, we technically construct a family of plurisubharmonic functions with large Hessian
using the properties of τ(x, δ) and µ(x, δ). In performing the subelliptic estimates, we use
(n − 2)-positive eigenvalue conditions on Mσ to handle the boundary integral terms on Mσ,
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and we use the existance of a family of plurisubharmonic functions with large Hessian to handle
the components vanishing on Mσ. This will give us uniform 1/m subelliptic estimates for ∂
on each non-euclidean ball. Then we get the estimates, so-called “tame estimates”, which
are required in the Nash-Moser theorem [14] for the approximate solution to the linearized
equation.

2. Deformation of almost complex structures

Let (M,S) be a CR manifold as in Section 1 and set Ω = M × (−1, 1). In this section
we extend the given CR structure S on M to an almost complex manifold (Ω,L), and study
a deformation problem of the almost complex structure L on Ω so that the new (deformed)
amost complex structure is integrable (or close to be integrable).

Assume that L is an almost complex structure on Ω. Let A be a smooth section of Γ1(L) =
Λ0,1(L)⊗L, where Λ0,1(L) denotes the set of (0, 1) forms with respect to L. Observe that if A
is sufficiently small, then the bundle LA = {L + A(L) ; L ∈ L } defines a new almost complex
structure and if L

′
and L

′′
are sections of L, then L

′
+ A(L

′
) and L

′′
+ A(L

′′
) are sections of

LA. Similarly, if ω is a section of Λ1,0(L), then ω − A∗ω is a section of Λ1,0(LA), where the
adjoint A∗ maps from Λ1,0(L) to Λ0,1(L) and is defined by

(2.1) (A∗ω)(L) = ω(A(L))

for all L ∈ L and ω ∈ Λ1,0. We want to choose A so that

(ω −A∗ω)([L′ + A(L′), L′′ + A(L′′)]) = 0.

By linearizing, i.e., by ignoring terms where A or A∗ appear more than once, we obtain

(2.2) ω([L′, A(L′′)]) + ω([A(L′), L′′])−A∗ω([L′, L′′]) = −ω([L′, L′′]).

Let L = L′ + L′′ denote the decomposition of a vector L ∈ CTz where L′ ∈ Lz and L′′ ∈ Lz.
For sections L1, L2 of L, we define

(2.3) (D2A)(L1, L2) = [L1, A(L2)]′ − [L2, A(L1)]′ −A([L1, L2]′′).

Note that this definition is linear in L1 and L2, and hence D2A is a section of Γ2 = Λ0,2(L)⊗L.
It follows from (2.1) and (2.3) that (2.2) is equivalent to the equation

(2.4) D2A = −F,

where F is a section of Γ2 defined by

(2.5) F (L1, L2) = [L1, L2]′.

Note that F measures to what extent L fails to be integrable. If L defines a CR structure on
M and if we want LA to define the same CR structure on M , then this means that A must
satisfy A(L

′
) = 0 on M whenever L

′
is a section of L that is tangent to M . This is a Dirichlet

condition on some of the components of the solution (2.4).
If we define D3 : Γ2 −→ Γ3 = Λ0,3(L)⊗ L by

D3B(L1, L2, L3) =[L1, B(L2, L3)]′ − [L2, B(L1, L3)]′ + [L3, B(L1, L2)]′(2.6)

−B([L1, L2]′′, L3) + B([L1, L3]′′, L2)−B([L2, L3]′′, L1)

for B ∈ Γ2, then it follows that D3F = 0 [5, Lemma 3.2]. Then we have the following formal
solution of the extension problem [5, Theorem 4.1].
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Theorem 2.1. Suppose that M is an orientable CR manifold of dimension 2n− 1 such that
the CR dimension equals n − 1. Then there exists an almost complex structure L∗ on Ω =
M × (−1, 1) such that L∗ is an extension of the CR structure on M , and such that it is
integrable to infinite order at M in the sense that if ω is a section of Λ1,0(L∗) and L1, L2 are
sections of L∗, then ω([L1, L2]) vanishes to infinite order along M .

Let M and Ω be as in Theorem 2.1. The next theorem shows that the above formal extension
is essentially unique [5, Theorem 4.2].

Theorem 2.2. Suppose that L and X are almost complex structures on Ω that extend the
CR-structure on M0 = {(x, 0) ; x ∈ M}, and that are integrable to infinite order on M0. Then
there exists a diffeomorphism G of Ω onto itself that is the identity when t = 0 and such that
G∗X approximates L to infinite order near M0 in the sense that if X is a section of L, then
G∗X differs from a section of L by a vector field which vanishes to infinite order on M0.

By Theorem 2.1, we have an almost complex structure L∗ on Ω, that is integrable to infinite
order along M0 = {(x, 0) ; x ∈ M}. Let η be a smooth non-vanishing one form on M that
satisfies η(L) = 0 for all L ∈ Sx, x ∈ M , and that defines the Levi form of M as in Section
1. We can clearly extend η to all of Ω so that it still annihilates S(x,t) for all (x, t) ∈ Ω,
where S(x,t) now denotes the space of vectors in L∗(x,t) that are tangent to the level set of the
auxiliary coordinate t. Then we have the following theorem which is a formal solution of local
embedding problem. One can refer a proof to, for example, [3, Proposition 3].

Theorem 2.3. Let x0 ∈ M . Then there are a small neighborhood U of x0 and a constant
c > 0 so that for each x ∈ M ∩ U , there are almost holomorphic functions f1, . . . , fn defined
on U so that if Fx = (f1, . . . , fn), then Fx(x) = 0 and

(a) |dFx| ≥ c on U , and
(b) Lfj vanishes to infinite order at x0 for each L ∈ L.

Remark 2.4. Suppose L ∈ S(x,0). Then (Fx0)∗L differs from a section of T 1,0(Fx0(M)) by a
vector field which vanishes to infinite order at 0. Therefore the image Fx0(M) is a smooth real
hypersurface in Cn with defining function given by r(w) = t ◦ F−1

x0
(w).

In order to define the type of x0 ∈ M , we use the (almost) holomorphic function Fx con-
structed in Theorem 2.3:

Definition 2.5. Let (x0, U, Fx0) be as in Theorem 2.3. Then we define the type of x0 is equal
to the type of Fx0(x0) = 0 ∈ Cn in the sense of D’Angelo [9].

Set T (x0) = the type of x0 ∈ M , and set

T (M) = max{T (x0) ; x0 ∈ M} = m.

Under the assumption that the Levi-form of M has (n−2)-positive eigenvalues, we may assume
that m is an even integer.

Let us take (Ω,L∗) constructed in Theorem 2.1. Choose a smooth real vector field X0 on Ω
that satisfies X0t ≡ 0 and η(X0) ≡ 1 in Ω. Set Y0 = −JL∗(X0) so that X0 + iY0 is a section
of L∗ that is transverse to the level set of t. Let G : Ω −→ Ω be a diffeomorphism such that G
fixes M0 and

G∗Y0|(x,0)
=

∂

∂t
|(x,0), x ∈ M.
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Since M is orientable, we may assume that dt(JL∗(X0)) < 0. Thus dt(Y0) > 0 along M0, which
shows that G preserves the sides of M0, i.e., G maps Ω+ = {(x, t) ; 0 ≤ t < 1} into itself. If
we set L0 = G∗L∗, then clearly Z̃ = −iG∗(X0 + iY0) is a section of L0 such that along M0,

Z̃ = −iX0 +
∂

∂t
.

We write Z̃ = X̃ +g(x, t)∂/∂t where X̃t ≡ 0, and set Ln = g−1Z̃. Then Ln = ∂/∂t+X, where
Xt ≡ 0. We fix a smooth metric 〈 , 〉0 that is Hermitian with respect to the structure L0 on
Ω. Note that along M , we have Ln = ∂/∂t − iX0 and dt = (1/2)(dt + iη) + (1/2)(dt − iη),
which implies that ∂t = (1/2)(dt + iη). Hence ∂t(L) = (1/2)dt(L) + (i/2)η(L) and

∂t([X1, X2]) =
i

2
η([X1, X2])

for all X1, X2 ∈ S(x,t), along M .

3. Construction of plurisubharmonic functions

Let M , Ω, X0 and L0 be as in Section 2. In this section, we will construct a family of
plurisubharmonic functions with large Hessian (Theorem 3.6). For this purpose, we first con-
struct special coordinate functions defined in a neighborhood of x0 ∈ M so that the coefficients
of the weakly pseudoconvex tangential holomorphic vector fields satisfy some necessary esti-
mates in new coordinates (Lemma 3.7 and Proposition 3.8).

Assume that x̃0 ∈ M . Then there are coordinate functions x1, . . . x2n defined on a neigh-
borhood U of x̃0 with the property that x2n = t and that

xk(x′, t) = xk(x′, 0), k < 2n,

for (x′, t) ∈ U , and that
∂

∂x2n−1
= −X0

at all points of U ∩M . We take an orthonormal frame {L̃1, . . . , L̃n} of L0 defined on U . Let
x0 ∈ M ∩ U be fixed for a moment. If L̃j is replaced by Lj =

∑n−1
k=1 UjkL̃k where U = (Ujk)

is a suitably chosen unitary matrix so that

(3.1)
i

2
η([Lj , Lk])(x0) = δjkdj(x0) := dj,k(x0), 1 ≤ j, k ≤ n− 1,

where 0 ≤ d1 ≤ d2 ≤ . . . ≤ dn−1, and dj(x0) is a smooth function defined on U satisfying
d2(x) ≥ d0 > 0 on U for a uniform constant d0 > 0, while δjk is a Dirac delta function.

There is an affine transformation Cx0 : R2n −→ R2n such that if (x′, 0) ∈ R2n are the
coordinates of x ∈ M , then

Cx0(x
′, t) = (Px0(x

′ − x′0), t) := (u1, . . . , u2n) = u,

where the (2n− 1)× (2n− 1) constant matrix Px0 is chosen so that in terms of u-coordinates,

Lk|x0 =
∂

∂u2k−1
− i

∂

∂u2k
, 1 ≤ k ≤ n,(3.2)

X0|x0 = − ∂

∂u2n−1
.



6 SANGHYUN CHO

Note that the second equality of (3.2) actually implies that X0|(x′,0) = −∂/∂u2n−1 at all
points of M ∩ U , and hence that

Ln = −i
∂

∂u2n−1
+

∂

∂t

along M ∩ U .
We also note that the matrix Px0 is uniquely determined by the condition (3.2) and uniformly

non-singular on U , and depends smoothly for all x0 ∈ M ∩ U . In terms of u-coordinates, the
vector fields Lk, 1 ≤ k ≤ n− 1, can be written as

Lk =(
∂

∂u2k−1
+

2n−2∑

j=1

ak
j (u)

∂

∂uj
+ ak(u)

∂

∂u2n−1
)(3.3)

− i(
∂

∂u2k
+

2n−2∑

j=1

bk
j (u)

∂

∂uj
+ bk(u)

∂

∂u2n−1
),

where ak
j , bk

j , ak, bk are smooth real valued functions which vanish at 0. In the sequal we let
∂l, 1 ≤ l ≤ n, denote the holomorphic partial derivatives in the l-th variable of local complex
valued coordinates. When we change the local coordinate functions, this partial derivative
operator will be written in new coordinates. We also let ∂̃β denotes ∂β or ∂β .

Proposition 3.1. For each x0 ∈ M ∩ U and positive integer m, there are smooth complex
valued coordinates ζ = (ζ1, . . . , ζn), ζn = t+ix2n−1, defined near x0 such that in ζ-coordinates,
the vector fields L1, . . . , Ln−1 can be written as

L1 =
∂

∂ζ1
+

n−1∑

l=1

al(ζ)
∂

∂ζl
+

n−1∑

l=1

bl(ζ)
∂

∂ζl

+
(

e(ζ) + id(ζ)
)

∂

∂x2n−1
,(3.4)

Lα =
∂

∂ζα
+

n−1∑

l=1

aα
l (ζ)

∂

∂ζl
+

n−1∑

l=1

bα
l (ζ)

∂

∂ζl

+
(

eα(ζ) + idα(ζ)
)

∂

∂x2n−1
,

where 2 ≤ α ≤ n− 1. Also, the coordinate functions satisfy

∂j
1∂

k

1bl(0) = ∂j
1∂

k

1aα
l (0) = ∂j

1∂
k

1bα
l (0) = 0, j + k ≤ m, 2 ≤ l ≤ n− 1,

∂̃i
β∂j

1∂
k

1e(0) = 0, i = 0, 1, i + j + k ≤ m, 2 ≤ β ≤ n− 1,(3.5)

(∂1 − ∂1)sd(0) = (∂1 − ∂1)seα(0) = (∂1 − ∂1)sdα(0) = 0, s ≤ m.

Proof. Let us take the vector fields L1, . . . , Ln and smooth coordinates u defined near x0 so
that the vector fields Lk, 1 ≤ k ≤ n − 1, have the representation as in (3.3). Therefore (3.4)
and (3.5) hold for m = p = 0.

Assume by induction that there are smooth complex valued coordinates ζ = (ζ1, . . . , ζn)
defined near x0 ∈ M so that in terms of ζ-coordinates, we can write the vector fields Lν ,
1 ≤ ν ≤ n − 1, as in (3.4) where the coefficients satisfy the estimates in (3.5) for m replaced
by p ≥ 0. Set

x2j−1 = ζj + ζj , x2j = −i(ζj − ζj), 1 ≤ j < n,

x2n−1 = −i(ζn − ζn), x2n = t,
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and set
Dk =

∂

∂xk
, 1 ≤ k ≤ 2n− 1.

In x = (x1, . . . , x2n−1, t) coordinates, each vector field Lν , 1 ≤ ν ≤ n− 1, can be written as

Lν =

(
∂

∂x2ν−1
+

2n−2∑

l=1

cν
l (x)

∂

∂xl
+ eν(x)

∂

∂x2n−1

)

− i

(
∂

∂x2ν
+

2n−2∑

l=1

dν
l (x)

∂

∂xl
+ dν(x)

∂

∂x2n−1

)
,

where cν
l , dν

l , eν , dν are smooth real valued functions. Set

x̃i = xi, i = 1, 2,

x̃l = xl −
n−1∑
ν=2

∑

j+k=p+1

1
j!k!

[Dj
1D

k
2cν

l (0)xj
1x

k
2x2ν−1 + Dj

1D
k
2dν

l (0)xj
1x

k
2x2ν ]

for l = 3, . . . , 2n− 2, and set

x̃2n−1 =x2n−1 −
∑

j+k=p+1

1
(j + 1)!k!

[
Dj

1D
k
2e1(0)xj+1

1 xk
2

]

−
2n−2∑

β=3

∑

j+k=p

1
(j + 1)!k!

[
DβDj

1D
k
2e1(0)xj+1

1 xk
2xβ

]

−
n−1∑
ν=2

[
1

(p + 1)!
Dp+1

2 eν(0)xp+1
2 x2ν−1 +

1
(p + 1)!

Dp+1
2 dν(0)xp+1

2 x2ν

]

− 1
(p + 2)!

Dp+1
2 d1(0)xp+2

2 .

If we set

wj =
1
2
(x̃2j−1 + ix̃2j), 1 ≤ j ≤ n− 1, wn =

1
2
(t + ix̃2n−1),

then in w-coordinates, the vector fields Lα, 1 ≤ α ≤ n− 1, can be written as

L1 =
∂

∂w1
+

n−1∑

l=1

ãl(w)
∂

∂wl
+

n−1∑

l=1

b̃l(w)
∂

∂wl
+ (ẽ(w) + id̃(w))

∂

∂x̃2n−1
,

Lα =
∂

∂wα
+

n−1∑

l=1

ãα
l (w)

∂

∂wl
+

n−1∑

l=1

b̃α
l (w)

∂

∂wl
+ (ẽα(w) + id̃α(w))

∂

∂x̃2n−1
,

where for 2 ≤ l, α, β ≤ n− 1, we have

∂j
1∂

k

1 b̃l(0) = 0, ∂̃β∂j
1∂

k

1 ẽ(0) = 0, j + k ≤ p,

∂j
1∂

k

1 ãα
l (0) = ∂j

1∂
k

1 b̃α
l (0) = ∂j

1∂
k

1 ẽ(0) = 0, j + k ≤ p + 1,

(∂1 − ∂1)sd̃(0) = (∂1 − ∂1)sẽα(0) = (∂1 − ∂1)sd̃α(0) = 0, s ≤ p + 1.
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We perform the following change of coordinates:

ζ1 = w1,

ζl = wl −
∑

j+k=p+1

1
(j + 1)!k!

[∂
j

1∂
k
1 b̃l(0)wj+1

1 wk
1 ], 2 ≤ l ≤ n− 1.

Then in terms of ζ-coordinates, we may write the vector fields L1, . . . , Ln−1 as in (3.4) and
the coefficients of Lα, 1 ≤ α ≤ n− 1, satisfy (3.5) where m is replaced by p + 1. If we proceed
up to m-steps, we will get a proof of the proposition. ¤

For each x0 ∈ M ∩ U and δ > 0, we want to define a quantity τ(x0, δ) in such a way that
the sucessive derivatives of the coefficients of Lk, 1 ≤ k ≤ n − 1, up to a certain order (less
than or equal to m), change by no more than δ on a nonisotropic ball about x0. We use the
special coordinates ζ = (ζ1, ζ2, . . . , ζn) defined near x0 as in Proposition 3.1.

Assume x0 ∈ M ∩U . In terms of ζ-coordinates, we write Lk, 1 ≤ k ≤ n− 1, as in (3.4) such
that the coefficient functions satisfy the estimates in (3.5). Note that we may assume that m
is an even integer. Let b(ζ) = e(ζ) + id(ζ) be the coefficient function of ∂/∂x2n−1 in L1, and
set

bm−1(ζ) := 2i Re


 ∑

1≤j+k≤m−1

1
j!k!

∂j
1∂

k

1d(0)ζj
1ζ

k

1


 :=

∑

1≤j+k≤m−1

bjk(x0)ζ
j
1ζ

k

1 .

Then, by virtue of the estimates in (3.5), we may write:

b(ζ) =
∑

1≤j+k≤m−1

bjk(x0)ζ
j
1ζ

k

1 + iRe




n−1∑

β=2

∑

j+k≤m/2−1

bβ
j,k(x0)ζ

j
1ζ

k

1ζβ


(3.6)

+O(|ζ1|m + |ζ ′||ζ1|m
2 + |ζ ′|2 + |ζn|),

where ζ ′ = (0, ζ2, . . . , ζn−1, ζn). For 2 ≤ ν ≤ n− 1, let us write

(3.7) aν(ζ) =
∑

1≤j+k≤m/2−1

aν
j,kζj

1ζ
k

1 +O(|ζ1|m
2 + |ζ ′|),

where aν ’s are coordinate functions of ∂/∂ζν in L1. Let x = (x1, . . . , x2n−1, t) be the real
coordinates of ζ and set Dk = ∂/∂xk, 1 ≤ k ≤ 2n− 1.

Note that−ibm−1(ζ) is a smooth real valued function which is an (m−1)-th order polynomial
in ζ1 and ζ1. We let a(ζ) be a real valued function defined by

(3.8) a(ζ) :=
∂

∂x1
(−ibm−1) = Im

[
∂

∂ζ1
bm−1

]
:=

∑

0≤j+k≤m−2

aj,kζj
1ζ

k

1 .

Using the coefficient functions bβ
j,k, aν

j,k and aj,k defined in (3.6)-(3.8), we set

Al(x0) = max {|aj,k| ; j + k = l}, l = 0, 1, 2, . . . , m− 2,

El′(x0) = max {|aν
j,k|, |bβ

j,k| ; j + k = l′, β, ν = 2, . . . , n− 1}, 0 ≤ l′ ≤ m/2− 1,
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and for each δ > 0 we define

(3.9) τ(x0, δ) = min
0≤l≤m−2

0≤l′≤m/2−1

{(δ/Al(x0))1/(l+2), (δ1/2/El′(x0))1/(l′+1)}.

Set τ(x0, δ) = τ for a convenience. Then it follows from (3.9) that

(3.10) |∂j
1∂

k

1a(0)| ≤ δτ−(j+k+2), j + k ≤ m− 2,

and for 2 ≤ β, ν ≤ n− 1, we have

|∂j
1∂

k

1aν(0)| ≤ δ1/2τ−(j+k+1),(3.11)

|∂β∂j
1∂

k

1b(0)| ≤ δ1/2τ−(j+k+1), j + k ≤ fracm2− 1.(3.12)

If we combine the estimates in (3.10) with the fact that Ds
2bm−1(0) = 0, s ≤ m ( because

(∂1 − ∂1)sd(0) = 0, s ≤ m ), we obtain, from the expression of a(ζ) in (3.8), that

(3.13) |∂̃i
β∂j

1∂
k

1b(0)| ≤ δ1−i/2τ−(j+k+1), i = 0, 1, i ·m/2 + j + k ≤ m− 1.

From the estimates in (3.10)–(3.13) together with the fact that η(L1) ≡ 0 it follows, by
induction, that

(3.14) |∂j
1∂

k

1η(
∂

∂ζ1
)(0)| . δ1/2τ−(j+k), j + k ≤ m/2− 1,

because η(∂/∂ζα)(0) = 0, 1 ≤ α ≤ n− 1, and δ1/2 . τ .
Set ωn = 1/2(dt + iη). Since S is integrable it follows that ωn([L1, Lα]) = 0 along M and

hence we have

(3.15) ∂j
1∂

k

1η([L1, Lα])(0) = 0, j + k ≤ m.

Combining the estimates in (3.5), (3.10)–(3.15) with the fact that η([L1, Lα])(0) = 0, 2 ≤ α ≤
n− 1, one obtains that

|∂j
1∂

k

1dα(0)|, |∂j
1∂

k

1eα(0)| . δ1/2τ−1, j + k ≤ 1,

and hence that
|∂j

1∂
k

1η(
∂

∂ζα
)(0)| . δ1/2τ−1, j + k ≤ 1.

If we use again the estimates in (3.5), (3.10)–(3.15) together with the fact that η(Lα) ≡ 0,
1 ≤ α ≤ n− 1, we obtain, by induction, that

|∂j
1∂

k

1η(
∂

∂ζα
)(0)| . δ1/2τ−(j+k), j ≥ 1, j + k ≤ m/2− 1,(3.16)

|∂j
1∂

k

1dα(0)|, |∂j
1∂

k

1eα(0)| . δ
1
2 τ−(j+k), j ≥ 1, j + k ≤ m/2− 1(3.17)
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for 2 ≤ α ≤ n − 1. To obtain the estimates for the derivatives of the form ∂
l

1 for l ≥ 2, we
note, from the estimates in (3.5), that

(3.18) (∂1 − ∂)sdα(0) = (∂1 − ∂)seα(0) = 0, s ≤ m, 2 ≤ α ≤ n− 1.

Since we can write

(∂1 − ∂1)s = ∂
s

1 +
s−1∑

j=1

cj,s∂
s−j

1 ∂j
1,

where cj,s’s are integers, we conclude, from the estimates in (3.16)–(3.18), that

|∂j
1∂

k

1η(
∂

∂ζα
)(0)| . δ1/2τ−(j+k), j + k ≤ m/2− 1,(3.19)

|∂j
1∂

k

1dα(0)|, |∂j
1∂

k

1eα(0)| . δ1/2τ−(j+k), j + k ≤ m/2− 1(3.20)

for 2 ≤ α ≤ n− 1. By virtue of the estimates in (3.11)–(3.13) together with (3.19) and (3.20),
we obtain by induction that

(3.21) |∂̃i
β∂j

1∂
k

1η(
∂

∂ζ1
)(0)| . δ1−i/2τ−(j+k+1), i = 0, 1, i ·m/2 + j + k ≤ m− 1.

These estimates are essential ingredients to obtain a uniform subelliptic estimates for ∂ in
dilated coordinates.

Set τ(x0, δ) = τ for convenience and let

Rδ(x0) = {ζ ∈ Cn ; |ζ1| ≤ τ, |ζβ | ≤ δ1/2τ−1/2, β = 2, . . . , n− 1, |ζn| ≤ δ},
and define a dilation map Dδ : Cn −→ Cn by

Dδ(ζ) = (τ−1ζ1, δ
−1/2ζ2, . . . , δ−1/2ζn−1, δ

−1ζn) := (w1, . . . , wn) = w.

Define

Qδ(x0) = Dδ(Rδ(x0)) = {w ∈ Cn ; |w1| ≤ 1, |wβ | ≤ τ−1/2, β = 2, . . . , n− 1, |wn| ≤ 1}
and set Lδ

1 = τ(Dδ)∗L1. Then, from the expression of L1 in (3.4), we have

Lδ
1 =

∂

∂w1
+ a1(Dδ(w))

∂

∂w1
+ b1(Dδ(w))

∂

∂w1
+

n−1∑

l=2

τδ−1/2al(D−1
δ (w))

∂

∂wl

+
n−1∑

l=2

τδ−1/2bl(D−1
δ (w))

∂

∂wl
+ τδ−1b(D−1

δ (w))
∂

∂y2n−1
,

where wn = y2n + iy2n−1. Set ηδ = δ−1η. Therefore, ηδ(∂/∂y2n−1) = 1 on M ∩ U .
Set B(w) = b(D−1

δ (w)). Recall the expression of B(w) defined in (3.6). So we can write:

τδ−1B(w) =
∑

1≤j+k≤m−1

bjk(x0)δ−1τ j+k+1w1w
k
1

+ i Re




n−1∑

β=2

∑

j+k≤m/2−1

bβ
j,k(x0)δ−1/2τ j+k+1w1w1wβ


 +O(τ).



EXTENSION OF CR STRUCTURES 11

Then as in Section 2 of [7], the non-negative condition for i/2ηδ([Lδ
1, L

δ

1]) on Qδ(x0)∩M forces
that

(3.22) |δ−1/2τ j+k+1bβ
j,k(x0)| . τγ << 1, j + k ≤ m

2
− 1,

where γ = (10 × (m/2)!)−1. Therefore the bβ
j,k’s, in the Taylor expansion of b(ζ), are not the

major terms in the definition of τ(x0, δ) in (3.9), and the estimates in (3.22) show that

(3.23) |∂β∂j
1∂

k

1b(0)| . δ1/2τ−(j+k+1)+γ , j + k ≤ m/2− 1, 2 ≤ β ≤ n− 1.

By using the estimates in (3.5), (3.14), (3.15), (3.22) and (3.23) together with the fact that
η(Lν) ≡ 0, 1 ≤ ν ≤ n− 1, we can also show, by the method leading to (3.19) and (3.20), that

|∂j
1∂

k

1η(
∂

∂ζα
)(0)| . δ1/2τ−j−k+γ ,(3.24)

|∂j
1∂

k

1dα(0)|, |∂1∂
k

1eα(0)| . δ1/2τ−j−k+γ , j + k ≤ m/2− 1.(3.25)

Using the estimates in (3.5) and (3.23)–(3.25), we can also show that

(3.26) |∂j
1∂

k

1η([L1, Lα])(0)| . δ1/2τ−(j+k+1)+γ , j + k ≤ m/2− 1, 2 ≤ α ≤ n− 1.

Now we want to show that the coefficients aν(ζ) of L1 satisfy the estimates similar to those
in (3.26). Recalling the expression of L1 in ζ coordinates as in (3.4), we set

L̃1 = L1 −
n−1∑
ν=2

aν(ζ)Lν , L̃α = Lα, 2 ≤ α ≤ n− 1.

Then L̃1 can be written as:

L̃1 =
∂

∂ζ1
+

n−1∑

l=1

ãl(ζ)
∂

∂ζl
+

n−1∑

l=1

b̃l(ζ)
∂

∂ζl

+ b̃(ζ)
∂

∂x2n−1
,

where, from the estimates in (3.5), (3.11) and (3.23)-(3.26), we have

∂j
1∂

k

1 ãl(0) = ∂j
1∂

k

1 b̃l(0) = 0, j + k ≤ m− 1, 2 ≤ l ≤ n− 1,(3.27)

|∂j
1∂

k

1 b̃(0)| . δτ−(j+k+1), j + k ≤ m− 1,(3.28)

|∂̃β∂j
1∂

k

1 b̃(0)| . δ1/2τ−(j+k+1)+γ , j + k ≤ m/2− 1(3.29)

for 2 ≤ β ≤ n− 1.
If we combine the estimates in (3.27)–(3.29) and apply the methods leading to the estimates

in (3.26), we obtain that

(3.30) |∂j
1∂

k

1η([L̃1, L̃α])(0)| . δ1/2τ−(j+k+1)+γ , j + k ≤ m/2− 1, 2 ≤ α ≤ n− 1.
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Note that
i

2
η([L̃1, Lα]) =

i

2
η([L1, Lα])− i

2

n−1∑
ν=2

aν(ζ)η([Lν , Lα]),

where
i

2
η([Lα, Lα])(0) = cα(x0) ≥ d0 > 0, 2 ≤ α ≤ n− 1,

for an independent constant d0 > 0. If we use the fact that i/2η([Lα, Lβ ])(0) = 0 for α 6= β
together with the estimates in (3.11) and (3.26)-(3.30), we obtain that

(3.31) |∂j
1∂

k

1aν(0)| . δ1/2τ−(j+k+1)+γ , j + k ≤ m/2− 1, 2 ≤ ν ≤ n− 1.

Now set

T = L1 + L1 =
∂

∂x1
+

2n−2∑

l=1

al(x)
∂

∂xl
+ a2n−1(x)

∂

∂x2n−1
.

Then from the estimates of a2n−1 in (3.5), and of al, 3 ≤ l ≤ 2n− 2, in (3.31), it follows that

(3.32) |∂j
1∂

k

1al(0)| . δ1/2τ−(j+k+1)+γ , j + k ≤ m/2− 1, 3 ≤ l ≤ 2n− 1.

From (3.31), we conclude that the functions aν(ζ) are also not the major terms in the definition
of τ(x0, δ) in (3.9). Therefore we conclude from (3.23) and (3.32) that

(3.33) τ(x0, δ) = min {(δ/Al(x0))1/l+2 ; 0 ≤ l ≤ m− 2},

and hence it follows that δ1/2 . τ . δ1/m, and if δ′ < δ′′, then

(3.34) (δ′/δ
′′
)1/2τ(x0, δ

′′
) . τ(x0, δ

′) . (δ′/δ′′)1/mτ(x0, δ
′′).

In order to study how τ(x0, δ) depends on x0, it is convenient to introduce an analogous
quantity µ(x, δ) that is defined more intrinsically. Let us cover M by a finite number of
neighborhoods Uν , ν = 1, . . . , N , in Ω so that in each Uν , Proposition 3.1 holds. Let {χν} be
a partion of unity subordinated to the coordinate neighborhoods {Uν} of Ω, and let m be a
given positive integer.

For any j, k ≥ 0, j ≥ 1, we define

Lν
j,kη(x) =

i

2
Lj−1

1 L
k

1η([L1, L1])(x), x ∈ Uν ,

and set
Cν

l (x) =
∑

j+k=l

|Lν
j+kη(x)|2, 1 ≤ l ≤ m− 1,

and

Cl(x) =
N∑

ν=1

χνCν
l (x).
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Set M = (m + 1)!, and for each δ > 0, define

(3.35) µ(x, δ) = (
m∑

l=1

C
M/l+1
l (x)δ−2M/l+1)−1/2M .

Note that
∑m

l=1 Cl(x) > 0 if the type at x is less than or equal to m. Therefore µ(x, δ) is
defined intrinsically as a smooth function of δ > 0 and x, for x satisfying

∑m
l=1 Cl(x) > 0. Let

us fix x0 ∈ M ∩ U and take the smooth complex valued coordinates ζ = (ζ1, . . . , ζn) defined
on M ∩ U as in Proposition 3.1, where

ζj =
1
2
(x2j−1 + ix2j), 1 ≤ j ≤ n− 1, ζn =

1
2
(t + ix2n−1).

For each δ > 0, set τ1 = τ2 = τ(x0, δ) and τk = δ1/2, 3 ≤ k ≤ 2n− 2, and define

(3.36) Pδ(x0) = {x ∈ R2n ; |xi| ≤ τi, 1 ≤ i ≤ 2n− 2, |x2n−1| ≤ δ, |t| ≤ δ}.

Without loss of generality we may assume that there is ν0 ∈ {1, 2, . . . , N} such that x0 ∈ Uν0

and χν0 ≥ 1/N on Pδ(x0). Recall that L1 can be written, in ζ coordinates, as

L1 =
∂

∂ζ1
+

n−1∑

l=1

al(ζ)
∂

∂ζk
+

n−1∑

l=1

bl(ζ)
∂

∂ζl

+ b(ζ)
∂

∂x2n−1
,

where, from the estimates in (3.5), (3.23) and (3.31), we have

|∂j
1∂

k

1al(0)|, |∂̃β∂j
1∂

k

1b(0)| . δ1/2τ−(j+k+1)+γ , j + k ≤ m/2− 1,

|∂j
1∂

k

1b(0)| . δτ−(j+k+1), j + k ≤ m− 1,(3.37)

∂j
1∂

k

1bl(0) = 0, j + k ≤ m, 2 ≤ l, β ≤ n− 1.

Therefore may write

(3.38) Lj,kη(ζ) = −∂j−1
1 ∂

k

1

[
Im

(
∂

∂ζ1
b(ζ)

)
η

(
∂

∂x2n−1

)]
+ Ej+k,

where Ej,k satisfies, from the estimates in (3.37), that

(3.42) |∂̃i
β∂l1

1 ∂
l2
1 Ej+k(0)| . δ1−i/2τ−(j+k+l1+l2+1)+γ

for i = 0, 1, and i ·m/2 + j + k + l1 + l2 ≤ m− 1. From (3.37)-(3.39) it follows that

(3.40) |∂̃i
β∂l1

1 ∂
l2
1 Lj,kη(0)| . δ1−i/2τ−(j+k+l1+l2+1),

for i = 0, 1, and i ·m/2 + j + k + l1 + l2 ≤ m − 1. By (3.39), (3.40) combined with a simple
Taylor’s theorem argument, we then have

(3.41) |Lj,kη(ζ)| . δτ−(j+k+1), ζ ∈ Pδ(x0).
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By virtue of the definition of µ(x, δ) in (3.35), (3.41) implies that

(3.42) µ(x, δ) & τ(x0, δ), x ∈ Pδ(x0).

Conversely, let us show that µ(x, δ) . τ(x0, δ) for x ∈ Pδ(x0). Recall that τ(x0, δ) is actually
defined as in (3.33). Set

(3.43) T (x0, δ) = min{l ; (δ/Al(x0))1/l+2 = τ(x0, δ)}.
Therefore there must exist integers j0, k0 with (j0 − 1) + k0 = T (x0, δ) such that

(3.44)
∣∣∣∣

1
(j0 − 1)!k0!

∂j0−1
1 ∂

k0

1 a(0)
∣∣∣∣ =

∣∣∣∣
1

(j0 − 1)!k0!
∂j0−1
1 ∂

k0

1 [ Im
∂

∂ζ1
b](0)

∣∣∣∣ = δτ−j0−k0−1.

Assuming that χν0 ≥ 1/N , we obtain from the estimates in (3.38), (3.39) and (3.44) that

|Lν0
j0,k0

η(x0)| ≥ 1
2N

(j0 − 1)!k!δτ(x0, δ)−j0−k0−1,

provided that δ is sufficiently small. Again, by using the estimates in (3.38)–(3.44) and the
Taylor series method, we obtain that

(3.45) |Lν0
j0,k0

η(x)| ≈ δτ(x0, δ)−j0−k0−1, x ∈ Pδ(x0).

If we combine (3.45) and the definition of µ(x, δ), we obtain that

(3.46) µ(x, δ) . τ(x0, δ), x ∈ Pδ(x0).

Combining (3.42) and (3.46), we have proved the following proposition.

Proposition 3.2. If x ∈ Pδ(x0), then

(3.47) τ(x0, δ) ≈ µ(x, δ).

Corollary 3.3. Suppose x ∈ Pδ(x0). Then

(3.48) τ(x0, δ) ≈ τ(x, δ)

Proof. If we set x = x0 in (3.47), we see that µ(x, δ) ≈ τ(x0, δ). Since this holds for x0 = x, it
follows that µ(x, δ) ≈ τ(x, δ). Hence (3.48) follows. ¤
Remark 3.4. µ(x, δ) is defined intrinsically. That is, it does not depend on the choice of a
specific coordinates. Propositions 3.2 and Corollary 3.3 show that the quantity τ(x, δ) is also
defined invariantly, up to a universal constant, with respect to the coordinate functions.

Now we want to construct a family of plurisubharmonic functions with large Hessian. The
existence of these functions will be a crucial ingredient in the subelliptic estimates for ∂-type
equation. Note that we are free to choose x0 ∈ M and δ > 0. Now assume that xν ∈ M .
Let us take the special coordinates ζ = (ζ1, . . . ζn) defined near xν and write the vector fields
L1, . . . , Ln as in (3.4) satisfying (3.5). Also, let T (x0, δ) be defined in (3.43). Let x = (x′, t) be
the real coordinates for ζ, where (xν , 0) = xν ∈ M . Set τ1 = τ(xν , δ), τβ = δ1/2, 2 ≤ β ≤ n−1,
and τn = δ, and put α = (α1, . . . αn).
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Proposition 3.5. Suppose xν ∈ M∩U . Then there exist a small constant a > 0 and a smooth
function hxν ,δ on M ∩ U which satisfy the following :

(i) |hxν ,δ(x)| ≤ 1 and hxν ,δ ∈ C∞0 (Pδ(xν)).
(ii) If |t| ≤ aδ and if hxν ,δ is not plurisubharmonic at x = (x′, t), then

T (x′, aδ) < T (xν , δ).

(iii) If x ∈ Paδ(xν), |t| ≤ aδ, and if the inequality

∂∂hxν ,δ(x)(L,L) &
n∏

k=1

τ−2
k |bk|2

fails to hold at x = (x′, t) for L =
∑n

j=1 bjLj, then T (x′, aδ) < T (xν , δ).
(iv) For all x ∈ Pδ(xν) and all L =

∑n
j=1 bjLj at x,

|∂∂hxν ,δ(L, L)| .
n∏

k=1

τ−2
k |bk|2.

(v) |Dαhxν ,δ(x)| ≤ Cα

∏n
k=1 τ−αk

k , where Dα = ∂β1
1 ∂

γ1

1 . . . ∂βn
n ∂

γn

n , αi = βi + γi.

Proof. We use the definitions of µ(x, δ), τ(x, δ), T (x, δ) and the fact that τ(xν , δ) ≈ µ(x, δ) for
x ∈ Pδ(xν). Then the proof of (i)–(v) follow the same lines as in the proof of Proposition 3.1
in [7]. ¤

For each ε > 0, we set Ωε = M × (−1, ε) and S(ε) = M × (−ε, ε). By adding up the
functions hxν ,δ constructed in Proposition 3.5, we can construct bounded plurisubharmonic
weight functions so that the Hessian of these functions satisfy certain essentially maximal
bounds in a thin strip S(ε) of M0. The heart of these construction is the so-called “doubling
property” of Pδ(x0), which comes from the relation in (3.48). For a detailed proof of the
following theorem, one can refer to Section 3 of [4]. For each small δ > 0, we set τ1(x) =
τ(x, δ), τ2(x) = . . . τn−1(x) = δ1/2 and τn(x) = δ as before.

Theorem 3.6. For all small δ > 0, there is a plurisubharmonic function ψδ ∈ C∞(Ωδ) which
satisfies

(i) |ψδ(x)| ≤ 1, x ∈ U ∩ Ωδ.
(ii) For all L =

∑n
j=1 bjLj at x ∈ U ∩ S(δ),

(3.49) ∂∂ψδ(x)(L,L) ≈
n∑

j=1

|bj(x)|2τ−2
j (x), and

(iii) |Dαψδ(x)| . Cα

∏n
k=1 τ−αk

k (x), where Dα = ∂β1
1 ∂

γ1

1 . . . ∂βn
n ∂

γn

n , αi = βi + γi.

In D2-equation, we will assign a Dirichlet condition on one side of bS+
g , and the Neumann

condition on the other side of bS+
g . This fact leads us to another difficulty which was not

occurred in 1/2 -subelliptic estimates of Catlin in [5]. To overcome this difficulty, we need
the following Lemma 3.7 and Proposition 3.8 which will be used in the proof of subelliptic
estimates for D2-equation in Section 5.
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Lemma 3.7. Let xν ∈ M ∩ U and set cn
1k = ωn([L1, Lk]), 1 ≤ k ≤ n. Then for each small

δ > 0, we have

|cn
11(x)| . δτ(xν , δ)−2, x ∈ Pδ(xν),(3.50)

|cn
1k(x)| . δ1/2τ(xν , δ)−1+γ , x ∈ Pδ(xν), 2 ≤ k ≤ n,(3.51)

where γ = (10× (m/2)!)−1.

Proof. Along M ∩ U , we have dt = 1/2(dt + iη) + 1/2(dt − iη) and Ln = ∂/∂t − i∂/∂x2n−1,
which imply that ∂t = 1/2(dt + iη). Hence (3.50) follows from (3.41). Since L0 is integrable
to infinite order along M0, it follows that

(3.52) ∂∂t(L1, Ln) = ∂∂t(L1 + L1, Ln) =
i

2
η

([
L1 + L1,

∂

∂t
+ i

∂

∂x2n−1

])

along M ∩U . Note that we can write L1 +L1 = T = T1 + tT2 +x2n−1T3, where the coefficient
functions of T1 does not depend on t or x2n−1. From (3.5) together with the estimates of the
coefficient functions in (3.37) it follows that

(3.53)
∣∣∣∣∂j

1∂
k

1

∂

∂t
η(T1)(0)

∣∣∣∣ ,

∣∣∣∣∂j
1∂

k

1

∂

∂x2n−1
η(T1)(0)

∣∣∣∣ . δ1/2τ−(j+k+1)+γ , j + k ≤ m/2− 1.

Since η(L1 + L1) = η(T ) ≡ 0, we have

(3.54) ∂j
1∂

k

1

∂

∂t
η(T )(0) = ∂j

1∂
k

1

∂

∂x2n−1
η(T )(0) = 0, j + k ≤ m− 1.

Combining (3.53) and (3.54), we obtain that

|∂j
1∂

k

1η(T2)(0)|, |∂j
1∂

k

1η(T3)(0)| . δ1/2τ−(j+k+1)+γ , j + k ≤ m/2− 1.

Therefore it folows that

|∂j
1∂

k

1η([T,
∂

∂t
+ i

∂

∂x2n−1
])(0)| . δ1/2τ−(j+k+1)+γ , j + k ≤ m/2− 1,

and this proves (3.51) for k = n.
When 2 ≤ k ≤ n− 1, we use the estimates in (3.26). ¤
For each δ > 0, let ψδ be the function constructed in Theorem 3.6. We need the following

proposition which will be used to prove Lemma 5.6 that is necessary for the estimates of (5.39)
and (5.40) in the subelliptic estimates of D2 operator in Section 5.

Proposition 3.8. For all small δ > 0 and for each α = (α1, . . . αn) we have

|cn
11(x)Dαψδ(x)| ≤ Cαδτ(x, δ)−2

n∏

k=1

τk(x, δ)−αk ,(3.54)

|cn
1,l(x)Dαψδ(x)| ≤ Cαδ

1
2 τ(x, δ)−1+γ

n∏

k=1

τk(x, δ)−αk(3.55)
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for x ∈ S(δ) ∩ U . Here τ1(x, δ) = τ(x, δ), τk(x, δ) = δ1/2, 2 ≤ k ≤ n− 1 and τn(x, δ) = δ.

Proof. Note that the functions ψδ in Theorem 3.6 were constructed by adding up functions
hxν ,δ, xν ∈ M ∩ U , constructed in Proposition 3.5, with supphxν ,δ ⊂ Pδ(xν). By virtue of
(3.48), there is a small c > 0, independent of δ > 0, so that we can arrange points xν = xν(δ) ∈
M ∩ U , ν ∈ I, satisfying

S(δ) ∩ U ⊂ ∪ν∈IPδ(xν), and Pcδ(xν) ∩ Pcδ(xµ) = ∅ if ν 6= µ.

Then, as in the proof of Lemma 3.3 in [4], there is a fixed integer N (independent of δ) such
that any (N + 1) intersection of Pδ(xν)’s are empty.

Now assume that x ∈ S(δ)∩U . Then there are ν1, . . . , νl ∈ I, l ≤ N , such that x ∈ Pδ(xνj ),
1 ≤ j ≤ l. By virtue of (3.48) again, it follows that

τ(x, δ) ≈ τ(xν1 , δ) ≈ . . . ≈ τ(xνl , δ),

independent of δ. If we express the vector fields L1, . . . , Ln in terms of the special coordinates
in each neighborhood of xνi , i = 1, . . . , l, then (3.54) and (3.55) follow from (3.50) and (3.51),
respectively. ¤

4. Special frames for almost complex structures

Assume M ⊂ M̃ and let ϕ ∈ C∞(M) be a smooth real–valued function such that ϕ(x) > 0
for x ∈ M , and ϕ(x) = 0, dϕ(x) 6= 0 for x ∈ bM . We can extend ϕ to Ω by requiring that it
be independent of t. Let us denote by Tp the type at a point p ∈ M and define

T (M) = max{Tp ; p ∈ M}.

Since the type condition is an open condition, it follows that T (M) is well-defined and is finite.
In the sequal, we assume that T (M) = m < ∞. We define r ∈ C∞(Ω) by r(x, t) = t(φ(x))−2m

and for any ε, σ, 0 < ε ≤ σ ≤ 1, define

(4.1) Sε,σ = {(x, t) ∈ Ω ; ϕ(x) > 0 and 0 ≤ r(x, t) ≤ εσ2m}.
Remark 4.1. The quantities ε and σ will be fixed later. If we set g(x) = ε · σ2m · ϕ(x)2m, then
g is the required positive function in the definition of S+

g in Section 1 and Sε,σ equals to S+
g .

We define a subbundle of L0 on Sε,σ by letting R(x,t) = {L ∈ L0
(x,t) ; Lr = 0}. Clearly, the

map H defined by H(L) = L−(Lr)(Lnr)−1Ln defines an isomorphism of S ontoR (at all points
of Sε,σ). Set µ1(x) = µ(x, εφ(x)2m), µ2(x) = . . . , µn−1(x) = ε1/2φ(x)m, µn(x) = εφ(x)2m. We
define a weighted metric 〈 , 〉 on L0 by the relations:

〈H(Lj),H(Lk)〉 = µj(x)−1µk(x)−1〈Lj , Lk〉0, 1 ≤ j, k ≤ n− 1

〈Ln, Ln〉 = ε−2ϕ(x)−4m,

〈Ln,H(Ll)〉 = 0, 1 ≤ l ≤ n− 1,

where Ll ∈ S, 1 ≤ l ≤ n − 1. Since µ(x, δ) is a smooth function of x and δ, it follows that
〈 , 〉 is a smooth Hermitian metric on L0. Now, using Proposition 3.1, we shall cover Sε,σ by
special (dialated) coordinate neighborhoods such that on each of them, there is a frame L that
satisfying required good estimates.
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Proposition 4.2. There exist constants ε0 and σ0 such that if 0 < ε < ε0 and 0 < σ < σ0,
then on Sε,σ there exists for all x0 ∈ M with ϕ(x0) > 0 a neighborhood W (x0) ⊂ Sε,σ with the
following properties :

(i) On W (x0) there are smooth coordinates y1, . . . , y2n so that W (x0) = {y ; |y′| < σ, 0 ≤
y2n ≤ σ2m}, where y′ = (y1, y2, . . . , y2n−1) is independent of t and the function y2n is
defined by y2n = ε−1ϕ(x)−2mt. Thus, M0 ∩W (x0) and Mσ ∩W (x0) correspond to the
points in W (x0) where y2n = 0 and σ2m, respectively. Moreover, the point (x0, 0) ∈ Ω,
which we identify with x0, corresponds to the origin.

(ii) The above coordinate charts are uniformly smoothly related in the sense that if W (p̃0)
and W (x0) intersect, and if ỹ and y0 are the associated coordinates, then

|Dα(ỹ ◦ (y0)−1)| ≤ C|α|

holds on that portion of R2n where ỹ◦(y0)−1 is defined. The constant C|α| is independent
of ε, σ, and x0.

(iii) On W (x0), there exists a smooth frame {L1, . . . , Ln} for L such that if {ω1, . . . , ωn}
is the dual frame, and if Lk and ωk are written as

2n∑
j=1

bkj ∂/∂yj and
2n∑

j=1

dkjdyj, then

sup
y∈W (x0)

{|Dα
y bkj(y)|+ |Dα

y dkj(y)|} ≤ C|α|,

where C|α| is independent of x0, j, k, ε and σ.
(iv) With the frames as in (iii), set cn

1l = ωn([L1, Ll]), l = 2, . . . n. Then there is a constant
C > 0 independent of x0, ε and σ such that

(4.2) sup
y∈W (x0)

|cn
1l(y)| ≤ Cσ2m.

(v) There are constants c > 0 and C > 0 independent of x0, ε and σ such that if Bb(x)
denotes the ball of radius b about x ∈ Sε,σ with respect to the metric 〈 , 〉, then

(4.3) Bcσ(x0) ⊂ W (x0) ⊂ BCσ(x0),

and if VolBb(x0) denotes the volume of Bb(x0) with respect to 〈 , 〉, then

(4.4) cb2n−1σ2m ≤ VolBb(x0) ≤ Cb2n−1σ2m.

Proof. We first cover M by a finite number of neighborhoods Vν , ν = 1, . . . , N , in Ω such
that in each Vν there exist coordinates (u1, . . . , u2n) with the property that u2n = t and that
uk(u′, t) = uk(u′, 0), k < 2n, for (u′, t) ∈ Vν , and that ∂/∂u2n−1 = −X0 at all points of M∩Vν .
Also, we can arrange the neighborhoods Vν so that Proposition 3.1 holds on each Vν .

For any point x0 ∈ M ∩Vν , we take coordinate functions ζν = (ζν
1 , . . . , ζν

n) constructed as in
Proposition 3.1. Let us set ζν = ζ and denote by Lν

k, the vector fields Lk, 1 ≤ k ≤ n, written
in ζν-coordinates, and let x = (x1, . . . , x2n−1, t) be the real coordinates of ζ. In ζ-coordinates,
we may write:

Lν
k =

∂

∂ζk
+

n−1∑

l=1

ak
l (ζ)

∂

∂ζl
+

n−1∑

l=1

bk
l (ζ)

∂

∂ζl

+
(

ek(ζ) + idk(ζ)
)

∂

∂x2n−1
, 1 ≤ k ≤ n,
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where the coefficients ak
l , bk

l , ek, dk satisfy the estimates in (3.5) and (3.37).
Set δ = εϕ(x0)2m, and let us write b(ζ) = e1(ζ) + id1(ζ), where e1(ζ) and d1(ζ) are smooth

real valued functions. Recall the Taylor expansion of b(ζ) at x0 (i.e., at ζ = 0) in (3.6). We then
take the quantity τ(x0, δ) and the corresponding quantity µ(x, δ) defined in (3.9) and (3.35),
respectively. By Proposition 3.5, it follows that µ(x0, δ) ≈ τ(x0, δ), and hence the estimates in
(3.37) imply that

|∂j
1∂

k

1b(0)| . δµ(x0, δ)−j−k−1, j + k ≤ m− 1,(4.5)

|∂̃β∂j
1∂

k

1b(0)| . δ1/2µ(x0, δ)−(j+k+1)+γ , j + k ≤ m/2− 1,(4.6)

where ∂̃β = ∂β or ∂β , 2 ≤ β ≤ n− 1, and ∂k = ∂/∂ζk, 1 ≤ k ≤ n, and γ = (10× (m/2)!)−1.
Set µ = µ(x0, δ) for a convenience. We define new coordinates y = Dε,x0(x) = (y1, . . . , y2n)

by means of dilation map Dε,x0 : R2n −→ R2n given by

(4.7) y = (µ−1x1, µ
−1x2, δ

−1/2x3, . . . , δ−1/2x2n−2, δ
−1x2n−1, e

−1ϕ(x)−2mx2n),

where ϕ(x) is the function ϕ expressed in the x-coordinates of x0. In terms of the y-coordinates
we define an open set Wb(x0) by

(4.8) Wb(x0) = {x ∈ Vν ∩ Sε,σ ; |yk(x)| < b, 1 ≤ k ≤ 2n− 1, 0 ≤ y2n(x) ≤ σ2m}.

Note that in Wb(x0), y2n = 0 and y2n = σ2m coincide with r = 0 and r = εσ2m, respectively,
on the boundaries of Sε,σ. We define a frame {L1, . . . , Ln} in Wb(x0) by setting

L1 = µ(x, δ)(Lν
1 − r1L

ν
n) = µ(x, δ)H(Lν

1),(4.9)

Lk = ε1/2ϕ(x)m(Lν
k − rkLν

n) = ε1/2ϕ(x)mH(Lν
k), 2 ≤ k ≤ n− 1,

Ln = εϕ(x)2mLν
n,

where rk = (Lν
kr)(Lν

nr)−1, and Lν
k is the vector field Lk written in x-coordinates of Vν . Set

Lν
k =

2n−1∑

l=1

ekl(x)
∂

∂xl
, 1 ≤ k ≤ n− 1, and Lν

n =
∂

∂t
+

2n−1∑

l=1

enl(x)
∂

∂xl
.

In terms of dilated coordinates y in Wb(x0), we set Ekl = ekl·D−1
ε,x0

, Rk = rk ·D−1
ε,x0

, Φ = ϕ·D−1
ε,x0

and Φl = (∂ϕ/∂xl) ·D−1
ε,x0

.
By a direct calculation, one obtains that

(4.10) Rk =
2εm

∑2n−1
l=1 Eν,lΦ2m−1Φly2n

1 + 2εm
∑2n−1

l=1 En,lΦ2n−1Φly2n

, 1 ≤ k ≤ n− 1.

We set
|f |k,Wb(x0) = sup {|Dα

y f(y)| ; y ∈ Wb(x0), |α| ≤ k},
and extend this norm to vector fields and 1-forms by using the coefficients of ∂/∂yj or dyj . By
virtue of Proposition 3.2, it follows that for all x ∈ Wb(x0), we have

(4.11) µ(x, δ) ≈ τ(x0, δ) . δ1/m = ε1/mϕ(x0)2.
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Combining (4.10) with (4.11), we conclude that for each s ≥ 0 there are Cs independent of
x0 and δ such that

(4.12) |δ−1µ(x, δ)Rk|s,Wb(x0) ≤ Csbε
1/m, 1 ≤ k ≤ n− 1.

Therefore L1 can be written, in y-coordinates, as

L1 =
µ(x, δ)
µ(x0, δ)

2∑

l=1

E1,l
∂

∂yl
+ µ(x, δ)ε−1/2ϕ(x0)−m

2n−2∑

l=3

E1,l
∂

∂yl
(4.13)

+ µ(x, δ)ε−1ϕ(x0)−2mE1,2n−1
∂

∂y2n−1
+O(Ẽ),

where

|E1,1 − 1|s,Wb(x0) ≤ Cµ(x0, δ), s ≤ m,(4.14)

|E1,2 + i|s,Wb(x0) ≤ Cµ(x0, δ), s ≤ m,

and Ẽ satisfies, from the estimates in (4.12), that

(4.15) |Ẽ|s,Wb(x0) ≤ Cε1/m, s ≤ m,

for an independent constannt C > 0. By virtue of the estimates in (3.31), we also have

(4.16) |µ(x, δ)ε−1/2ϕ(x0)−mE1,l|k,Wb(x0) ≤ Cτ(x0, δ)γ , k ≤ m + 1, 3 ≤ l ≤ 2n− 2.

Observe that the diameter in the x–coordinates of Wb(x0)is O(bµ(x0, δ)) ¿ ϕ(x0) by (4.11).
Hence it is clear that µ(x, δ)µ(x0, δ)−1 and Φϕ(x0)−1 are very close to 1 (independent of x0 and
δ) in Wb(x0) if b is small. We also observe that µ(x, δ) is defined independently of coordinate
functions and that τ(x0, δ) ≈ τ(x, δ) ≈ µ(x, δ) if x ∈ Wb(x0). Therefore it follows that
µ(x0, δ) ≈ µ(p0, δ) and ϕ(x0) ≈ ϕ(p0) if Wb(x0) ∩Wb(p0) 6= 0. These facts prove (ii).

Now set

wk =
1
2
(y2k−1 − iy2k), 1 ≤ k ≤ n− 1, and wn =

1
2
(y2n − iy2n−1),

and define Dl = ∂/∂yl, 1 ≤ l ≤ 2n, and Bm−1(y) = bm−1 ◦ D−1
ε,x0

(y), where bm−1 is the
(m−1)-th order polynomial of b(ζ) in ζ1 and ζ1 as in (3.6). We recall that the real part e(ζ) of
the coefficient function of ∂/∂x2n−1 in L1 satisfies the estimates in (3.5). Hence, by combining
(4.12)–(4.16), we obtain that

L1 =
∂

∂w1
+ µ(x0, δ)δ−1Bm−1(y)

∂

∂y2n−1
+O(E),(4.17)

X = L1 + L1 =
∂

∂y1
+O(E),(4.18)

where

(4.19) |E|s,Wb(x0) ≤ Csε
γ/m, |µ(x0, δ)δ−1Bm−1|s,Wb(x0) ≤ Cs
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for an independent constant C > 0. Combining (4.17)–(4.19), we conclude that if b ≤ √
σ,

lim
σ→0

∣∣∣∣L1 −
(

∂

∂w1
+ µ(x0, δ)δ−1Bm−1(y)

∂

∂y2n−1

)∣∣∣∣
s,Wb(x0)

= 0, s ≤ m + 1.

Setting W (x0) = Wσ(x0) for sufficiently small σ, we obtain (i) and (iii).
To prove (iv), we recall that Ln = ∂/∂y2n − i∂/∂y2n−1 + y2nT , where Ty2n ≡ 0, and that

L is integrable to infinite order along M0. Hence

(4.20) cn
1n = ωn([L1, Ln]) = ωn

([
L1 + L1,

∂

∂y2n
− i

∂

∂y2n−1

])
+O(y2n).

Combining (4.18) – (4.20), we conclude that

(4.21) sup
y∈W (x0)

|cn
1n(y)| ≤ C1(εγ/m + σ2m),

where γ = (10× (m/2)!)−1.
For the estimates of cn

1l, l = 2, . . . , n − 1, we need the estimates in (3.26). Then it follows
that |cn

1l(y)| ≤ C1ε
γ/m, along M0. Since L1 and Ll are tangential vector fields, for 2 ≤ l ≤ n−1,

it follows that

(4.22) |cn
1l(y)| ≤ C1(εγ/m + |y2n|) ≤ C1(εγ/m + σ2m), y ∈ W (x0),

Now we assume that ε ≤ σ2m2·γ−1
. Then (4.2) follows from (4.21) and (4.22).

By Proposition 3.5, it follows that τ(x0, δ) ≈ µ(x, δ) for x ∈ W (x0). Since {L1, . . . , Ln}
is orthonormal with respect to 〈 , 〉, we conclude that (4.3) and (4.4) hold if σ is sufficiently
small. ¤

Using the special coordinates y1, . . . , y2n and the special frames L1, . . . Ln defined in (4.9),
we want to define L2-operators with mixed boundary conditions. In the process of subelliptic
estimates for D2-operator, we will see that certain boundary integral terms on M0 occur. To
handle these boundary integral terms, we need the following lemma.

Lemma 4.3. There are a frame {X1, . . . , Xn} for L and its dual frame {η1, . . . , ηn} so that
if we set cn

kn = ηn([Xk, Xn]), 1 ≤ k ≤ n− 1, then

cn
kn = 0 on W (x0), k = 2, . . . , n− 1,

|cn
1n|s,W (x0) ≤ Csσ

2m.(4.23)

Proof. With the frames L1, . . . , Ln and ω1, . . . , ωn defined on W (x0) in (4.9), we let bk(y),
2 ≤ k ≤ n− 1, be the smooth function satisfying

(4.24) ωn([Lk, Ln])(y) +
n−1∑

l=2

bl(y)ωn([Lk, Ll])(y) ≡ 0, y ∈ W (x0).

Since the Levi-form of L2, . . . , Ln−1 is always positive definite, (4.24) is solvable on W (x0).
Set

Xk = Lk, k = 1, . . . , n− 1, and Xn = Ln +
n−1∑

l=2

bl(y)Ll.
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Then its dual frames ηk, k = 1, . . . , n, are given by

ηk = ωk − bk(y)ωn, k = 1, . . . , n− 1, and ηn = ωn.

In terms of the new frames it follows from (4.24) that

cn
kn := ηn([Xk, Xn]) = ωn([Lk, Ln]) +

n−1∑

l=2

blω
n([Lk, Ln]) ≡ 0, 2 ≤ k ≤ n− 1,

on W (x0) and

(4.25) cn
1n := ωn([X1, Xn]) = ωn([L1, Ln]) +

n−1∑

l=2

bl(y)ωn([L1, Ll]).

Therefore (4.23) follows from (4.25) and (4.2). ¤
Recall that a deformation of L0 is a section A of the bundle Γ1(Sε,σ). In terms of the special

frames in W (x0), we write A =
∑n

j,l=1 Ajlω
l ⊗ Lj , and then define

|A(y)|s =
∑

|α|≤s

n∑

j,l=1

|Dα
y Ajl(y)|,

|A|s,W (x0) = sup{|A(y)|s ; y ∈ W (x0)}.

We suppose that A satisfies

(4.26) |A|m+2n+3,W (x0) ≤ ε0

for a sufficiently small ε0 > 0.
We define A(Sε,σ) to be the space of sections A ∈ Γ0,1(Sε,σ ; 0) such that along M0,

A(L) = 0 whenever L ∈ T 0,1 ∩ CTM0. From now on, we assume that A ∈ A(Sε,σ). Then we
can define a deformation LA of L0 by

LA
= {L + A(L) ; L ∈ L0

z, z ∈ Sε,σ}.

In terms of the frames X1, . . . , Xn, and its dual frames η1, . . . , ηn in W (x0) constructed in
Lemma 4.3, we define

XA
j = Xj + A(Xj), j = 1, . . . , n,

and let ηj
A be the dual frames. Set

(4.27) LA
j = σ1/4

(
XA

j − (XA
j r)(XA

n r)−1XA
n

)
, 1 ≤ j ≤ n− 1, LA

n = XA
n

and

(4.28) ωj
A = σ−1/4ηj

A, 1 ≤ j ≤ n− 1, ωn
A =


ηn

A +
n−1∑

j=1

(XA
j r)(XA

n r)−1ηj
A


 .
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Obviously, the frames ωj
A, for j = 1, . . . , n, are dual to LA

j , and LA
j r ≡ 0 for 1 ≤ j ≤ n− 1.

Note that we can write Ln = ∂/∂y2n − i∂/∂y2n−1 + y2nT , where Ty2n ≡ 0. Assuming that
A satisfies (4.26) for sufficiently small ε0 ≤ σ2m2·γ−1

, it follows from Lemma 4.3 that

sup
y∈W (x0)

|ωn
A([LA

k , L
A

n ])(y)| ≤ Cσ1/4|A|1, 2 ≤ k ≤ n− 1,(4.29)

sup
y∈W (x0)

|ωn
A([LA

1 , L
A

n ])(y)| ≤ Cσ2m+1/4,(4.30)

where the constant C > 0 is independent of x0, σ and ε.
In order to measure how LA

j , j = 1, 2, . . . , n, depend on A, we define

Pk(y;A) =
∑

k1,...,kN

|k1|+···+|kN |≤k

N∏
ν=1

|A(y)|kν .

In the sequel, we assume that A satisfies (4.26) for sufficiently small ε0.

Lemma 4.4.. For y ∈ W (x0), the following pointwise estimates hold :

(4.31) |LA
k − σ1/4Lk|s ≤ CsPs(y;A), |ωk

A − σ−1/4ωk|s ≤ Csσ
−1/4Ps(y; A)

for 1 ≤ k ≤ n− 1 and

(4.32) |LA
n − Ln|s ≤ CsPs(y;A), |ωn

A − ωn|s ≤ CsPs(y; A).

Proof. From the expression of LA
k and ωk

A in (4.27) and (4.28), the error terms are the finite
product of derivatives as in (4.31) and (4.32). ¤

For the subelliptic estimates on the non-euclidean balls W (x0), we still have to construct
a family of plurisubharmonic functions with maximal Hessian in dilated coordinates y defined
in (4.7). By virtue of Theorem 3.6 there is a family of plurisubharmonic functions {ψδ(x)}δ>0

defined on Ωδ ∩ U = {(x′, t) ; t ≤ δ} ∩ U . We may assume that there is an open set W̃ (x0) =
WCσ(x0), for some C > 1, such that W (x0) = Wσ(x0) b W̃ (x0) b Paδ(x0), provided σ is
sufficiently small. We define

Sρ = {y ∈ Ωρ ∩ U ; |y2n| < ρ},

and set δ0 = δ(x0) = εφ(x0)2m and

µ1(x) = µ(x, δ0), µk(x) = ε1/2ϕ(x)m, 2 ≤ k ≤ n− 1,(4.33)

µn(x) = εϕ(x)2m.

For any ρ > 0 we set

(4.34) µρ
1(x) = µ(x, ρδ0), µρ

k(x) = (ρδ0)1/2, 2 ≤ k ≤ n− 1, µρ
n(x) = ρδ0.
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Theorem 4.5. For each small ρ > 0, there exists a C∞ plurisubharmonic function λρ defined
on W̃ (x0) c W (x0) satisfying the following :

(i) |λρ| ≤ 1 in W̃ (x0).
(ii) For all y ∈ Sρ ∩ W̃ (x0), and LA =

∑n
j=1 bjL

A
j , we have

∂∂λρ(y)(LA, L
A
) ≈

n∑

k=1

|bk|2µ2
k(µρ

k)−2.

(iii) |LAλρ|2 . ∂∂λρ(y)(LA, L
A
).

(iv) |Dαλρ| ≤ Cα

∏n
k=1 µαi

k (x)(µρ
k)−αi , where Dα = ∂β1

1 ∂
γ1

1 . . . ∂βn
n ∂

γn

n , αi = βi + γi.

Proof. Let {ψρδ0}ρδ0>0 be the family of plurisubharmonic functions constructed in Theorem
3.6. Set λρ(y) = ψρδ0 ◦D−1

x0
(y), where Dx0 is the dilation function defined in (4.8). It is clear

that λρ is plurisubharmonic and satisfies (i). Note that the orthonormal frame {L1, . . . Ln}
defined in (4.9) can be written as Lj = µj(x)(Lν

j − rjL
ν
n), 1 ≤ j ≤ n− 1, and Ln = µn(x)Lν

n.
If we let L =

∑n
j=1 bjLj , then it follows by functoriality that

∂∂λρ(y)(L,L) =∂∂ψρδ0(x)(dD−1
x0

L, dD−1
x0

L)(4.35)

=∂∂ψρδ0(x)(
n∑

j=1

bjµjL
ν
j ,

n∑

k=1

b̄kµkL
ν

k)

− 2Re




n−1∑

j=1

n∑

k=1

rjbj b̄kµjµk∂∂ψρδ0(x)(Lν
n, L

ν

k)




+
n−1∑

j,k=1

rj r̄kbj b̄kµjµk∂∂ψρδ0(x)(Lν
n, L

ν

n).

From the expression of rk(x) in (4.10) and (4.12) it follows that

(4.36) |rk(x)| . ε1/m(ρδ0) · µ(x, δ0)−1 for |t| ≤ ρδ0.

If we combine (4.36) with the properties (ii) and (iii) of Theorem 3.6, we conclude that

(4.37) ∂∂λρ(y)(L,L) ≈
n∑

k=1

|bk|2µ2
k(µρ

k)−2.

Note that the vector fields LA
j ’s and its dual frames ωA

j ’s were written in terms of Lj ’s, and
ηj

A’s as in (4.27) and (4.28). By virtue of the expressions in (4.31) and (4.32) we can write

(4.38) ∂∂λρ(y)(LA, L
A
) = ∂∂λρ(y)(L,L) +O(A2ρ−2 + Aρ−3/2)|L|2.

Recall that A = 0 along M and satisfies (4.26). Hence |A|0 . ε0ρ
2 provided |y2n| ≤ ρ.

Therefore it follows from (4.37) and (4.38) that

∂∂λρ(y)(LA, L
A
) ≈

n∑

k=1

|bk|2µk(x)2(µρ
k)−2.
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This proves (ii). (iii) follows from the estimate

|LAλρ|2 .
n∑

k=1

|bk|2|LA
k λρ|2 .

n∑

k=1

|bk|2µk(x)2(µρ
k)−2 ≈ ∂∂λρ(y)(LA, L

A
).

(iv) follows from the property (iii) of Theorem 3.6. ¤
Next, we show that there exists a smooth Hermitian metric on Sε,σ such that for all x0 ∈

M the frames LA
1 , . . . , LA

n given by (4.27) are orthonormal. For L ∈ L0 and A ∈ A(Sε,σ)
satisfying (4.26), define a bundle isomorphism PA : L0 → LA by PA(L) = L + A(L). Define a
homomorphism HA : LA →RA, where RA = {L ∈ LA ; Lr = 0}, by

HA(L) = L− Lr

XA
n r

XA
n = L− Ly2n

LA
n y2n

LA
n .

Then HA ◦ PA is an isomorphism of R onto RA. We define a metric 〈 , 〉A on LA by

〈(HA ◦ PA)L1, (HA ◦ PA)L2〉A = 〈L1, L2〉, L1, L2 ∈ R,

〈LA
n , LA

n 〉A = 1,

〈(HA ◦ PA)L1, L
A
n 〉A = 0, L1 ∈ R.

Note that LA
n is actually globally defined, so that the above conditions determine a metric on

LA. Since Lj , j = 1, 2, . . . , n − 1, defined in (4.9), are an orthonormal basis of L, it follows
that LA

j = (HA ◦ PA)Lj , j = 1, 2, . . . , n − 1, are an orthonormal basis of LA with respect to
〈 , 〉A.

Let dV denote the volume form associated with the Riemannian metric 〈 , 〉. In the coor-
dinates (y1, . . . , y2n) in W (x0) we can write dV = V (y)dy, where dy = dy1 . . . dy2n, and where
V satisfies

|V |s,W (x0) ≤ Cs and inf V (y)
y∈W (x0)

> c > 0,

where c is independent of σ, ε, and x0. We will define the inner product for two functions g,
h ∈ C∞(Sε,σ) by

(g, h) =
∫

gh dV.

Let Λ0,q(Sε,σ; A) denote the space of (0, q)-forms with respect to LA on Sε,σ, and set

Γ0,q(Sε,σ; A) = Λ0,q(Sε,σ; A)⊗ LA.

Now let us define, for a given structure LA, where A satisfying (4.26) for small ε0, the L2-
operators corresponding to Dq : Γ0,q → Γ0,q+1 and its adjoint. We define E0,q

c (Sε,σ;A) to be
the set of smooth sections U of Γ0,q(Sε,σ; A) such that support of U is a compact subset of
Sε,σ. Let E0,q

0 (Sε,σ; A) denote the set of sections of E0,q
c (Sε,σ;A) with compact support in the

interior of Sε,σ. Suppose that U =
∑n

`=1

∑
|J|=q UJ

` ωJ
A ·LA

` is an element of Γ0,q(Sε,σ;A) with
compact support in W (x0). We define

(4.39) ‖U‖2 =
∫

Sε,σ

n∑

`=1

∑

|J|=q

|UJ
` |2dV,
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where dV is the volume form given by the metric of L0. Since {LA
1 , . . . , LA

n } is an orthonormal
frame, the quantity in (4.39) is independent of the frame neighborhood W (x0). Thus, by using
a partition of unity, it follows that the norm in (4.39) extends to all of Γ0,q(Sε,σ; A). Let
L2

q(Sε,σ, T 1,0
A ) denote the set of sections of Γ0,q(Sε,σ; A) such that (4.39) is finite.

Define Bq
−(Sε,σ; A) to be the set of forms in E0,q

c (Sε,σ; A) such that UJ
` vanishes on M0

whenever n 6∈ J . (This is also independent of the frame neighborhood W (x0).) Similarly, define
Bq

+(Sε,σ;A) to be the set of forms in E0,q
c (Sε,σ; A) such that UJ

` vanishes on Mσ whenever n ∈ J .
We now define the formal adjoint D′

q of Dq on E0,q
c (Sε,σ; A) by D′

qU = G ∈ E0,q−1
c (Sε,σ;A) if

for all V ∈ E0,q−1
0 (Sε,σ; A),

(U,DqV ) = (G,V ),

where ( , ) corresponds to the norm in (4.39). By combining (2.3) with (2.6) together with
integration by parts, it follows that if U =

∑
ν

UνLA
ν ∈ Γ0,k(Sε; A) is supported in W (x0), then

(4.40) D′
kU =

∑
ν


∂

∗
Uν −

∑
µ

∑

j

∂ωµ
A(LA

j , L
A

ν )(L
A

j cUµ)


 LA

ν ,

where

∂
∗
Uν = −

∑

|J|=k−1

n∑

j=1

(LA
j U jJ

ν + ejU
jJ
ν )ωJ

A(4.41)

−
∑

|K|=k−2

n∑

`=1

∑

i<j

ω`
A([LA

i , LA
j ])U ijK

ν ω`K
A .

We now extend the definition of the operator Dq and D′
q to the L2-spaces. Define L2

k(Sε,σ;A)
to be the set of all sections U of Γ0,k(Sε,σ; A) for which ‖U‖2 < ∞. We define an operator

T : L2
q−1(Sε,σ; T 1,0

A ) → L2
q(Sε,σ; T 1,0

A )

by the condition that U ∈ Dom(T ) and TU = F ∈ L2
q(Sε,σ; T 1,0

A ) if for all V ∈ Bq
−(Sε,σ; A),

we have
(U,D′

qV ) = (F, V ).

Similarly, we can define S : L2
q(Sε,σ; T 1,0

A ) → L2
q+1(Sε,σ; T 1,0

A ). Note that these definitions
imply that if U ∈ Dom(T ) (or Dom(S)), then TU = DqU (or SU = Dq+1U) as in the sense
of distribution theory. Let T ∗ : L2

q(Sε,σ;T 1,0
A ) → L2

q−1(Sε,σ; T 1,0
A ) and S∗ : L2

q+1(Sε,σ; T 1,0
A ) →

L2
q(Sε,σ; T 1,0

A ) be the Hilbert space adjoints of T and S, respectively. It follows that if U ∈
Dom(T ∗) and V ∈ Dom(S∗), then

(4.42) T ∗U = D′
q(U) and S∗V = D′

q+1(V ),

as in the sense of distributions. Therefore it follows that

E0,q−1
c (Sε,σ;A) ∩Dom(T ) = Bq−1

+ (Sε,σ; A),

E0,q
c (Sε,σ; A) ∩Dom(T ∗) = Bq

−(Sε,σ; A).

Similar relations hold for S. Set

Bq(Sε,σ;A) = Bq
+(Sε,σ; A) ∩ Bq

−(Sε,σ;A).

Then we can approximate U ∈ Dom(S) ∩Dom(T ∗) by Uµ ∈ Bq(Sε,σ; A) in the graph norm of
S and T ∗ [5, Lemma 6.4].
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Lemma 4.6. Let U ∈ Dom(S) ∩Dom(T ∗). Then there exists Uµ ∈ Bq(Sε,σ;A) such that

lim
µ→∞

(‖Uµ − U‖+ ‖SUµ − SU‖+ ‖T ∗Uµ − T ∗U‖) = 0.

Finally, suppose that we have proved the estimate

(4.43) ‖U‖2 ≤ C(‖T ∗U‖2 + ‖SU‖2)

for all U ∈ Bq(Sε,σ; A). Then Lemma 4.6 shows that (4.43) holds for all U ∈ Dom T ∗∩Dom S.
Then from the usual ∂-Neumann theory it follows that for all G ∈ L2

q(Sε,σ; T 1,0
A ), there exists

an element NG ∈ Dom(T ∗) ∩Dom(S) such that

‖NG‖ ≤ C2‖G‖,

and
(G,V ) = (T ∗(NG), T ∗V ) + (SNG,SV ), V ∈ Dom(T ∗) ∩Dom(S).

We will call N the Neumann operator associated with Dq.

5. The Subelliptic Estimate for Dq

In this section we prove a subelliptic estimate for the Dq-Neumann problem with almost
complex structure LA. We set q = 2 in this section.

We first define tangential norms that will be used in the estimates. For any s ∈ R, set

|||f |||2s =
∫ σ2m

0

∫

R2n−1
|f̂(ξ, y2n)|2(1 + |ξ|2)sdξ dy2n,

where f̂(ξ, y2n) =
∫
R2n−1 e−iy′·ξf(y′, y2n)dy′. For any integer k ≥ 0 and any s ∈ R, set

‖f‖2s,k =
k∑

j=0

∣∣∣∣
∣∣∣∣
∣∣∣∣
∂jf

∂yj
2n

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

s−j

.

Then, for any integer m ≥ 0 and f ∈ C∞(W (x′)), set

‖f‖2m =
∑

|α|≤m

‖Dα
y f‖2.

By using the coefficients of U , we can easily define all of the above norms for any section U
of Γ0,q. We recall that A(Sε,σ) is the space of sections A ∈ Γ0,1(Sε,σ; 0) such that along M0,
A(L) = 0 whenever L ∈ T 0,1 ∩ CTM0. We let C > 1 and 0 < c ≤ 1 be independent constants
which may vary in various estimations. Then the goal of this section is to prove the following
subelliptic estimate:
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Theorem 5.1. Suppose T (M) = m < ∞ and that A is a section of A(Sε,σ). Then there exist
small positive constants σ1 and ε1 so that if ε < ε1, σ < σ1, and |A|m+2n+3,W (x0) ≤ ε, then the
Dq-Neumann problem on Sε,σ with coefficient σ for the almost complex structure LA satisfies
the following estimate for all forms U ∈ Bq(Sε,σ; A) that are compactly supported in W (x0)

(5.1) σ−3‖U‖2 + LA(U) + σ
1
2 ‖U‖21

m ,1 ≤ C(‖SU‖2 + ‖T ∗U‖2),

where LA(U) is defined by

LA(U) =
n−1∑

k=1

n∑

`=1

∑

|J|=q

‖LA

k UJ
` ‖2 +

n−1∑

k=1

n∑

l=1

∑

|J|=q
n/∈J

‖LA
k UJ

` ‖2(5.2)

+
n∑

`=1

∑

|J|=q
n∈J

‖LA
n UJ

` ‖2 +
n∑

`=1

∑

|J|=q
n 6∈J

‖LA
n UJ

` ‖2.

We first state some necessary lemmas for the proof of Theorem 5.1 [5, Lemma 7.5].

Lemma 5.2. Let Xj =
∑

k ajk∂/∂xk, j = 1, . . . , `, be smooth compactly supported vector
fields in Rd, and suppose that there exist a set K b Rd and a constant c > 0 such that for all
x ∈ K,

c < inf{
∑

j

|η(Xj)|+
∑

i<j

|η([Xi, Xj ])| ; η ∈ T ∗x , |η| = 1}.

Then there exists a constant C independent of X1, . . . , X` such that for all u ∈ C∞0 (Rd) with
supp u ⊂ K and any integer s > (d + 5)/2,

c‖u‖21/2 ≤ C


∑̀

j=1

‖Xju‖2 + ‖u‖2
∑

j,k

‖aj,k‖2s


 .

If n ≥ 3, then the (n − 2) positive eigenvalue condition on the Levi-form of M guarantees
the existence of at least one positive eigenvalue. Set X2k−1 = ReLA

k and X2k = ImLA
k for

1 ≤ k ≤ n− 1. Then Lemma 5.2 and the expression of LA
k in (4.27) show that

Lemma 5.3. Assume that n ≥ 3. Then for all f ∈ C∞0 (W (x0)),

(5.3) σ1/2|||f |||21/2 ≤ C

n−1∑

k=1

(
‖LA

k f‖2 + ‖LA
k f‖2

)
+ C‖f‖2.

For convenience, in what that follows we omit the notation A from the frames LA
1 , . . . , LA

n ,
and ω1

A, . . . , ωn
A, and LA. Note that in W (x0), we have technically chosen coordinates in such

a way that y2n = 0 and y2n = σ2m coincide with r = 0 and r = εσ2m, respectively, on the
boundaries of Sε,σ. Then the following lemma can be proved by modifying the proof of Lemma
7.7 in [5].
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Lemma 5.4. Suppose that f ∈ C∞0 (W (x0)) and f vanishes either on M0 or on Mσ. If σ is
sufficiently small, say σ < σ1, then there exists a constant C independent of ε, σ, and x0 such
that

(5.4) σ−4‖f‖2 ≤ C(‖f‖21/m + ‖L̃nf‖2),

where L̃n = Ln or Ln.

To handle the commutator terms, we need the following lemma.

Lemma 5.5. Assume that n ≥ 3. Let U ∈ Bq(Sε,σ; A) be compactly supported in W (x0) and
assume that |K| = q − 1 with n /∈ K and that 1 ≤ k ≤ n − 1. Set cn

kn = wn([Lk, Ln]) and
dn

nk = ωn([Ln, Lk]). Then

|(cn
knLnUkK

` , UnK
` )| ≤ C(σLA(U) + σ−1‖U‖2),(5.6)

|(dn
knLnUnK

` , UkK
` )| ≤ C(σLA(U) + σ−1‖U‖2).(5.7)

Proof. Note that UkK
l = 0 on M0 and UnK

l = 0 on Mσ. From (4.29) and (4.30), it follows that

(5.8) |cn
kn|0, |dn

nk|0 ≤ Cσ2m, 1 ≤ k ≤ n− 1.

Let χ be a C∞ function defined on W̃ (x0) c W (x0) such that 0 ≤ χ ≤ 1, χ = 0 near M0,
χ = 1 near Mσ and satisfies

(5.9) |χ|
s,W̃ (x0)

≤ Cσ−2ms, s = 1, 2, . . .

Let us write

(5.10) (cn
knLnUkK

l , UnK
l ) = (cn

knχLnUkK
l , UnK

l ) + (cn
kn(1− χ)LnUkK

l , UnK
l ).

By integration by parts we get, from the estimates in (5.8), that

(cn
knχLnUkK

l , UnK
l ) = −(UkK

l , cn
knχLnUnK

l ) +O(‖U‖2) . σ · σ4m‖χLnUnK
l ‖2 + σ−1‖U‖2.

Using the fact that χ = 0 on M0, UnK
l = 0 on Mσ, and (5.9), we can perform integration

by parts for the function ‖χLnUnK
l ‖2 in a standard way. Then we get

(5.11) ‖χLnUnK
l ‖2 = ‖χLnUnK

l ‖2 + σ−4mO (‖UnK
l ‖2 + L(U)

)
.

Combining (5.10) and (5.11), we get

|(cn
knχLnUkK

l , UnK
l )| . σLA(U) + σ−1‖U‖2.

Similarly, we can estimate (cn
kn(1 − χ)LnUkK

l , UnK
l ). This proves (5.6). The proof of (5.7) is

similar ¤
For each small ρ > 0, we set

Sρ = {(y′, yn) ; |y2n| < ρ} ∩ W̃ (x0),

and let λρ = ψρδo ◦D−1
x0

(y) be the plurisubharmonic weight functions constructed in Theorem
4.5, where δ0 = εφ(x0)2m.
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Lemma 5.6. For each k, 1 ≤ k ≤ n − 1, set dn
1k = ωn([L1, Lk]) and let x = D−1

x0
(y). Then

on Sρ we have

|dn
11(Lnλρ)(y)| . σ1/2τ(x, δ0)2τ(x, ρδ0)−2,(5.12)

|dn
1k(Lnλρ)(y)| . σ1/2ρ−1/2τ(x, δ0)τ(x, ρδ0)−1+γ , 2 ≤ k ≤ n− 1.(5.13)

Proof. Note that dn
1k = ωn

A([LA
1 , L

A

k ]), where ωn
A and LA

k ’s are defined in (4.27) and (4.28).
Therefore it follows that

(5.14) dn
1k(y) = σ1/2ωn([L1, Lk])(y) +O(|A|1).

Now assume that y = (y′, y2n) ∈ Sρ. Then x = (x′, t) = D−1
x0

(y) satisfies

|t| ≤ ρεφ(x0)2m = ρδ0.

Let µk(x) be defined as in (4.33). Then, by functoriality, it follows that

ωn([L1, Lk])(y)(Lnλρ)(y)

= µn(x)−1ωn([µ1(x)H(Lν
1), µk(x)H(Lν

k)])(x)µn(x)L
ν

nψρδ0(x)

= µ1(x)µk(x)ωn([Lν
1 , L

ν

k])(x)L
ν

nψρδ0(x) +O(x2nL
ν

nψρδ0(x)),

where we have used the notation in (4.9) and the expression of rk in (4.10).
Note that τ(x, δ0) ≈ µ(x, δ0) ≈ µ(x, εφ(x)2m), and µk(x) ≈ δ

1/2
0 on W̃ (x0). Since x ∈ S(ρδ0)

(in x-coordinates), it follows from Proposition 3.8 and the property (iii) of Theorem 3.6 that
(set δ = ρδ0 there)

|µ1(x)2ωn([Lν
1 , L

ν

1 ])(x)L
ν

nψρδ0(x)| . τ(x, δ0)2(ρδ0)τ(x, ρδ0)−2(ρδ0)−1(5.15)

= τ(x, δ0)2τ(x, ρδ0)−2,

and for 2 ≤ k ≤ n− 1, we have

|µ1(x)µk(x)ωn([Lν
1 , L

ν

k])(x)Lν
nψρδ0(x)|

. τ(x, δ0)δ
1/2
0 · (ρδ0)1/2 · τ(x, ρδ0)−1+γ(ρδ0)−1(5.16)

. ρ−1/2τ(x, δ0)τ(x, ρδ0)−1+γ .

Assuming that A satisfies (4.26), it follows that |A|1 ≤ ε0ρ
2 if y ∈ Sρ. Also, it follows from

the property (iii) of Theorem 3.6 that

(5.17) |x2nL
ν

nψρδ0(x)| . 1, x ∈ S(ρδ0).

If we combine (5.14)–(5.17), then (5.12) and (5.13) follow. ¤
We now want to prove Theorem 5.1. Assume U =

∑n
l=1

∑
|J|=q UJ

l ωJ · Ll ∈ Bq(Sε,σ, A)
with supp U ⊂ W (x0). Then from (4.40) and (4.41) it follows that

T ∗U = D′
qU = BU + C|U |,
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where

(5.18) BU = −
n∑

l=1

∑

|K|=q−1

n∑

j=1

(LjU
jK
l )ωK · Ll.

Also, (2.6) shows that

(5.19) SU = Dq+1U = AU + C|U |,

where

(5.20) AU =
n∑

l=1

∑

|J|=q

n∑

j=1

(LjU
J
l )ωjJ · Ll.

Combining (5.18)–(5.20), we see that

(5.21) ‖AU‖2 + ‖BU‖2 ≤ 2‖SU‖2 + 2‖T ∗U‖2 + C‖U‖2.

Let us write U = U ′ + U ′′, where

U ′ =
n∑

l=1

∑

|J|=q
n∈J

UJ
l ωJ · Ll, U ′′ =

n∑

l=1

∑

|J|=q
n/∈J

UJ
l ωJ · Ll,

and set

L(U ′) =
n∑

l=1

n−1∑

k=1

∑

|J|=q
n∈J

‖LkUJ
l ‖2 +

n∑

l=1

∑

|J|=q
n∈J

‖LnUJ
l ‖2,

L(U ′′) =
n∑

l=1

n−1∑

k=1

∑

|J|=q
n/∈J

(‖LkUJ
l ‖2 + ‖LkUJ

l ‖2) +
n∑

l=1

∑

|J|=q
n/∈J

‖LnUJ
l ‖2.

Then we can write

(5.22) ‖AU‖2 + ‖BU‖2 = ‖AU ′′‖2 + ‖BU ′′‖2 + ‖AU ′‖2 + ‖BU ′‖2 + E(U ′, U ′′),

where E(U ′, U ′′) denotes the (sum of) inner products (AU ′, AU ′′) and (BU ′, BU ′′).
Note that the Levi-form of Mσ has at least (n − 2)-positive eigenvalues and U ′′ = 0 along

M0. Therefore we may proceed in the standard way as in [10,11] for U ′′ and we get

(5.23) ‖AU ′′‖2 + ‖BU ′′‖2 ≥ c

(
L(U ′′) +

∫

Mσ

|U ′′|2dS

)
.

A typical term of E(U ′, U ′′) looks like

(LkUkK
l , LnUnK

l )− (LnUkK
l , LkUnK

l ),
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where n /∈ K and 1 ≤ k ≤ n− 1. Since UkK
l = 0 on M0 and UnK

l = 0 on Mσ, we can perform
the integration by parts and we get

(LkUkK
l , LnUnK

l ) =(LnUkK
l , LkUnK

l )− (ekLnUkK
l , UnK

l )(5.24)

+ (enLkUkK
l , UnK

l ) + ([Lk, Ln]UkK
l , UnK

l ).

By integration by parts if necessary, the second and the third term of the right side of (5.24)
are bounded by σL(U ′) + Cσ−1‖U‖2. If we write

(5.25) ([Lk, Ln]UkK
l , UnK

l ) =
n∑

i=1

(ci
knLiU

kK
l , UnK

l ) +
n∑

i=1

(di
knLiU

kK
l , UnK

l ),

where ci
kn = ωi([Lk, Ln]) and di

kn = ωi([Lk, Lj ]), then when i < n, the each term of right is
dominated by σL(U ′) + σ−1‖U‖2, by applying integration by parts if necessary. If i = n, then
(dn

knLnUkK
l , UnK

l ) is bounded by σL(U ′) + σ−1‖U‖2. The remaining term (cn
knLnUkK

l , UnK
l )

can be handled by using Lemma 5.5. Therefore we conclude that

(5.26) |E(U ′, U ′′)| ≤ C(σL(U ′) + σ−1‖U‖2).

Let λ ∈ C∞(W̃ (x0)) with |λ| ≤ 1, and for f ∈ C∞(W (x0)), we define

‖f‖2λ =
∫

W (x0)

|f |2e−λdV.

Combining (5.22)–(5.26), we conclude that

‖AU‖2 + ‖BU‖2 ≥ c1

(
L(U ′′) +

∫

Mσ

|U ′′|2dV

)

+
1
3
(‖AU ′‖2λ + ‖BU ′‖2λ)(5.27)

− CσL(U ′)− Cσ−1‖U‖2,

because e−λ ≥ 1/3.
Now let us estimate ‖AU ′‖2λ + ‖BU ′‖2λ. As in (4.2.3) of [11], we get

(5.28) ‖AU ′‖2λ + ‖BU ′‖2λ = Lλ(U ′) +
n∑

l=1

n−1∑

j,k=1

[
(LkUkn

l , LjU
jn
l )λ − (LjU

kn
l , LkU jn

l )λ

]
,

where Lλ(U ′) =
∑n

l=1

∑
|J|=q
n∈J

∑n−1
k=1 ‖LkUJ

l ‖2λ +
∑n

l=1

∑
|J|=q
n∈J

‖LnUJ
l ‖2λ.

With the notation δk = eλLke−λ, 1 ≤ k ≤ n− 1, we have

(5.29) (δkUkn
l , δjU

jn
l )λ = (LkUkn

l , LjU
jn
l )λ +O

(
σ−1/4‖(Lλ)U ′‖2 + σ1/4

n−1∑

k=1

‖LkUkn
l ‖2

)
,
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where ‖(Lλ)U ′‖2 = ‖∑n−1
k=1(Lkλ)Ukn

l ‖2. By the standard integration by parts method, we
obtain that

(5.30) ‖LkUkn
l ‖2 = ‖LkUkn

l ‖2 −
∫

M0

dn
kk|Ukn

l |2dS +O(σL(U ′) + σ−1‖U ′‖2).

As in (5.24), we can write, for 1 ≤ j, k ≤ n− 1, as

(δkUkn
l , δjU

jn
l )λ = (LjU

kn
l , LkU jn

l )λ − (ekLjU
kn
l , U jn

l )λ(5.31)

+ (ējδkUkn
l , U jn

l )λ + ([δk, Lj ]Ukn
l , U jn

l )λ.

By integration by parts, if necessary, the second and third terms of (5.31) are bounded by
CσL(U ′) + Cσ−1‖U ′‖2. To estimate ([δk, Lj ]Ukn

l , U jn
l )λ, we write

([δk, Lj ]Ukn
l , U jn

l )λ =
n∑

i=1

(ci
kjLiU

kn
l , U jn

l )λ +
n∑

i=1

(di
kjLiU

kn
l , U jn

l )λ(5.32)

+ (Lj(Lkλ)Ukn
l , U jn

l )λ,

where ci
kj = ωi([Lk, Lj ]), and di

kj = ωi([Lk, Lj ]).
If i < n, then (di

kjLiU
kn
l , U jn

l )λ is bounded by σL(U ′) + Cσ−1‖U ′‖2. By integration by
parts, we can write

(5.33) (ci
kjLiU

kn
l , U jn

l )λ = (ci
kj(Liλ)Ukn

l , U jn
l )λ +O(σL(U ′) + σ−1‖U ′‖2).

If i = n, then (cn
kjLnUkn

l , U jn
l )λ is bounded by σL(U ′) + Cσ−1‖U ′‖2. By integration by

parts again, we can write

(dn
kjLnUkn

l , U jn
l )λ = (dn

kj(Lnλ)Ukn
l , U jn

l )λ −
∫

M0

dn
kjU

kn
l U

jn

l e−λdS(5.34)

+O(σL(U ′) + σ−1‖U ′‖2).

Combining (5.28)–(5.34), we obtain that

‖AU ′‖2λ + ‖BU ′‖2λ ≥
n−1∑

j,k=1

[
(Lj(Lkλ)Ukn

l , U jn
l )λ +

n−1∑

i=1

(ci
kj(Liλ)Ukn

l , U jn
l )λ

]

+
n−1∑

j,k=1

(dn
kj(Lnλ)Ukn

l , U jn
l )λ(5.35)

−
n−1∑

j,k=1

∫

M0

(dn
kjU

kn
l U

jn

l + C1σ
1/4dn

kk|Ukn
l |2)e−λdS

+ cL(U ′)− C1σ
−1/4‖(Lλ)U ′‖2 − Cσ−1‖U ′‖2.

With the notation

∂∂λ =
n−1∑

j,k=1

λjkωj ∧ ωk,
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the first sum of the right hand side of (5.35) is equal to
∑n−1

j,k=1(λjkU jn
l , Ukn

l )λ. Now suppose

that |λ| ≤ 1 on W̃ (x0). Let χ(t) denote the function σ1/4/3C1e
t and set φ = χ(λ). Then

χ
′′
(t) ≥ C1σ

−1/4χ′(t)2, and we get

n−1∑

j,k=1

φjktjtk =χ′(t)
n−1∑

j,k=1

λjktjtk + χ′′(t)
∣∣∣∣

n−1∑

k=1

(Lkλ)tk

∣∣∣∣
2

(5.36)

≥ σ1/4

9C1

n−1∑

j,k=1

λjktjtk + C1σ
−1/4χ′(t)2

∣∣∣∣
n−1∑

k=1

(Lkλ)tk

∣∣∣∣
2

.

Since M0 is pseudoconvex and dn
kk > d > 0 for 2 ≤ k ≤ n− 1, it follows that

(5.37) −
n−1∑

j,k=1

∫

M0

(dn
kjU

kn
l U

jn

l + C1σ
1
4 dn

kk|Ukn
l |2)e−λdS ≥ 0,

provided that σ is sufficiently small. Thus, if we replace λ by φ, then we conclude from (5.36)
and (5.37) that

‖AU ′‖2φ + ‖BU ′‖2φ ≥
σ1/4

9C1

n−1∑

j,k=1

(λjkU jn
l , Ukn

l )φ(5.38)

+
n−1∑

j,k=1

(dn
kj(Lnλ)Ukn

l , U jn
l )φ

+ cL(U ′)− Cσ−1‖U ′‖2.

Now we take the family {λρ}ρ>0 of plurisubharmonic functions with maximal Hessian con-
structed in Theorem 4.5, and replace λ in (5.38) by these functions. By Lemma 5.6 and the
fact that τ(x, δ) ≈ µ(x, δ), we have, for y = Dx0(x) ∈ Sρ, that

|(dn
11(Lnλρ)(y)| . σ1/2µ(x, δ0)2µ(x, ρδ0)−2,(5.39)

|(dn
1k(Lnλρ)(y)| . σ1/2ρ−1/2µ(x, δ0)µ(x, ρδ0)−1+γ , 2 ≤ k ≤ n− 1.(5.40)

Also, it follows from (4.27) and (4.28) that

(5.41) |(dn
j,k(Lnλρ)(y)| . σ1/2ρ−1, 2 ≤ j, k ≤ n− 1.

By virtue of Theorem 4.5 it follows that (assuming that we first take ρ0 ≤ σ2m for sufficiently
small σ) there is, for each 0 < ρ ≤ σ2m, λ = λρ such that

(5.42)
n−1∑

j,k=1

λj,k(y)U jn
l (y)U

jn

l (y) ≈
n−1∑

k=1

|Ukn(y)|2µ2
k(x)(µρ

k(x))−2, y ∈ Sρ,

where µk(x) and µρ
k(x) are defined in (4.33) and (4.34), respectively.
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Combining (5.38)–(5.42), we then have that

‖AU ′‖2 + ‖BU ′‖2 ≥ cσ1/2
n−1∑

j,k=1

(λjkU jn
l , Ukn

l ) + cL(U ′)

≥ c(σ1/2ρ−2/m‖U ′‖2 + L(U ′)),

because µ(x, δ0)2µ(x, ρδ0)−2 & ρ−1/m by (3.34). Then, by the theorem of Catlin [2], the
subelliptic estimates of order 1/m holds for U ′ and hence we get

(5.43) σ1/2|||U ′|||21/m + L(U ′) ≤ C(‖AU ′‖2 + ‖BU ′‖2) + ‖U ′‖2.

Combining (5.21), (5.27) and (5.43), we conclude that

(5.44) ‖SU‖2 + ‖T ∗U‖2 ≥ c

(
σ1/2|||U ′|||21/m + L(U) +

∫

Mσ

|U ′′|2dS

)
− Cσ−1‖U‖2.

If n = 2, then U ′′ = 0 on Mσ, and if n ≥ 3, then we have at least one positive eigenvalue.
In this case, we apply Lemma 5.3 for f replaced by U ′′ and get

(5.45) σ1/2|||U ′′|||21/2 ≤ CL(U ′′).

Combining (5.4), (5.44) and (5.45), we conclude that

σ−3‖U‖2 + L(U) + σ1/2|||U |||21/m ≤ C(‖SU‖2 + ‖T ∗U‖2),

for all U ∈ Bq(Sε,σ; A), provided σ is sufficiently small.
For the estimates of the non-tangential derivatives of U , we note that LA

n = ∂/∂y2n + X,
where X =

∑2n−1
j=1 bj(y)∂/∂yj . Therefore a standard argument yields the inequality

(5.46) ||| ∂f

∂y2n
|||2−1+1/m ≤ C


1 +

2n−1∑

j=1

|bj |2W̃ (x0),2n+3


 (|||f |||21/m + ‖Lnf‖2 + ‖f‖2)

for all f ∈ C∞0 (W̃ (x0)). This inequality can be applied with f = UJ
l to obtain (5.1) from

(5.46). This completes the proof of Theorem 5.1. ¤

We now define Sobolev spaces for sections of Γ0,q(Sε,σ;A). Recall that the open sets Bb(x0)
satisfy (4.3) and (4.4) for each x0 ∈ M . Choose a set Tσ = {xσ

i ∈ M ; i ∈ I} such that the sets
Bcσ/2(xσ

i ), i ∈ I, cover Sε,σ, and such that no two points xσ
i and xσ

j satisfy |xσ
i − xσ

j | ≤ cσ/4,
where | | is the distance function on Sε,σ. It follows that the sets W (xσ

i ), i ∈ I, cover Sε,σ

and that there exists an integer Ñ such that no point of Sε,σ lies in more than Ñ open sets
W (xσ

i ). Furthermore, there exist functions ζi, ζ ′i (that are independent of y2n) ∈ C∞0 (W (xσ
i ))

such that
∑
i∈I

ζ2
i ≡ 1, and if x ∈ supp ζi, then

(5.47) ζ ′i ≡ 1 in Bc′σ(x),
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and that both ζi and ζ ′i satisfy

(5.48) |ζi|k,W (xσ
i ) + |ζ ′i|k,W (xσ

i ) ≤ Ckσ−k.

Now, let F be any section of Γ0,q(Sε,σ; A). We define

‖F‖2k,A =
∑

i∈I

‖ζiF‖2k,A,W (xσ
i ),

where

‖ζiF‖2k,A,W (xσ
i ) =

n∑

l=1

∑

|J|=q

‖ζiF
J
l ‖2k,W (xσ

i ),

and F =
n∑

l=1

∑
|J|=q

F J
l ωJ

A · LA
j is the decomposition of F in terms of the frame of W (xσ

i ).

Moreover, the Sobolev norm ‖ ‖k,W (xσ
i ) is taken with respect to the y-coordinates of W (xσ

i ).
We define H0,q

k (Sε,σ; T 1,0
A ) to be the set of all sections F of Γ0,q(Sε,σ; A) for which ‖F‖k,A <

∞. If we define L2
q(Sε,σ; T 1,0

A ) to be the set of all F ∈ Γ0,q(Sε,σ; A) such that ‖F‖2 < ∞,
then it is obvious that the norms ‖ ‖ and ‖ ‖0,A are equivalent on L2

q(Sε,σ;T 1,0
A ). Since

A(Sε,σ) ⊂ Γ0,1(Sε,σ; 0), we define ‖A‖k = ‖A‖k,0 for A ∈ A(Sε,σ), and Hk(Sε,σ;A) to be the
set of A ∈ A(Sε,σ) such that ‖A‖k < ∞.

We want to get an estimate in global form. Define Q(U,U) = ‖T ∗U‖2 + ‖SU‖2. By using
the partition of unity as defined above satisfying (5.47) and (5.48), and from the estimates in
Theorem 5.1, we obtain the following

Corollary 5.7. There exist a fixed small σ and a constant ε1 > 0 such that for all ε, 0 < ε < ε1

and all U ∈ Dom(T ∗) ∩Dom(S),

(5.49) ‖U‖2 ≤ CQ(U,U).

Now let us fix σ > 0 satisfying Corollary 5.7, and set W (x0) = Wσ(x0). Using Theorem
5.1 and the standard “bootstrap” method, we can get regularity estimates for the linearized
equation. The proof is similar to that in Section 9 of [5]. Here we use 1/m subelliptic estimates
instead of 1/2 subellitic estimates. Set ¤ = DqD

∗
q +D∗

q+1Dq+1. In the sequel, we assume that
A satisfies

(5.50) ‖A‖2n+3 ≤ ε0.

Theorem 5.8. Suppose that U is the solution of ¤U = G, where G ∈ H0,q
k (Sε; T

1,0
A ) for all

k > 0. Then
‖D∗

qU‖k + ‖Dq+1U‖k . ‖G‖k + (1 + ‖A‖k+2)‖G‖n+2.

Now set E = D∗
q+1Dq+1U . Then we have the following estimates for the error term E [5,

Theorem 10.3].

Theorem 5.9. Suppose that ¤U = G, where Dq+1G = 0 and G ∈ H0,q
k (Sε; T

1,0
A ) for all k.

Then E = D∗
q+1Dq+1U satisfies

‖E‖k−1 . ‖G‖k‖FA‖n+1 + ‖G‖n+1‖FA‖k(5.51)

+ (1 + ‖A‖k+2)‖G‖n+1‖FA‖n+1.

Note that FA is D3-closed. Since q = 2, we immediately obtain
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Corollary 5.10. If U is the solution with respect to LA of ¤U = FA, then V ′ = D∗
2U satisfies

for all k = n + 1, n + 2, . . .

(5.52) ‖D2V
′ − FA‖k . ‖FA‖k+1‖FA‖n+1 + ‖A‖k+3‖FA‖2n+1.

6. Extension of CR structures

In this section we will prove Theorem 1.1 and Theorem 1.4, using the estimates in Section
5. First, we describe the nonlinear extension operator. For details, one can refer to Section 11
of [5].

If A ∈ A(Sε,σ) is sufficiently small and if we set PA(L) = L+A(L), then LA = {PA(L) ; L ∈
L}. If we set QA(ω) = ω − A∗ω, then Λ1,0

A = {QA(ω) ; ω ∈ Λ1,0(L)}. We define a nonlinear
operator Φ : A(Sε,σ) → Γ0,2(Sε,σ) by

(6.1) Φ(A)(L
′
, L
′′
, ω) = QA(ω)([PA(L

′
), PA(L

′′
)]).

Obviously, if Φ(A) = 0, then LA is an integrable almost complex structure on Sε,σ.
Note that there is a natural map PA : Γ0,2

A → Γ0,2 defined by

(PAB)(L1, L2, ω) = B(PA(L1), PA(L2), QA(ω)), B ∈ Γ0,2
A .

Therefore it follows from the definition of FA in (2.5) that Φ(A) = PA(FA). We also note
that if d and A are small sections of A on Sε,σ, then there exist sections ∆+

A,d and ∆−
A,d of

Λ0,1
A ⊗ T 1,0

A and Λ0,1
A ⊗ T 0,1

A , respectively, such that

PA+d(L) = PA(L) + ∆+
A,d(PA(L)) + ∆−

A,d(PA(L)).

Similarly, there exist sections δ+
A,δ and δ−A,δ of Hom(Λ1,0

A ,Λ1,0
A ) and Hom(Λ1,0

A ,Λ0,1
A ), respec-

tively, such that
QA+d(ω) = QA(ω)− δ+

A,d(QA(ω))− δ−A,d(QA(ω)).

Then it follows that ∆±
A(d) = ∆±

A,d both depend linearly on d and that the coefficients depend
smoothly on A, and the mapping d −→ ∆A(d) = ∆+

A(d)+∆−
A(d) is invertible. Then Φ′(A)(d),

as an element of Γ0,2, satisfies

(6.2) Φ′(A)(d) = (PA ◦DA
2 ◦∆+

A)(d)−PA(hA(d)(FA)),

where hA(d) : T 1,0
A −→ T 1,0

A denotes the adjoint of δ+
A(d) : Λ1,0

A −→ T 1,0
A . Since Φ(A) =

PA(FA), we let UA be the solution of ¤UA = −FA, and then set VA = (DA
2 )∗UA and dA =

∆−1
A (VA). Using the error estimates in Theorem 5.9 and Corollary 5.10, we then obtain the

following good estimates for the approximate solution of Φ(A) + Φ′(A)(d) = 0.

Theorem 6.1. Suppose that A ∈ Hk(Sε,σ,A) for all k. Then there exists dA ∈ Hk(Sε,σ,A)
for all k such that if k ≥ n + 2,

‖dA‖k . ‖Φ(A)‖k + ‖A‖k+2‖Φ(A)‖n+2,(6.3)

‖Φ(A) + Φ′(A)(dA)‖k−1 . ‖Φ(A)‖k‖Φ(A)‖n+2 + ‖A‖k+2‖Φ(A)‖2n+2.(6.4)

Note that properties (6.3) and (6.4) of the nonlinear operator Φ are the crucial ingredients
in the application of simplified Nash-Moser iteration process [15].

We recall that FA vanishes to infinite order along M0 ( in x-coordinates !). This can be
stated in y-coordinates as follows. The proof is similar to that of Lemma 6.2 in [5].
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Lemma 6.2. Suppose that there exists a section F ∈ Γ0,2(Ω
+
), where Ω

+
= {(x, t) ∈ Ω ; 0 ≤

t < 1} such that F and all its derivatives vanish to infinite order along M . Then for all
k, N = 0, 1, 2, . . . , and all x0 ∈ M ,

(6.5) |F 0|k,W (x0) ≤ Ck,NεNϕ(x0)N ,

where F 0 means that F is written out in W (x0) according to the frames L0
1, . . . , L0

n, ω1
0 , . . . , ωn

0

of L0.

We can now prove the main theorems of this paper:
Proof of Theorem 1.1. We will show that ‖Φ(0)‖D < b for the small b > 0 and the integer

D, which are appeared in the variant of Nash-Moser theorem [15]. The rest properties for the
Φ(A) in the hypothesis of Nash-Moser theorem can be proved using the relations in (6.3) and
(6.4), and the estimates for ¤ operator in Section 5.

Note that (5.48) and (6.5) imply that for each i ∈ I,

‖ζiF
0‖2k,0 ≤ Ck,NεNϕ(xσ

i )N ,

where ζi’s are defined before (5.47). After summing up over xσ
i , we get

(6.6) ‖F 0‖2k,0,Φ ≤ Ck,N

∑

i∈I

ϕ(xσ
i )NεN .

Since the choice of points that was made before (5.48) shows that the balls Bcσ/8(xσ
i ),

i ∈ I, are all disjoint, we can obtain an upper bound on N(l), which is defined to be the
number of i ∈ I such that 2−l−1 ≤ ϕ(xσ

i ) < 2−l. In fact, in terms of the 〈 , 〉0-metric
introduced at the end of Section 2, the volume of Bcσ/8(xσ

i ) is roughly bounded below by
εn+1σ2n−1+2mϕ(xσ

i )2m(n+2) ∼ εn+1σ2n−1+2m · 2−2lm(n+2), and the 〈 , 〉0-volume of the region
in Sε,σ with 2−l−1 ≤ ϕ(x) ≤ 2−l is roughly bounded above by εσ2m ·2−2ml. Thus, we conclude
that

(6.7) N(`) . ε−nσ−(2n−1)22ml(n+1).

Thus (6.6) and (6.7) imply that if N = 2m`(n + 1) + 1, then

‖Φ(A0)‖k = ‖F 0‖k,0 . Ck · ε

for sufficiently small ε. In particular, if we set k = D and choose ε to be sufficiently small,
then it follow that ‖Φ(A)‖D < b. ¤

Proof of Corollary 1.3. Clearly, M ⊂ bD is a CR manifold satisfying all the conditions of
Theorem 1.1. Therefore we can extend the given CR structure on M to the outside of D by
Theorem 1.1. Then, by virtue of Theorem 2.2, the extended CR structure can be patched
smoothly with the given complex structure on D. Therefore Corollary 1.3 follows from the
Newlander-Nirenberg theorem. ¤
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