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The present study reports a new development of the DAMAS microphone phased array processing 

methodology that allows the determination and separation of coherent and incoherent noise source 

distributions.  In 2004, a Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) was 

developed which decoupled the array design and processing influence from the noise being measured, using a 

simple and robust algorithm. In 2005, three-dimensional applications of DAMAS were examined. DAMAS 

has been shown to render an unambiguous quantitative determination of acoustic source position and 

strength. However, an underlying premise of DAMAS, as well as that of classical array beamforming 

methodology, is that the noise regions under study are distributions of statistically independent sources. The 

present development, called DAMAS-C, extends the basic approach to include coherence definition between 

noise sources. The solutions incorporate cross-beamforming array measurements over the survey region. 

While the resulting inverse problem can be large and the iteration solution computationally demanding, it 

solves problems no other technique can approach. DAMAS-C is validated using noise source simulations and 

is applied to airframe flap noise test results.   

 

SYMBOLS 

 

a
m

 shear layer refraction amplitude correction for e
mn

 

A
C

 DAMAS-C matrix with A
n0n,  n 0  n 

 components 

A
n0n,  n 0  n 

 reciprocal influence of cross-beamforming characteristics between grid points 

B  array half-power “beamwidth” of 3 dB down from beam peak maximum 

c
0
 speed of sound in medium in the absence of mean flow  

CSM cross spectral matrix 

n
0
n

2
 coherence between sources at n

0
 and n  

DR diagonal removal of G  in array processing 

e
n
 steering vector for array for focus at grid point n  

e
mn

 component of e
n
 for microphone m  

f  frequency 

f  frequency bandwidth resolution of spectra 

G
m  m 

 cross-spectrum between P
m

 and P  m 
 

G  matrix (CSM) of cross-spectrum elements G
m  m 

 

H  height of chosen scan plane 

i  iteration number 

m  microphone identity number in array 

 m  same as m , but independently varied  
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m
0
 total number of microphones in array 

n  grid point number on scan plane(s) 
 n ,n0 ,  n 0  same as n  but independently varied 

M  wind tunnel test Mach number 

N  total number of grid points over scan plane(s) 

P
m

 Fourier Transform of pressure time history at microphone m  

QFF Quiet Flow Facility 

Q
n
 idealized P

m
 for modeled source at n  for quiescent acoustic medium  

r
c
 distance r

m
 for m  equal the center  microphone of  array 

r
m

 retarded coordinate distance from focus point to m , (=
m
c
0
) 

SADA Small Aperture Directional Array 

STD standard (or classical) array processing 

T  complex conjugate transpose (superscript) 

m
 propagation time from grid point to microphone m  

w
m

 frequency dependent shading (or weighting) for m  

W  shading matrix of w
m

 terms 

W  width of scan plane 

x  widthwise spacing of grid points 

X
C

 matrix of X
n
0
n
 terms 

X
n
0
n
0
 (auto) spectrum of “noise source” at n

0
, with levels defined with respect to array position, (=Q

n0
Q
n0

) 

X
n
0
n
 cross-spectrum between sources at n

0
 and n , (=Q

n0
Q
n

) 

y  heightwise spacing of grid points 

Y
C

 matrix of Y
n
0
n

 terms  

Y
n
0
n
0
 beamform power response of array at focus location n

0
, Y

n
 of Ref. 1  

Y
n
0
n

 cross-beamform power response between locations n
0

 and n  

 

I.  INTRODUCTION 

 

The Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) method1 represents a 

breakthrough in phased array processing technology that can remove array-dependent beamforming characteristics 

from output presentations. Whereas traditional beamforming produces an output that is dependent on array 

geometry, size, source distance, and frequency, DAMAS can remove these dependencies to render an accurate and 

explicit definition of acoustic source strength and location. Applications of DAMAS shown in Ref. 1 demonstrated 

its ability to provide quantitative airframe noise definition that was previously unattainable. The DAMAS algorithm 

is an iterative non-negative least squares solver of a linear system of equations (defining the DAMAS inverse 

problem) that is formulated based on the array response to distributions of modeled noise sources1,2.  Three-

dimensional applications were examined in Ref. 3. Dougherty4 proposed two extensions to DAMAS. These were 

successfully applied to distributed source simulations and wake vortex turbulence decay noise data from flight tests. 

One extension termed DAMAS 2 offers dramatic speedups of the iteration calculations and adds solution 

regularization by a low pass filter. The other extension, DAMAS 3, does these and additionally reduces the required 

number of iterations. Both extensions in Ref. 4 restrict the point-spread function (array beamform lobe 

characteristics) to a translationally-invariant convolution form. This can be a serious limitation in spatial generality, 

but this is addressed through spatial transforms. DAMAS1 does not have such limitation concerns, although it is 

slower computationally. More recently, Dougherty applied the DAMAS methodology with success to turbofan 

engine duct mode measurement analysis5.  

 

The underlying premise of classical beamform processing methodology (as does DAMAS) is the assumption 

that the source regions under study are distributions of statistically independent noise sources. This assumption is the 

basis for source power integration methodology, for example see Ref. 6. Classical beamforming produces 

insufficient information to determine how (and even if) source regions may be correlated. Normally one may suspect 

coherence may be present when the beamformed maps are “peculiar”. Horne, et al.7 studied the effects of source 

coherence on array response for simple distributions of noise sources. It was found that distributed, coherent sources 
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Figure 1. Illustration of open test configuration where 

the microphone array is placed outside the flow region 

containing the noise source scan plane region. 
 

will radiate multi-lobed interference patterns with integrated source levels depending on array size and frequency. 

An expression for computing two-point cross beamforming over the array measurement scan plane was given and 

was suggested as a possibly useful spatial coherence diagnostic. Oerlemans and Sijtsma8 employed such an 

expression to perform coherence analyses between beamforming locations for reflections and aeroacoustic sources.  

The array outputs for simulation sources well matched experimental data for known sources. Still, from a source 

definition standpoint, the array beamforming coherence analysis approach is indeterminate for unknown source 

distributions.  It was suggested7 that this cross beamforming coherence approach, combined with other knowledge, 

offers potential for the determination of coherence length of distributed sources and for the identification of 

sidelobes and mirror sources. A possible alternate approach to determine coherent source distributions using a 

microphone array is alluded to in Ref. 9. This would be a generalization of an array technique known as matched 

field processing. It would find combinations of point sources in the region that would coherently sum to the array 

cross-spectral matrix (CSM) eigenvectors. At present, there are no developed methods reported.  

 

DAMAS, along with classical beamforming processing, employs the statistically independent (incoherent) noise 

source distribution assumption. It can thus produce inaccurate and distorted results in the presence of coherent 

sources. The original intent of the present study was to investigate the effect of source coherence on DAMAS 

processing and to develop methods to interpret and minimize error. It became apparent that it would be difficult to 

develop systematic diagnostic methods because of the complexity that coherence can cause in standard 

beamforming and DAMAS. During the study, a break came which offered the opportunity to generalize DAMAS to 

account for coherence, rather than just trying to identify and correct for it. In developing simulations of coherent 

sources in the noise field under study by DAMAS, it became apparent that an equation form similar to that of 

DAMAS can be rendered when coherence is allowed between sources and one employs cross-beamforming over the 

source region. This meant that if coherences between sources could be regarded as independent variables, then the 

cross-products between noise contributions of the sources are also independent variables. A DAMAS type linear 

system and solution should then be appropriate to determine a coherent as well as an incoherent distribution of 

sources. This paper presents the DAMAS-C (Coherence) development and some sample simulation and 

experimental applications.  

 

II. DAMAS-C ANALYSIS 

 
Beamforming and Cross-beamforming.  Figure 1 shows a distribution of microphones comprising a phased 

array used to survey (or scan) noise regions. A scan plane with N  grid points is shown which cuts through a noise 

source region under study. Additional scan planes or individual grid points can also be placed over the source region 

when performing three-dimensional (3D) beamforming. For classical or standard (STD) array beamforming, the 

output power spectrum (or response) of the array is 

obtained from (using the terminology from Ref. 1) 

 

Y
n
=
e
n

T
Ge

n

m
0

2
           (1) 

 

where matrices are signified by bold letters. This is Eq. 

(6) from Ref. 1, where here Y
n
= Y (e) , when focused at 

grid point n . The Cross-Spectral Matrix (CSM) is G , 

where  

 

  

G =

G
11

G
12

L G
1m

0

M G
22

M

M O M

G
m
0
1

G
m
0
m
0

 

 

 
 
 
 

 

 

 
 
 
 

   (2) 

 

where m
0
 is the total number of microphones in the 

array.   The  steering  “vector”  matrix  with  respect  to  a 
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Figure 2. Output dB level contours over scan planes of 

(auto) Beamforming, Y
n
0
n
0
 and cross beamforming 

Y
n
0
n

 between grid points at n
0

 and at n . Point source 

located  at n =113.  
 

    

n
o
=N
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n
o
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n
o
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Figure 3. Illustration of stack of individual n
0

 planes 

defining the Y
n
0
n

 survey and X
n
0
n

 solution space. 

 

survey grid point at location n  is  

 

  
e
n
= col e

1
e
2

L e
m
0

[ ]       (3) 

 

and the component for each microphone m  is  

 

em = am
rm

rc
exp( j2 f m )          (4) 

 

In Ref. 1, Eqs. (2), (3), and (4) correspond to the same 

equation numbers above. Figure 1 represents the test 

condition of an open jet test section with a noise region 

under study in the jet flow and the microphone array on 

the outside with a shear layer in between. The steering 

“vector” e
m

 terms account for the mean amplitude a
m

 

and phase changes due to the convection and refraction 

through the shear layer to each microphone m . The time 

delay from a grid point to a microphone m  is
m

. In 

retarded coordinates, the distance from a point on the 

scan plane to the microphone m  is r
m

 and the distance 

to the reference center microphone is r
c
.   

 

For the present analysis, we employ a cross-

beamform product 

 

Y
n
0
n
=
e
n
0

T
Ge

n

m
0

2
   (5) 

 

that is a beamform cross-spectrum (or cross-response) of 

the array between focused locations of grid points at 

n = n
0
 and at another n . Equation (5) becomes Eq. (1) 

when n
0
= n . For the steering “vectors” of Eq. (5),  

 

 

  
e
n
0
= col e

1n
0

e
2n

0
L e

m
0
n
0

[ ]             (6) 

 

and  

 

  
e
n
= col e

1n
e
2n

L e
m
0
n[ ]   (7) 

 

Figure 2, in the top left frame, shows a standard (auto) beamform dB contour map of Y
n
0
n
0
 for a simulated point 

source in the center of a 15x15 point grid scan plane (the focus points n
0

 range from 1 to N = 225 ). The array used 

is that of the SADA reported in Ref. 1 and detailed subsequently. Whereas in Ref. 1, all presentations were of 

beamforming and DAMAS solutions over the scan plane of N  points, the present paper often presents results over 

individual n
0

 planes with grid points n =1,2,3,...,N . Figures 2 present cross-beamform maps for the specific 

n
0
=1 , 113, and 202 planes, respectively. The simulated source location is at n =113. In these planes, the respective 

n
0

 grid locations are indicated by an open symbol. (Noted for subsequent use is that a length measure of the half-

power beamwidth B  is shown for Y
n
0
n
0
 and for a cross-beamform case Y

n
0
n

.)  Figure 3 illustrates all N  of the n
0

 

planes. Each n
0

 plane contains all cross-beamform responses Y
n
0
n

 over n =1,2,3,...,N  – which includes its standard 

beamform response Y
n
0
n
0
 at n

0
. 



 

American Institute of Aeronautics and Astronautics 

 

5

 

DAMAS-C Inverse Problem Definition.  From Ref. 1, Eq. (10), the pressure transform P
m

 of microphone m  is 

related to a modeled source located at position n  in the source field.  

 

P
mn
= Q

n
e
mn

1
                (8) 

 

where here, we have used the terminology P
mn
= Q

n
e
mn

1
 rather than P

m:n =Qn
e
m:n

1
 from Ref. 1.   In Eq. (8), Q

n
 

represents the pressure transform that P
mn

 would be if flow convection and shear layer refraction did not affect 

transmission of the noise to microphone m  and if m  were at a distance of r
c
 from n  rather than r

m
. The e

mn

1
 term 

is, from Ref. 1, those things that are postulated to affect the signal in the radiation transmission to render P
mn

 (this is 

a way to back out Q
n
 information from P

m
). For a single source located at n , Eqs. (11) and (12) of Ref. 1 gives 

relations for P
mn

P  m n
 and G

n
mod

.  

 

In the present analysis, it is desired to obtain a more general distribution for the CSM than that of a distribution 

of uncorrelated acoustic sources at different n , as given in Ref. 1. From Eq. (8), the cross-spectrum between 

microphones m  and  m  for a distribution of sources over all N  grid points is 

 

P
m

*
P  m 

= (Q  n 0
e

m  n 0

1
)
*
(Q  n 

e  m  n 

1
)

 n  n 0

     (9) 

 

This reflects the fact that the acoustic pressure perceived at microphone m  due to the sources at  n 
0

 and  n  are 

generally different than that perceived at microphone  m  for these same sources. Note here that n
0

, n ,  n 
0

, and  n  

are distinguished from each other only in that they are varied separately. 

 

As in Ref. 1, the G
m  m 

 terms of the CSM are proportional to the corresponding P
m

*
P  m 

 terms. One has 

 

                                    G
m  m 

= X  n 0  n 
(e

m  n 0

1
)
*
e  m  n 

1

 n  n 0

     (10) 

 

where X  n 0  n 
= Q  n 0

Q  n 
. Upon accounting for FFT data ensemble processing parameters1, X  n 

0
n
 represents the mean-

square cross-spectral pressure per bandwidth, due to the coherent portion between the sources at  n 
0

, and  n , at each 

microphone m  (or  m ) normalized in level for a microphone at r
m
= r

c
. As will be seen, the determination of X  n 

0
 n 
 

is the primary objective of DAMAS-C.  

 

Note, that if the sources at  n 
0

, and  n  each radiate noise in a statistically independent way then X  n 
0

 n 
= 0 . In 

particular, if X  n 
0

 n 
= 0  when  n 

0
 n , then the result from Ref. 1 is attained, 

 

G
m  m 

= X
nn
(e

mn

1
)
*
e  m n

1

n

N

     (11) 

 

where G
m  m 

 are components of G
mod

 from Eq. (13) of Ref. 1. Here, X
nn

 and e
mn

1
 equal X

n
 and e

m:n

1
, respectively, 

of Ref. 1.  

 

For our present coherent source case, the presently modeled CSM is G
modC

 with components G
m  m 

 given by 

Eq. (10). Employing this in Eq. (5),  

 

(Y
n0n
)mod =

e
n0

T
GmodCen

m0
2

      (12) 
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(Y
n0n
)mod =

e
n0

T
X  n 0  n [ ]  n 0  n 

e
n

 n  n 0

m0
2

=

(e
n0

T [ ]  n 0  n 
e

n
)X  n 0  n 

 n  n 0

m0
2

   (13) 

 

where the bracketed term is  

 

 

  

[ ]  n 0  n 
=

(e1  n 0

1
)
*
e1  n 

1
(e1  n 0

1
)
*
e2  n 

1
L (e1  n 0

1
)
*
e

m0  n 

1

(e2  n 0

1
)
*
e1  n 

1
(e2  n 0

1
)
*
e2  n 

1
M

M O M

(e
m0  n 0

1
)
*
e1  n 

1
L L (e

m0  n 0

1
)
*
e

m0  n 

1

 

 

 
 
 
 
 

 

 

 
 
 
 
 

    (14) 

 

 

To be explicit, one can look at the terms of Eq. (13), with  n 0 =1,2, ,N  and  n =1,2, ,N  

 

 

m
0

2
Y
n
0
n
= e

n
0

T [ ]
11
e
n
X
11
+ e

n
0

T [ ]
12
e
n
X
12
+ +e

n
0

T [ ]
21
e
n
X
21
+ +e

n
0

T [ ]
N1
e
n
X
N1
+ +e

n
0

T [ ]
NN
e
n
X
NN

    (15) 

 

And for n0 =1,2, ,N  and n =1,2, ,N  

 

m
0

2
Y
11
= e

1

T [ ]
11
e
1
X
11
+ e

1

T [ ]
12
e
1
X
12
+ +e

1

T [ ]
21
e
1
X
21
+ +e

1

T [ ]
N1
eX

N1
+ +e

1

T [ ]
NN
e
1
X
NN

 

 

m
0

2
Y
12
= e

1

T [ ]
11
e
2
X
11
+ e

1

T [ ]
12
e
2
X
12
+ +e

1

T [ ]
21
e
2
X
21
+ +e

1

T [ ]
N1
e
2
X
N1
+ +e

1

T [ ]
NN
e
2
X
NN

 

  M 

m
0

2
Y
21
= e

2

T [ ]
11
e
1
X
11
+ e

2

T [ ]
12
e
1
X
12
+ +e

2

T [ ]
21
e
1
X
21
+ +e

2

T [ ]
N1
e
1
X
N1
+ +e

2

T [ ]
NN
e
1
X
NN

       (16) 

                       M 

m
0

2
Y
N1
= e

N

T [ ]
11
e
1
X
11
+ e

N

T [ ]
12
e
1
X
12
+ +e

N

T [ ]
21
e
1
X
21
+ +e

N

T [ ]
N1
e
1
X
N1
+ +e

N

T [ ]
NN
e
1
X
NN

 

  M 

m
0

2
Y
NN

= e
N

T [ ]
11
e
N
X
11
+ e

N

T [ ]
12
e
N
X
12
+ +e

N

T [ ]
21
e
N
X
21
+ +e

N

T [ ]
N1
e
N
X
N1
+ +e

N

T [ ]
NN
e
N
X
NN

 

 

One notes that Eq. (16) can be written as 

 

 

                   Y
C
= A

C
X
C

       (17) 

 

 

that is the same inverse problem form as DAMAS, Eq. (18) of Ref. 1. Here, however, Y
C

 and X
C

 each have N
2
 

complex-number components, rather than the N  real-number components of Ref. 1, that is  

 

Y
n
0
n

, with n0n =11,12, ,1N,21,22, ,2N, 31,32, ,NN  

and         X
n
0
n
, with n0n =11,12, ,1N,21,22, ,2N, 31,32, ,NN                         (18)  

 

And A
C

 has N
4

 complex-number components, rather than the previous N
2
 real-number components, which are 

 

 

A
n0n,  n 0  n 

= (e
n0

T [ ]  n 0  n 
e

n
) /m0

2
     (19) 
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with [ ]  n 
0

 n 
 being defined by Eq. (14) and the order within A

C
 defined by 

 

  

A
C

=

A11,11 A11,12 A11,13 L A11,21 A11,22 L A11,NN

A12,11 A12,12 A12,13

A13,11 A13,12 A13,13

M O M

A21,11 A21,12 O

A22,11 A22,12 O

M A
NN 1,NN 1 A

NN 1,NN

A
NN ,11 A

NN ,12 L A
NN ,NN 1 A

NN ,NN

 

 

 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 

   (20) 

 

The above equations contain terms that are complex conjugates of one another. These are  

 

Y
n
0
n
= Y

nn
0
      (21) 

 

and 

 

X
n
0
n
= X

nn
0
      (22) 

 

Relationships are also noted for A
C

. For the diagonal terms of Eq. (20), where one has n
0
n =  n 

0
 n ,  

 

A
n0n,  n 0  n 

= A
n0n,n0n

=1       (23) 

 

Also, for all terms, because of Eqs. (21) and (22), it can be shown that 

 

                                                                    A
n0n,  n 0  n 

= A
nn0 ,  n  n 0

     (24) 

 

whether n
0
= n  or n

0
n  and whether  n 

0
=  n or  n 

0
 n . The terms are in general complex, but when n

0
= n  and 

 n 
0

=  n , A
n0n,  n 0  n 

= A
n0n0 ,  n 0  n 0

 is real. (Note that the DAMAS problem of Ref. 1 is recovered if X
n
0
n
= 0  when n

0
n  

and one only considers the beamform power spectrum Y
n
0
n
0
= Y

n
 rather than the cross-spectrum Y

n
0
n

. Then  A
n0n,  n 0  n 

 

becomes A
n
 of Ref. 1.)  

 

The above relationships between terms, Eqs. (21)-(24), mean that the DAMAS-C problem contains N(N +1)/2 , 

rather than N
2
, potentially independent equations and unknowns. In fact, the Y

n
0
n

 rows in Eq. (16) are complex 

conjugates of other Y
n
0
n

 rows. This means that for Eq. (17), the number of components can be reduced by almost 

half by removing rows. Then for Y
C
= A

C
X
C

, the components can be defined as Y
n
0
n

, X  n 
0

 n 
, and A

n0n,  n 0  n 
 with the 

indices n
0
n  and  n 

0
 n  following the pattern,  

 

        n0n =11,12,13,..,1N,22,23,24,..,2N, 33,34,..,NN     (25) 

= (n0 =1,2,3,..,N)(n = n0 ,n0 +1,n0 + 2,..,N)  

 

and  

 

       n 0  n =11,12,13,..,1N,21,22,23,..,2N, 31,32,..,NN     (26) 

= (  n 0 =1,2,3,..,N)(  n =1,2,3,..,N)  
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Therefore, using Eqs, (25) and (26), the DAMAS-C problem, Eq. (17), is reduced in size from that indicated by Eqs. 

(18)-(20). Y
C

 then has N(N +1)/2  terms, X
C

 has N
2
 terms ( N(N +1)/2  are independent), and A

C
 has 

N
3
(N +1)/2  terms ( N

2
(N

2
+1)/2  are independent). 

 

Modified Beamforming.  Note that the inverse problem, Eq. (17), for X
C

 can be defined in terms of Y
C

 and 

A
C

 being generated by shaded standard, diagonal removal (DR), and shaded DR beamforming – in parallel with 

that done in Ref. 1. That is, for shaded standard beamforming,  

 

Y
n
0
n

=
e
n
0

T
WGW

T
e
n

w
m

m=1

m
0 

 

 
 

 

 

 
 

2
      (27) 

 

and, correspondingly, A
C

 is defined by components 

 

A
n0n,  n 0  n 

=
e

n0

T
W[ ]  n 0  n 

W
T
e

n

w
m

m=1

m0 

 

 
 

 

 

 
 

2
     (28) 

 

 

For diagonal removal, DR, beamforming 

 

   Yn
0
n =
en

0

T
Gdiag=0en

m
0

2
m
0

      (29) 

 

 

and, correspondingly, A
C

 is defined by components 

  

An0n,  n 0  n =
en0

T
([ ]  n 0  n 

)diag=0en

m0
2

m0

     (30) 

 

For shaded DR beamforming 

 

Yn
0
n =

en
0

T
WGdiag=0W

T
en

wm

m=1

m
0 

 

 
 

 

 

 
 

2

wm

m=1

m
0 

 

 
 

 

 

 
 

     (31) 

 

 

and, correspondingly, A
C

 is defined by components 

 

                    An0n,  n 0  n =
en0

T
W([ ]  n 0  n 

)diag=0W
T
en

wm

m=1

m0 

 

 
 

 

 

 
 

2

wm

m=1

m0 

 

 
 

 

 

 
 

     (32) 

 

Note that for all the above types of special beamforming processing, the relationships Eqs. (21)-(26) are equally 

valid.  
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DAMAS-C Inverse Problem Solution. As in Eq. (22) of Ref. 1, a single linear equation component of the 

present Eq. (17) is  

 

       Y
n0n

= A
n0n,11

X11 + An0n,12X12 + +A
n0n,1N

X1N + An0n,21X21 + An0n,22X22 + +A
n0n,NN

X
NN

  (33) 

 

Y
n0n

=

 n 0=1

N

A
n0n,  n 0  n 

X  n 0  n 

 n =1

N

     (34) 

 

With A
n0n,n0n

=1  from Eq. (23), this is rearranged to give 

 

X
n0n

= Y
n0n

[

 n 0=1

n0

A
n0n,  n 0  n 

X  n 0  n 
+

 n =1

n 1

 n 0=n0

N

A
n0n,  n 0  n 

X  n 0  n 
]

 n =n+1

N

   (35) 

 

Because of the counting pattern of  n 
0

 n  from Eq. (26), exceptions are noted in the upper and lower sum limits in Eq. 

(35).  If X
n
0
n
= X

n
0
1
, then the upper limits on the first set of sums, i.e. n

0
 and n 1, are replaced by n

0
1  and N , 

respectively, and the lower limits on the second set of sums remain as they are. But, if X
n
0
n
= X

n
0
N

, then although 

the upper limits on the first set of sums remain as they are, the lower limits on the second set of sums, i.e. n
0

 and 

n+1 are replaced by n
0
+1  and 1.  

 

Equation (35) is used in an iteration algorithm to obtain the source distribution strengths X
nn

 (or X
n
0
n
0
) for all 

n  and cross-strengths X
n
0
n
 for all combinations of n

0
 and n  indicated by Eq. (25), as per the following equation. 

 

X11
(i)

= Y11 [0+

 n 0=1

N

A11,  n 0  n 
X

 n 0  n 

(i 1)
]

 n =1+1

N

 

 

X
n0n

(i)
= Y

n0n
[

 n 0=1

n0

A
n0n,  n 0  n 

X
 n 0  n 

(i)
+

 n =1

n 1

 n 0=n0

N

A
n0n,  n 0  n 

X
 n 0  n 

(i 1)
]

 n =n+1

N

   (36) 

 

X
NN

(i)
= Y

NN
[

 n 0=1

N

A
NN ,  n 0  n 

X
 n 0  n 

(i)
+

 n =1

N 1

0] 

 

Here, the first and last term of the i
th

 iteration, (i) , for X
n
0
n
 is shown for clarity.  Equation (36) represents a similar 

form as that given in Eq. (24) of Ref. 1, except that these terms are complex and that the problem size for the same 

number of N  grid points is expanded. In the iterations, the same sum limit exceptions mentioned for Eq. (35) apply.  

 

The iteration path is consistent with a progression through a stack of n0 =1,2,3,...,N  solution maps (planes). 

Figure 3 illustrates the N  planes, where within each, the counting sequence starts at n =1 in the left bottom corner 

and increases vertically along each column. The uppermost point in the last column to the right is the n = N  grid 

point. The last three frames (planes) of Fig.  2 show Y
n
0
n

 magnitude levels for the particular n
0

 planes shown. (The 

Y
n
0
n
0
 map of Fig. 2 is not a n

0
plane, but one made up of points Y

n
0
n
0
 from each n

0
plane.) For Y

n
0
n

 terms, as well as 

for X
n
0
n
, with only N +1 n

0
 terms calculated for each n

0
plane, the values in the plots for the remaining n

0
1  

grid points are determined from the complex conjugate relationships. The Y
n
0
n

 terms are defined from Eqs. (5), (27), 

(29), or (31). The A
n0n,  n 0  n 

 terms are determined from Eq. (19), (28), (30), or (32). For each (i)  iteration for the X
n
0
n
 

terms, the values of X
n0n

(i)
 replace the previous iteration X

n0n

(i 1)
 values. Therefore, whereas Eq. (17) with the 



 

American Institute of Aeronautics and Astronautics 

 

10

appropriate A
C

 defines the DAMAS-C inverse problem, Eq. (36) is the inverse problem iterative solution, with the 

appropriate constraints described below. 10 

        

Physical Interpretations and Positivity Constraints.  In Ref. 1, a positivity constraint was used in the 

iterations for X
n

. This made the inverse DAMAS problem for X
n

 sufficiently deterministic to force unique 

solutions. The constraint is actually physically necessary in that X
n

 represents auto-spectral pressure-squared 

(positive) amplitude for the sources at grid points n .  In DAMAS-C, the value of X
n
0
n
 is Re(X

n0n
)+ Im(X

n0n
) . 

When n = n
0
, X

n
0
n
= X

n
0
n
0
 is real and positive – equivalent to the DAMAS X

n
. Thus for each iteration calculation 

for Eq. (36), Im(X
n0n0

)  is set to zero and Re(X
n0n0

)  is set to zero if it is not already positive. This is equivalent to 

the positivity constraint X
n

 of Ref. 1.  

 

When n
0

n , X
n
0
n
 could be in any of four complex quadrants. In terms of a complex coherence definition 

 

X
n
0
n
=

n
0
n
X
nn

X
n
0
n
0

     (37) 

  

where the coherence        
n
0
n

2
   =   

nn
0

2
  =  X

n
0
n

2
/X

n
0
n
0
X
nn

  =  X
n
0
n
X
n
0
n
/X

n
0
n
0
X
nn

                 (38) 

 

n0n
=

n0n

2
exp(i

n0n
)      (39) 

 

where 
n
0
n
 is the cross-spectral phase or phase between coherent portions of source strength at point n  with respect 

to n
0

. This of course follows from X
n
0
n
= X

nn
0
. Physically, 

n
0
n
 is interpreted here as the coherence factor between 

the sources at n  and n
0

. It can be related to noise emission from unsteady aerodynamic related regions over 

radiating surfaces ( 0
n
0
n

1 , for n
0

 and n  being nearby radiating locations) or reflections, such as from image 

regions in the presence of tunnel sidewalls, (
n
0
n

1 for n
0

 being the source and n  being the reflection image). 

 

An appropriate constraint based on the above equations is that X
n
0
n

X
n
0
n
0
X
nn

 be enforced in the iterations. 

This is not done in the coding for the present paper. Instead, X
n
0
n
 is regarded as an independent variable in the same 

manner as X
n
0
n
0
 and X

nn
.   Also, with regard to the generality of X

n
0
n
, there is a question concerning the rank of 

the DAMAS-C inverse problem, and thus the practicality of solving for X
n
0
n
 with arbitrary phase. If the inverse 

problem, Eq. (17), is of low rank (more unknowns than independent equations) this would mean that the problem is 

indeterminate for a unrestricted solution space. That would suggest that the solution space should be limited, such 

that was used for DAMAS with its positivity constraint. For the present paper, DAMAS-C applications are limited 

to sources that have only in-phase coherence, that is 
n
0
n
= 0  in Eq. (39), as a constraint. In this n

0
n  case, after 

each iteration calculation (as is done above for n
0
= n ), Im(X

n0n
)  is set to zero and Re(X

n0n
)  is set to zero if it is 

not already positive. 

 

Problem Reduction by Zoning. The size of the matrices of Y
C
= A

C
X
C

 can be quite large and prohibitive for 

many evaluation regions required in practical DAMAS-C applications.  The storage of these large numbers of terms, 

combined with the iteration procedure requirements, require the use of methods that can further reduce the problem 

size wherever the physical problem permits. A method was developed called zoning, which is employed to restrict 

the possible solutions to anticipated or realizable conditions of the noise source evaluation region under study. The 

evaluation region can be composed of a number of grid point zones, each with assumed coherence criteria. The 

criteria can be uniform over the zones or functionally dependent on, for example, the point-to-point distance and 

frequency. 

 

For the present paper, the source evaluation region (which can be contiguous or not) is composed of multiple 

non-congruent zones A  and B  containing grid points (n)A  and (n)B , respectively. The zone A  is taken as a region 
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of coherent sources. Zone B  is composed completely of incoherent sources. This means that cross terms X(  n 0 )A (  n )B
 

are zero. X(  n 0 )B (  n )B
 is zero when n

0
n . This zeros out the corresponding A

C
 matrix columns. To maintain the 

iteration scheme of Eq. (36), the cross Y
C

 terms corresponding to the cross X
C

 terms, identified above, and the 

corresponding A
C

 matrix rows are eliminated.  Although these cross Y
C

 terms are not zero, their elimination 

reduces the number of unknowns and corresponding equations while still giving weight in the solutions to a broader 

region (zone B ) through the auto terms of Y
C

. The reduction in problem size can be substantial. ZoneA has NA  

grid points, zone B  has NB , and the total is N = NA + NB. The number of independent X
C

 and Y
C

 terms are 

[NA(NA +1)/2+ NB ] and the number of A
C

 terms is [NA
2
+ NB ] times that. For an example of the size problem, in 

regular DAMAS, a 33x33 grid point region would render 1089 grid points with a corresponding number of X  and 

Y  terms. Then A  would have (1089)2 = 1.19x106 elements. But for DAMAS-C, the same grid region considered all 

in a zone A  would render a very large 5.94x105 for independent X
C

 and Y
C

 terms, and 7.04x1011 A
C

 terms. If, 

however, zone A  were made a 15x15 grid point region, DAMAS-C would have 2.54x104 independent X
C

 and Y
C

 

terms and 1.29x109 A
C

 terms. Adding a 33x33-15x15 = 864 point region in a zone B  would increase these terms 

by 4 % and 5 %, respectively. These are still very large numbers, but they pale in comparison to that found using a 

fully coherent 33x33 grid point zone A . 

 

Computational Notes for the Present Paper. With respect to processing for this paper, it was found 

impractical to implement DAMAS-C on a single processor system. Therefore, a partial parallel implementation was 

performed on a 32-node Beowulf distributed memory computer.  Only a partial parallel implementation could be 

achieved due to the nature of the DAMAS-C iterative solution. The DAMAS-C algorithm, Eq. (36), incorporates a 

relaxation method for solving the linear system, where the solver requires immediate access to all previously 

computed X
C

 terms during each iteration step.  As such, the technique is serial in nature and cannot easily be used 

in shared memory parallel computing. Thus, a hybrid approach was taken, where the generation of the A
C

 matrix 

was implemented in parallel, but where the generation of the Y
C

 matrix and the running of the iterative solver were 

performed serially on one or more compute nodes. 

 

An exception is noted for the algorithm implementation description for Eq. (36) for the calculations of this 

paper. For interim coding simplicity, Eq. (26) was used rather than Eq. (25) for the index definitions of n
0
n , thereby 

keeping the number of Y
C

 and X
C

 terms at N
2
 and those ofA

C
 terms at N

4
 in zone A . Although this is a larger 

problem than that described in the above discussions, this disadvantage was offset in part by employing the complex 

conjugate relationships Eqs. (21)-(24) to increase iterative efficiency.  

 

III. APPLICATIONS 

 

Simulated Sources. To illustrate the methodology, DAMAS-C is first applied to the simulated point source 

case of Fig. 2. This is the simplest of cases, without any issue of coherence or multiple sources. The example is of a 

scan plane placed 60 in. away from the 7.8 in. diameter SADA microphone array1. The frequency is f = 20 kHz. The 

scan plane is comprised of a 15x15 grid pattern of points x = y = 1.5 in. apart, so the height H and width W are 21 

in. each. The half-power (3 dB-down) beamwidth, designated B
auto

 for the standard beamform processing for Y
n
0
n
0
 

(Eq. (1)) is indicated in Fig. 2 to be approximately 7 in. The corresponding beamwidth B
cross

 for Y
n
0
n

 in Fig. 2 is 

approximately 10.5 inches. (Note that the ratio of B
cross

/B
auto

 (10.5/7 here) depends on beam characteristics, but 

would have a maximum limiting value of 2.) The criteria given in Ref. 1 for a resolution range that is considered 

reasonable for use in DAMAS are presumed to be applicable here. The criteria are 

 

                        0.05 x /B(or y /B )  0.2       (43) 

 

and     1 W /B(and H /B)                     (44) 

 

This is approximately met here with x /B
auto

=.21, W /B
auto

=3.0, x /B
cross

=.14, and W /B
cross

=2.0.  
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Figure 4. DAMAS-C results of source strengths X
n
0
n
0
 

and cross strengths X
n
0
n

 between grid points at n
0

 

and n  over scan planes. Corresponds to Fig. 2. 

 

 

All 225 grid points are considered in zone A  where 

coherence between points is permitted. For Fig. 2, the 

synthetic point source is positioned at n=113. This is done 

by defining X
113 113

 to give 100 dB=10LogX
113 113

 and 

all other X  n 
0

 n 
 terms are set to zero in Eq. (13). Then Y

n
0
n

 

is solved for over the scan plane and plotted in Fig. 2. 

Figure 4 shows the DAMAS-C results for X
n
0
n
0
 and X

n
0
n
, 

corresponding to the Y
n
0
n
0
 and Y

n
0
n

 plots of Fig. 2. These 

were determined from the algorithm of Eq. (37) using 

i=100 iterations. The iterations were started using X
n
0
n
 

set to zero (little improvement is found when starting 

differently). Figure 4 show X
n
0
n
0
 levels, which represent 

the collection of X
n
0
n
 values, when n = n

0
, from the 

individual n
0

 planes. In the n
0

=1, 113, and 202 planes, 

the n
0

 number locations are indicated by the open symbol, 

as done in Fig. 2. The levels are defined by color code in 

“blocks” (defined by the space between grid points) above 

and to the right of the grid point.  It is seen that DAMAS-

C, with this number of iterations, approaches the correct 

source definition. The value recovered for X
113 113

 itself is 

96.5 dB (exact answer is 100 dB), and the nearby X
n
0
n
 

levels are about 89 dB (exact answer is -  dB), and the 

total of all grid points is 100.2 dB (exact answer is 100 

dB).  The number of iterations, i, chosen here is arbitrary. An increase in i would increase accuracy, but is stopped 

at 100 to illustrate “energy” smearing due to limited iteration number. (Smearing also occurs with relation to too 

small x /B  and W /B  resolution values1, defined in Eqs. (43) and (44).)   

 

To test the ability of DAMAS-C to separate and quantify sources, one can consider two point sources located 9 

in. apart. Again the SADA is 5 feet away and the frequency is f = 20 kHz.  First, Fig. 5 shows results for the two 

sources that are incoherent with respect to one another. The sources are positioned on a 51x51 inch scan plane with a 

grid point spacing of x = y = 1 in. With this spacing, x /B
auto

= .14 and x /B
cross

= .10. The top left frame shows 

a Diagonal Removal (DR) beamform processing (Eq. (29)) result contour plotted for Y
n
0
n
0
. (The dashed contour 

regions are actually regions of negative “pressure squared” values1,6, which occur because of the DR processing. For 

plotting purposes, the corresponding dB levels shown are defined using absolute values of the negative terms. A 

negative sign is simply applied to these levels.) The top right frame of Fig. 5 is a DAMAS processed result using the 

method of Ref. 1 for DR processing. Here, with DAMAS being perfectly applicable with the present incoherent 

sources, the sources are correctly located and levels of 100 dB for each are found. The level corresponding to the 

sum over all grid points in the frame is given (equated to the p
2
 symbol) as 103.0 dB. Results are given for 

DAMAS-C, where a zone A  (with 153 points) and a zone B  (with 2448 points) combination is used. The number of 

iterations is 200, rather than the 2000 employed for DAMAS1, because of the more significant computational 

requirements for DAMAS-C. The results shown in successive frames are the distributions of X
n
0
n
0
, X

n
0
n

 (sum 

over all n
0

 planes), X
n
0
n
 (for source location n

0
=1097 plane), and X

n
0
n
 (for source location n

0
=1556 plane). It is 

seen that DAMAS-C correctly identifies the sources. The summed level over the X
n
0
n
0
 frame of 97.2 dB (ideally 

103 dB) is the result of “energy” smearing due to the limited iterations and the many more n
0

 planes that “energy” 

can spread. The summed level over the X
n
0
n

 frame of 103.3 dB correctly matches the original DAMAS result of 

103 dB showing that “energy” is conserved between DAMAS and DAMAS-C. The last two frames show the key 

result that DAMAS-C correctly separates the sources and validates that the two sources have no coherence with one 

another.  
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Figure 5. Beamforming (top left frame), DAMAS (top 

right frame), and DAMAS-C (last 4 frames) results for 

INCOHERENT point sources, 9 in. apart. f  = 20 kHz. 
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Figure 6. Same key as Fig. 5 except for COHERENT 

sources, 9 in. apart. 

 
 

Figure 6 shows results for the two sources that are defined as perfectly coherent and in-phase. Figure 6 is 

identical in format to that of Fig. 5. It is seen that the beamform processing for Y
n
0
n
0
 is significantly affected by the 

coherence of the sources (compare this to Fig. 5). The corresponding original DAMAS processing of Fig. 6 is seen 

to produce a geometrically distorted result, although the sum of the apparent sources do correctly sum to 106 dB. 

DAMAS-C is seen to correctly separate and quantify the coherent sources.  The X
n
0
n

 frame of 106.2 dB correctly 

matches level. (To be clear, with each of the coherent X
n
0
n
0
, X

nn
, X

n
0
n
, and X

nn
0

 source strengths having levels of 

100 dB, two should total 103 dB, and all four should total 106 dB.) However, the summed levels over X
n
0
n
0
, X

n
0
n
 

( n
0

=1097), and X
n
0
n
 ( n

0
=1556) planes of 97.6, 100.6, and 99.7 dB are all lower than the ideal 103 dB level. Still, 

this is completely explained by the same resolution reasons given with respect to Fig. 5. Therefore, Figs. (5) and (6) 

validates the correctness and functionality of the DAMAS-C algorithm.  

 

Figures 7 and 8 show a similar set of presentations to that of Figs. 5 and 6, except that the sources were placed 

4.5 inches apart rather than 9 in. In these simulations, x = y = .9 inches and frequency is again 20 kHz. It is seen 

for the incoherent sources, in Fig. 7, that almost the same degree of success in source definition is found using 

DAMAS-C for this closer source position. However, somewhat more difficulty is found when the sources are 

coherent. In Fig. 8, the totaled X
n
0
n

 frame result appears almost as a line and the X
n
0
n
 frames shows smearing 

between the sources.  In Ref. 1, there is defined a spatial detail dimension   l  that was judged to be well resolvable by 

DAMAS if   2 < l /B , acceptably resolvable if   1 l /B, but only marginally for   l /B <1. Here, upon associating   l  



 

American Institute of Aeronautics and Astronautics 

 

14

X location (in)

Y
lo
c
a
ti
o
n
(i
n
)

-87 -87

101

-87 -87

8784

84 87

-20

-10

0

10

20

DR Beamforming
60 65 70 75 80 85 90 95 100

DR DAMAS, 2000 Iterations

Σp
2
= 103.0 dB

dB

-20

-10

0

10

20 Xn
o
,n

o
, 200 Iterations

Σp
2
= 97.9 dB

Σ Xn
o
,n, 200 Iterations

Σp
2
= 103.2 dB

-20 -10 0 10 20

-20

-10

0

10

20 Xn
o
,n, n

o
=1199

200 Iterations, Σp
2
= 96.2 dB

B

A

-20 -10 0 10 20

Xn
o
,n, n

o
=1454

200 Iterations, Σp
2
= 95.8 dB

B

A

 

Figure 7. . Beamforming (top left frame), DAMAS (top 

right frame), and DAMAS-C (last 4 frames) results for 

for INCOHERENT point sources, 4.5 in. apart. f =20 kHz. 
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Figure 8. Same key as Fig. 7 except for COHERENT 

sources, 4.5 in. apart. 

 
 

with the 4.5 in. separation, 
  
l /B

auto
= .6 and 

  
l /B

cross
= .4, which suggests marginal resolution. The present DAMAS-

C results then appear compatible with these criteria.  

 

Figures 9 and 10 show a set of presentations, similar to the preceding, except that thirteen sources are 

distributed to simulate a 12-inch line source. Figure 9 shows for the incoherent line source that both DAMAS and 

DAMAS-C gives good spatial and level definition. The sums total about 111 dB (in agreement with 100 + 

10Log(13) dB). The individual n
0

 planes sum to the ideal 100 dB (aided partly in its summing by the observed 

lateral “energy” smearing about the respective n
0

 locations). Figure 10, for coherent line source, shows a 

substantially distorted result for DAMAS, although it is again shown that the total levels for both DAMAS and 

DAMAS-C are both correct at 122 dB (100 + 10Log(132) dB). The levels for the n
0

 planes are similarly correct.  

 

Experimental Data. DAMAS-C is applied to data from an airframe noise test in the Quiet Flow Facility (QFF) 

at NASA Langley Research Center. In Fig. 11, the flap edge test6,10 configuration is shown where the SADA array is 

positioned outside the flow field, at a distance of 5 feet from the model. The test case considered is for a 29° flap 

angle setting and M = 0.11. For this case, Ref. 1 and 3 showed that there was strong localized flap edge noise and 

distributed noise over the flap cove region. The sources are evaluated along a scanning plane that is aligned with the 

airfoil main element chordline. The DR beamform processing and corresponding DAMAS results are shown in Fig. 

12. The presentation is for a 20 kHz one-third octave frequency band, obtained by combining CSM results from a 

number of individual 17. 44 Hz bands to obtain f =122 Hz, used for evaluations of beamforming, DAMAS, and 
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Figure 9. . Beamforming (top left frame), DAMAS (top 

right frame), and DAMAS-C (last 4 frames) results for 

for INCOHERENT line source. Frequency f  = 20 kHz.  
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Figure 10. Same key as Fig. 9 except for COHERENT 

line source.  
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Figure 11. Sketch of flap noise test setup in the QFF 

open test section.  

DAMAS-C. The individual results are then summed to 

obtain the one-third octave results shown.  The zone A is a 

9x24 point region over the scan plane as shown. Grid 

spacing is x = y = 1 in.  

 

The results for the DAMAS and the totaled X
n
0
n

 

frame result of DAMAS-C substantially match in source 

distribution and level. This and the very consistent results 

for the X
n
0
n
0
 and X

n
0
n
 in the n

0
 planes indicate that the flap 

edge and flap cove noise regions can be regarded as 

distributions of incoherent sources – at least to the extent 

that is resolvable for this size array and processing.  

However, alternately, one could view the apparent spatial 

coherence regions about the n
0

 locations in the respective 

n
0

 planes as coherent length scales of 3 to 4 inches. 

Countering this, however, is that these regions are also 

consistent with spatial “energy” smearing experienced in 

the foregoing simulations due to resolution and iteration 

limitations.  
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Figure 12. Flap noise test. . Beamforming (top left frame), DAMAS (top right 

frame), and DAMAS-C (last 6 frames) results for results.  f
1/3

 = 20 kHz.  
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It should be mentioned that this particular experimental case has elevated spectral levels in this 20 kHz range. 

The noise is likely due to an aeroacoustic feedback effect or acoustic resonant effect related to the flap gap and flow. 

Coherent noise regions are expected – likely to be viewed, with respect to the array, as disturbances acting over the 

gap near the flap leading edge. But with the acoustic wavelength at about .7 inches (corresponding to 20 kHz), and 

associated coherent noise source disturbance sizes likely to be less than that, it should not be expected that such 

regions be discernable with this array’s beamwidth at B
auto

= 7 inches. This would be true even if the number of 

DAMAS-C iterations were substantially increased. A larger array, with a correspondingly smaller beamwidth, 

would be required. But with this smaller beamwidth, computational efficiency requirements for DAMAS-C would 

also be higher because of the larger number of grid points required compared to that of the present application due to 

the resolution requirements such as Eqs. (43) and (44).   

 

 

V.  Conclusions 

 

An extension to DAMAS post processing methodology is presented that permits the identification and 

quantification of coherent sources. DAMAS-C solves this expanded problem using the same basic inverse problem 

and solution iteration approach as DAMAS. The computational demands are high but DAMAS-C can solve 

problems not approachable by other methods. Calculations performed for this paper are directed primarily at 

validating the basic DAMAS-C approach to separate and quantify coherent and incoherent source distributions. This 

is clearly accomplished. Also, its practical usefulness is shown by an experimental application that reveals that a flap 

and cove configuration radiates noise in a spatially incoherent manner (within resolution limits) across the cove 

region. DAMAS-C adds important capabilities to DAMAS. Future ease of use will depend on problem size 

reduction (see Computational Notes section) and establishing more optimum spatial resolution and iteration criteria 

(including constraint evaluation). Ultimately, much more significant code speedup (such as through methodologies 

of Dougherty4) will be needed to simplify DAMAS-C application and expand evaluation ranges. Still, the capability 

has been demonstrated and is presently functional.  
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