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Abstract.  We present two extensions of the classical fiber bundle model to study
the  creep  rupture  of  heterogeneous  materials  and  the  shear  failure  of  glued
interfaces of solid blocks. To model creep rupture, we assume that the fibers of a
parallel bundle present time dependent behaviour under an external load and fail
when the deformation exceeds their local breaking threshold. Assuming global load
sharing among fibers, analytical and numerical calculations showed that there exists
a critical load below which only partial failure occurs while above which the system
fails globally after a finite time. Approaching the critical point from both sides the
system exhibits scaling behaviour which implies that creep rupture is analogous to
continuous phase transitions. To describe interfacial failure, we model the interface
as an array of elastic beams which experience stretching and bending under shear
load and break if the two deformation modes exceed randomly distributed breaking
thresholds. The two breaking modes can be independent or combined in the form
of a von Mises type breaking criterion. In the framework of global load sharing, we
obtain  analytically the  macroscopic  constitutive  behaviour  of  the  system and
describe the microscopic process of the progressive failure of the interface.
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1.Introduction 
The failure of heterogeneous materials under various types of external load has
attracted continuous interest during the last two decades [1,2].  One of the most
important approaches to the fracture and damage problem is the well-known Fiber
Bundle Model (FBM), which was introduced a long time ago by Daniels [3] and
has been the subject of extensive research over the past years [4-14]. These models
consist  of  a  set  of  parallel fibers having statistically distributed  strengths.  The
sample is loaded parallel to the fibers’ direction, and the fibers fail if the load on
them exceeds their threshold value. In stress controlled experiments,  after  each
fiber failure the load carried by the broken fiber is redistributed among the intact
ones. The behaviour of a fiber bundle under external loading strongly depends on
the range of interaction,  i.e. on the range of load sharing among fibers.  Exact
analytic results on FBM have been achieved in the framework of the mean field
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approach, or global load sharing, which means that after each fiber breaking the
stress  is  equally distributed  on  the  intact  fibers  implying an  infinite  range  of
interaction and a  neglect of stress enhancement in the vicinity of failed regions [3-
11].  In  spite  of  their  simplicity, FBMs capture  the  most  important  aspects  of
material damage and they provide a deep insight into the fracture process. Based
on their success, FBMs have served as a starting point for more complex models
like the  micromechanical  models  of  the  failure  of  fiber  reinforced  composites
[14,15,16,17]. Over the past years several extensions of FBM have been carried
out by considering stress localization (local load transfer) [15,16,17], the effect of
matrix  material  between  fibers  [14,15,16,17],  possible  non-linear  behaviour  of
fibers  [18,21],  coupling  to  an  elastic  block  [19],  and  thermally  activated
breakdown [20].
      Under high steady stresses, materials may undergo time dependent deformation
resulting  in  failure  called  creep  rupture,  which  determines  the  long  time
performance of construction elements. Creep failure tests are usually performed
under uniaxial tensile loading when the specimen is subjected to a constant load σo

and the time evolution of the damage process is followed by recording the strain ε
of the specimen and the acoustic signals emitted by microscopic failure events.
Theoretical studies of creep rupture encounter various challenges: on the one hand,
applications of materials in construction components require the development of
analytical and numerical models which are able to predict the damage histories of
loaded specimens in terms of the characteristic parameters of the constituents. On
the  other  hand,  it  is important  to  reveal universal aspects  of  creep  rupture  of
disordered materials, which are independent of specific material properties relevant
on  the  microlevel.  Based  on  these  universal  features,  methods  of  forecasting
catastrophic failure events can be worked out.
       In applications solid blocks are often joined together by welding or glueing of
the  interfaces  which  are  expected  to  sustain  various  types  of  external  loads.
Interfacial failure also occurs in fiber reinforced composites, where debonding of
the  fiber-matrix interface is an important  damage mechanism. Since disordered
properties of the glue play a crucial role in the failure of interfaces, most of the
theoretical studies in this field rely on  discrete  models [1,2,18,19,20,21,27,28]
which are  able to  capture  heterogeneities and can account  for  the complicated
interaction of nucleated cracks.
       In this paper we present two extensions of the classical fiber bundle model to
study the creep rupture of heterogeneous materials and the shear failure of glued
interfaces of solid blocks. To model creep rupture, we assume that the microscopic
mechanism of  creep  is the  viscoelastic  behaviour  of  fibers giving rise  to  time
dependent  deformation.  The  fibers  of  a  parallel  bundle  fail  during  the  time
evolution  of  the  system  when  the  deformation  exceeds  their  local  breaking
threshold. Assuming global load sharing among fibers, we analyze the macroscopic
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response  of  the  bundle and  the  microscopic process  of  failure.  Analytical and
numerical calculations showed that there exists a critical load which determines the
final state of the material. Approaching the critical point from below and above the
system exhibits scaling behaviour which implies that creep rupture is analogous to
continuous phase transitions. 
      To describe interfacial failure, we model the interface as an array of elastic
beams which experience stretching and bending under shear load and break if the
two deformation modes exceed randomly distributed breaking thresholds. The two
breaking modes can be independent or combined in the form of a von Mises type
breaking criterion. Assuming global load sharing following the beam breaking, we
obtain  analytically the  macroscopic  constitutive  behaviour  of  the  system and
describe the microscopic process of the progressive failure of the interface.
2. Fiber bundle model of creep rupture Our model consists of N parallel fibers
having viscoelastic constitutive behaviour.   For  simplicity, the pure viscoelastic
behaviour of fibers is modelled by a Kelvin-Voigt  element which consists of a
spring  and  a  dashpot  in  parallel  and  results  in  the  constitutive  equation

εεβσ E+= 0 ,  where  σ0 is the external load,  β denotes the damping coefficient,
and E is the Young modulus of fibers, respectively.  In order to capture failure in
the model a strain controlled breaking criterion is imposed, i.e. a fiber fails during
the time evolution of the system when its strain exceeds a breaking threshold εi,

i=1,…N drawn  from a  probability distribution  P(ε)= ∫
ε

0

)( dxxp .  For  the  stress

transfer between fibers following fiber failure we assume that the excess load is
equally shared  by all  the  remaining intact  fibers  (global  load  sharing),  which
provides  a  satisfactory  description  of  load  redistribution  in  continuous  fiber
reinforced composites. For the breaking thresholds of fibers a uniform distribution
between 0 and 1, and a Weibull distribution of the form ( )[ ]ρλεε /exp1)( −−=P
were considered. The construction of the model is illustrated in Fig. 1a). In the
framework of global load sharing most of the quantities describing the behaviour of
the fiber bundle can be obtained analytically. In this case the time evolution of the
system under a steady external load σο is described by the differential equation 

 
,                                        (1)

where the viscoelastic behaviour is coupled to  the failure of fibers [22,23].  The
viscoelastic fiber bundle model with the equation of motion Eq. (1) can provide an
adequate description of natural fiber composites like wood subjected to a constant
load [28]. For the behaviour of the solutions ε(t) of Eq. (1) two distinct regimes
can be distinguished depending on the value of the external load σo: when σo  falls
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below a critical value σc, Eq. (1) has a stationary solution εs, which can be obtained
by setting 0=ε ,  i.e. σo = Eεs[1-P(εs)]. It means that as long as this equation can
be solved for εs at a given external load σo, the solution ε(t) of Eq. (1) converges to
εs  when t  ∞→ , and the system suffers only a partial failure. However, when σo

exceeds the critical value σc no stationary solution exists, furthermore, ε  remains
always  positive,  which  implies  that  for σo >σc the  strain  of  the  system  ε(t)
monotonically increases until the system fails globally at a finite time tf [22,23].

Figure 1:  a) The  viscoelastic fiber bundle  model.  Intact  fibers  are  modelled by Kelvin-Voigt
elements.  b) )(tε for several different values of the external load 0σ  below and above cσ .  0t
denotes the characteristic timescale of the system Et /0 β= .

The behaviour of )(tε  is illustrated in Fig. 1b) for several values of 0σ  below and
above  cσ  with uniformly distributed breaking thresholds between 0 and  mε .  It
follows from the above argument that the critical value of the load σc is the static
fracture strength of the bundle. The creep rupture of the viscoelastic bundle can be
interpreted so that for co σσ ≤  the bundle is partially damaged implying an infinite
lifetime ∞=ft  and the emergence of a stationary macroscopic state, while above
the critical load cσσ >0  global failure occurs at a finite time ft , but in the vicinity
of cσ  the global failure is preceded by a long lived stationary state. The nature of
the transition occurring at cσ  can be characterized by analyzing how the creeping
system behaves when approaching the critical load both from below and above.

For  cσσ ≤0 the fiber bundle relaxes to  the stationary deformation sε through a
gradually decreasing breaking activity. It can be shown analytically that )(tε  has an
exponential relaxation to  sε  with a characteristic time scale τ that depends on the
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external  load  0σ  as  2/1)( −−∝ oc σστ  for  cσσ <0 ,  i.e. when approaching the
critical point from below the characteristic time of the relaxation to the stationary
state  diverges  according  to  a  universal  power  law  with  an  exponent  -1/2
independent on the form of the disorder distribution P.

Figure 2: a) Lifetime tf of the bundle as a function of the distance from the critical point σ0-σc  for
three different disorder distributions . b) tf as a function of the number of fibers N at a fixed value
of the external load σ0. Results of computer simulations (symbols) are in good agreement with the
analytic predictions (solid lines).

Above the critical point the lifetime  ft defines the characteristic time scale of the
system which can be cast in the form 2/1)( −−∝ coft σσ  for σ0  > σc, so that ft  also
has a power law divergence at cσ  with a universal exponent -1/2 like τ below the
critical point,  see Fig.  2a).  Hence,  for  global load sharing the  system exhibits
scaling  behaviour  on  both  sides  of  the  critical  point  indicating  a  continuous
transition at the critical load cσ .  It can also be shown analytically that fixing the
external load above the  critical point,  the  lifetime  ft  of  the  system exhibits a
universal scaling NtNt ff /1)()( ∝∞−  with respect to the number N of fibers of the
bundle (Fig. 2b) [22,23]. 
      The process of fiber breaking on the micro level can easily be monitored
experimentally by means  of  the  acoustic  emission  techniques.  Except  for  the
primary creep regime, where a large amount of fibers break in a relatively short
time, the time of individual fiber failures can be recorded with high precision. In
order to characterize the process of fiber breaking in our viscoelastic fiber bundle
model, we calculated numerically the distribution f of waiting times  ∆t between
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consecutive breaks [24]. A detailed analysis revealed that f(∆t) shows a power law
behavior bttf −∆∆ ~)( on both sides of the critical point [24].  The value of the
exponent b is different on the two sides of the critical point, i.e. 05.05.1 ±=b and

05.095.1 ±=b  were  measured  below and above the  critical load;  however,  b
proved to be independent of the disorder distribution of fibers, see Fig. 5. 

Figure 3: a) Waiting times ∆t between consecutive fiber breakings for a load cσσ >0 plotted at
the time t of breakings. b): Distribution of ∆t below and above the critical load. Simulation results
are presented for 10 million fibers with uniformly distributed threshold values. 

3. Shear failure of glued interfaces 
We propose a novel approach to the shear failure of glued interfaces by extending
the classical fiber bundle model to model interfacial failure [19,25,26]. Our model
represents the interface as an ensemble of parallel beams connecting the surface of
two  rigid  blocks  [27],  see  Fig.  4.  The  beams are  assumed  to  have  identical
geometrical  extensions  (length  l and  width  d)  and  linearly  elastic  behaviour
characterized by the  Young modulus  E.  In order  to  capture  the  failure of the
interface,  the  beams are  assumed to  break  when their  deformation  exceeds  a
certain  threshold  value.  Under  shear  loading  of  the  interface,  beams  suffer
stretching  and  bending  deformation  resulting  in  two  modes  of  breaking.  The
stretching and bending deformation of beams can be expressed in terms of a single
variable,  i.e. longitudinal strain ll /∆=ε , which enables us to map the interface
model  to  the  simpler  fiber  bundle  models.  The  two  breaking  modes  can  be
considered  to  be  independent  or  combined  in  the  form of  a  von  Mises  type
breaking criterion. The strength of beams is characterized by the two threshold
values of  stretching  1ε  and  bending  2ε  a  beam can  withstand.  The  breaking
thresholds are assumed to be randomly distributed variables of the joint probability
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distribution ),( 21 εεp . The randomness of the breaking thresholds is supposed to
represent the disorder of the interface material. After breaking of a beam the excess
load has to  be redistributed over the remaining intact elements. Coupling to  the
rigid blocks ensures that all the beams have the same deformation giving rise to
global load  sharing,  i.e.  the  load  is equally shared  by all the  elements,  stress
concentration in the vicinity of failed beams cannot occur.

Figure 4: Illustration of the model construction. Beams of the sheared interface suffer stretching
and bending (left) and fail due to the two deformation modes (right).

Assuming the breaking modes to be independent, a single beam breaks if either its
stretching or bending deformation exceeds the respective breaking threshold 1ε  or

2ε ,  i.e. failure  occurs  if  1/)( 1 ≥εεf or  1/)( 2 ≥εεg ,  where  )(εf and  )(εg
describe the stretching and bending breaking modes, respectively. Later  on this
case will be called the  OR criterion. The failure functions  )(εf and  )(εg can be
determined  from  the  elasticity  equations  of  beams,  but  in  general  the  only
restriction for them is that they have to be monotonous. For our specific case of
sheared  beams  they  take  the  form  εε =)(f  and  εε =)(g ,  where  E=1 is
assumed [27]. In the plane of breaking thresholds each beam is represented by a
point with coordinates ( 21 ,εε ).  The constitutive behaviour of the interface can be
obtained by integrating the load of single beams over the intact ones in the plane of
breaking  thresholds,  see  Fig.  5a).  For  the  OR criterion  one  gets

∫∫=
max
1

max
2

)(
211

)(
2 ),(

ε

ε

ε

ε

εεεεεσ
fg

pdd . Assuming the thresholds of the two breaking modes

to  be  independently  distributed,  the  disorder  distribution  factorizes
)()(),( 221121 εεεε ppp =  and  )(εσ takes  the  simple  form

[ ][ ]))((1))((1)( 21 εεεεσ gPfP −−= .  The  terms  ))((1 1 εfP−  and  ))((1 2 εgP−
provide the  fraction of beams failed under  the stretching and bending breaking

7



modes, respectively. When the two breaking modes are coupled by a von Mises
type breaking criterion,  a single beam breaks if its strain  ε fulfils the condition
( ) 1/)(/)( 2

2
1 ≥+ εεεε gf ,  which  is  illustrated  by  Fig.  5a).

Figure 5: a) The plane of breaking thresholds. Fibers which are intact at a deformation ε fall in
the  rectangle  bounded  by  )(),( εε gf and  the  maximum  values  of  the  two  thresholds

max
2

max
1 ,εε for the OR criterion (area A+B), and in the area bounded by the curve connecting a

and  b and the maximum thresholds for the von Mises type criterion (area  A), respectively. The
fibers which break due to the coupling of the two breaking modes in the von Mises criterion fall
in area  B.  b)  Comparison of the constitutive curves of a simple fiber bundle and of the beam
model with different breaking criteria using uniformly distributed breaking thresholds.

In  this  case  the  constitutive  integral  ∫ ∫=
max

1
max
2

1
*
2 ),(

2121 ),(
ε ε

εεε

εεεεεσ
a

pdd  cannot  be

performed  explicitly with the  integration limit ))(/()(),( 22
1

2
11

*
2 εεεεεεε fg −= in

general.
Simulation techniques Based on the above equations analytic results can only be
obtained for the simplest forms of disorder like the uniform distribution. In order to
determine the behaviour of the system for complicated disorder distributions and
explore the microscopic failure process of the sheared interface, it is necessary to
work out  a computer  simulation technique. For  the simulations we consider an
ensemble of N beams arranged on a square lattice. Two breaking thresholds ii

21 ,εε
are assigned to each beam i  ( Ni ,,1 = ) of the bundle from the joint probability
distribution  ),( 21 εεp . For the  OR breaking rule, the failure of a beam is caused
either  by stretching  or  bending depending  on  which one  of  the  conditions  is
fulfilled at a lower value of the external load. In this way an effective breaking
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threshold  i
cε  can  be  defined  for  the  beams  as

Nigf iii
c ,,1)),(),(min( 2

1
1

1 == −− εεε , where 1−f  and 1−g  denote the inverse of
f, g, respectively. A beam i breaks during the loading process of the interface when
the load on it exceeds its effective breaking threshold i

cε . For the case of the von
Mises type breaking criterion the effective breaking threshold i

cε  of beam i can be

obtained as the solution of the algebraic equation   ( ) 1/)(/)( 2
2

1 =+ ii
c

ii
c gf εεεε . In

the case of global load sharing, the load and deformation of beams is everywhere
the same along the interface, which implies that beams break in increasing order of
their effective breaking thresholds. In the simulation, after determining i

cε  for each
beam, they are sorted in increasing order. Quasi-static loading of the beam bundle
is performed by increasing the external load to break only a single element. Due to
the subsequent load redistribution on the intact beams, the failure of a beam may
trigger an avalanche of breaking beams. This process has to be iterated until the
avalanche stops, or leads to catastrophic failure at the critical stress and strain. In
Fig. 5b) the analytic results on the constitutive behaviour obtained with uniform
distribution of the breaking thresholds are compared to the corresponding results
of computer simulations. As a reference, we also plotted the constitutive behaviour
of a bundle of fibers where the fibers fail solely due to simple stretching [3-11]. It
can be seen in the figure that the simulation results are in perfect agreement with
the analytical predictions. It is important to note that the presence of two breaking
modes substantially reduces the critical stress cσ  and strain cε  ( cσ  and cε  are the
value of the maximum of the constitutive curves) with respect to  the case when
failure of elements occurs solely under stretching [3-11]. Since one of the failure
functions  )(εg  is  non-linear,  the  shape  of  the  constitutive  curve  )(εσ also
changes,  especially in the post-peak regime. The coupling of the two  breaking
modes in the form of the von Mises criterion gives rise to further reduction of the
strength of the interface, see Fig. 5b).
Microscopic  damage  process During  the  quasi-static  loading  process  of  an
interface, avalanches of simultaneously failing beams occur. Inside an avalanche,
however, the beams can break solely under one of the breaking modes when the
OR criterion  is  considered,  or  the  breaking can  be  dominated  by one  of  the
breaking modes in the coupled case of the von Mises type criterion. In order to
study the effect  of the disorder  distribution  ),( 21 εεp  of beams on the relative
importance  of  the  two  breaking  modes  and  on  the  progressive failure  of  the
interface, we considered independently distributed breaking thresholds 21 ,εε  both
with a Weibull distribution of exponents 1m  and 2m , and scale parameters 1λ and

2λ for the stretching and bending modes, respectively. It  can be seen in Fig. 6a)
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that increasing 2λ  of the bending mode, the beams become more resistant against
bending so that  the stretching mode starts  to  dominate the breaking of beams,
which is indicated by the increasing fraction of stretching failure. In the limiting
case of 12 λλ >>  the beams solely break under stretching.

Figure 6: a) Constitutive behaviour of a bundle of N=90000  beams using the  OR criterion for
different values of the scale parameter 2λ of the bending mode. The other parameters were fixed

0.221 == mm  and 0.11 =λ . Inset: fraction of beams broken under the two breaking modes.

b) Constitutive behaviour of the same bundle changing the Weibull exponent 1m of the stretching

mode  with  0.121 == λλ  and  0.22 =m .  Inset:  the  fraction  of beams  broken  under  the
bending mode.

It  is interesting to  note  that  varying the relative importance of the  two  failure
modes gives also rise to a change of the macroscopic constitutive behaviour of the
system. Shifting the  strength distributions of beams, the functional form of the
constitutive behaviour remains the same, however, the value of the critical stress
and strain vary in a relatively broad range. Varying the amount of disorder in the
breaking thresholds, i.e. the Weibull exponents, has a similar strong effect on the
macroscopic response of the system, see Fig. 6b). Applying the von Mises breaking
criterion, the microscopic and macroscopic response of the interface show similar
behaviour. Our careful numerical analysis of the microscopic failure process of the
interface revealed that the size of avalanches of simultaneously failing beams under
a  stress  controlled loading of  the  interface  has  a  power  law distribution.  The
exponent of the power law proved to be 5/2, it is equal to the mean field exponent
characterizing the distribution of bursts in simple fiber bundle models [7,8].  
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4. Conclusions Fiber bundle models have been applied to describe various aspects
of the failure of heterogeneous materials. However,  fibers of the classical fiber
bundle  model  can  sustain  solely  stretching  deformation  and  present  a  time
independent behaviour. In order to  study time dependent failure phenomena like
creep  rupture,  and  the  damage  process  of  materials  occurring  under  complex
deformation like in sheared interfaces, we proposed two extensions of fiber bundle
models in the present paper.  To model creep rupture, we represent the fibers of a
parallel  bundle  by  Kelvin-Voigt  elements  which  exhibit  time  dependent
deformation under  an external load [22,23,24].  We showed analytically and by
computer simulations that creep rupture occurs analogously to second order phase
transitions, i.e. approaching the critical load the system is characterized by scaling
laws with exponents independent of specific material properties [22,23,24].  The
microscopic  mechanism of  creep  of  our  model  is  relevant  for  natural  fiber
composites like wood  [28],  but  can also be simply extended to  more complex
material behaviours [29].
To describe the shear failure of interfaces, we model the interface as an array of
elastic beams which experience stretching and bending under shear load and break
if the two  deformation modes exceed randomly distributed breaking thresholds.
The two breaking modes can be independent or combined in the form of a von
Mises type breaking criterion [27]. We showed that the model provides a broad
spectrum  of  interface  responses  varying  the  relative  importance  of  the  two
breaking  modes  in  qualitative  agreement  with  experiments  [27].  Both  models
presented  here  can  be  further  extended  by taking  into  account  localized load
redistribution after fiber failure [24,27].
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