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Abstract. – The total energy E(t) in a fluid of inelastic particles is dissipated through inelastic
collisions. When such systems are prepared in a homogeneous initial state and evolve undriven,
E(t) decays initially as t

−2
∼ exp[−2ǫτ ] (known as Haff’s law), where τ is the average number of

collisions suffered by a particle within time t, and ǫ = 1−α
2 measures the degree of inelasticity,

with α the coefficient of normal restitution. This decay law is extended for large times to E(t) ∼

τ
−d/2 in d-dimensions, far into the nonlinear clustering regime. The theoretical predictions are

quantitatively confirmed by computer simulations, and holds for small to moderate inelasticities
with 0.6 < α < 1.

A fluid of inelastic hard spheres (IHS) in d dimensions, prepared initially in a state of
thermal equilibrium with temperature T0, will remain for an extended period of time (measured
in average number of collisions suffered per particle) in a spatially homogeneous cooling state
(HCS), provided the degree of inelasticity ǫ is small. In this state the average kinetic energy
per particle E(t) = d

2T (t) is decreasing like 1/t2 due to inelastic collisions, as first explained by
Haff [1]. However, the HCS with a spatially uniform density and temperature, and a vanishing
flow field is unstable against long wavelength spatial fluctuations, and leads finally to a state
with large scale clusters in the density field n(r, t) as well as in the flow field u(r, t) (vortices).
This is illustrated in the MD simulations of fig. 1. In this state cooling slows down and
large deviations from Haff’s law occur, which have not yet been explained in any quantitative
manner [2, 3].

In general analytic results for nonlinear decay of rapid granular flows are rare [2]. The
goal of this letter is to calculate the long time decay of E(t) from nonlinear hydrodynamics,
using mode coupling methods. The basic idea is to decompose the quantities of interest, here
the total microscopic energy, or—in the study of long time tails of Green-Kubo formulas—the
total microscopic momentum-, energy- or particle fluxes, into a superposition of products of
slow hydrodynamic fluctuations of density n(r, t), temperature T (r, t) and flow field u(r, t).
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Fig. 1. –

Snapshots (a) of flow field u(r, τ = 80) and (b) of density field n(r, τ = 160) in an IHS
simulation with N = 50000, α = 0.9, φ = 0.245, prepared in an initial thermal equilibrium
state. Crossover to the nonlinear regime occurs at τc ≃ 70.

As one is dealing with fluctuations their amplitude is small in general, so their time decay can
be calculated from linear hydrodynamic modes Ref. [4], provided the fluctuations are stable.
However, in the undriven IHS fluid the density fluctuations are growing exponentially like
exp(ǫτ) (clustering instability) [2]. The redeeming feature in the resolution of this paradox is
that the energy only depends on products of modes, in which exponentially growing density
fluctuations are balanced by exponentially decreasing temperature fluctuations.

In the case of inelastic hard spheres two colliding particles loose a fraction, ǫ ≡ 1 − α2,
of their relative kinetic energy, where ǫ is the degree of inelasticity and α the coefficient of
normal restitution. Particles move more and more parallel after every collision, and their
random motion (temperature) decreases; i.e. the spatial fluctuations at shorter wavelength
(which are rapidly damped out through viscosity and heat conduction) are not replenished
with energy from the more microscopic degrees of freedom, as in the elastic case, where
fluctuations at all wavelengths are kept at thermal noise level, fed by the randomizing elastic
collisions. So, the dynamics selectively suppresses the shorter wave length components of the
flow field, as is clearly illustrated in fig. 1a. After a time on the order of the mean free time
t0 between collisions, the surviving fraction of the energy E(t) = (1/N)〈

∑

i
1
2mv2

i 〉 is totally
stored in hydrodynamic modes (with wavenumbers k < 1, where k is the measured in units of
inverse mean free path l0) of the kinetic energy of the flow and the internal energy (granular
temperature),

E(t) ≃ 1

N

∫

dr

{

1

2
〈ρ(r, t)u2(r, t)〉 +

d

2
〈n(r, t)T (r, t)〉

}

. (1)

The subsequent decay of E(t) is controlled by two different k-regimes [5]: (i) the elastic

regime (ǫ < k < 1) at short times (homogeneous cooling regime) with t0 < t < t0/ǫ, and (ii)
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the dissipative regime (k < ǫ) at large times (t ≫ t0/ǫ).
In the first regime the decay is controlled by the HCS, where n(r, t) = n, u(r, t) = 0 and a

homogeneous temperature, decaying according to Haff’s cooling law,

T (t) =
T0

(1 + γ0t/t0)2
≡ T0 exp(−2γ0τ), (2)

where E0 = d
2T0 is the initial (equilibrium) energy per particle, γ0 = ǫ/2d, and t0 = 1/ω(T0) is

the mean free time with collision frequency ω(T0) in the initial state. The second equality in
eq. (2) defines the average number of collisions per particle within a time t. It is obtained by
integrating dτ = ω(T (t))dt, where ω(T ) ∼

√
T/l0 with a temperature independent mean free

path l0, given by the Enskog theory for a dense system of hard spheres (d = 2, 3). Haff’s law is
illustrated in figs. 2a,b by the straight lines, labeled 1. The HCS is essentially an adiabatically

changing equilibrium state, parametrized by {n,u = 0, T (t)}.
To evaluate the contribution of the long wavelength fluctuations, we linearize the fields in

eq. (1) around the HCS, where u(r, t), δn(r, t) = n(r, t) − n and δT (r, t) = T (r, t) − T (t),
are small (at least their combined effects; see redeeming features below), and consider Fourier
modes. Retaining up to quadratic terms yields,

E(t) =
d

2
T (t) +

1

2N

∫

dk

(2πl0)d

{

ρ〈|u(k, τ)|2〉 + d〈δn(k, τ)δT (−k, τ〉
}

, (3)

where T (t) is given by Haff’s law. The first term in the integrand is proportional to the
structure factors [(d − 1)S⊥(k, τ) + S‖(k, τ)], and the second one to SnT (k, τ), where the
subscript ‖ refers to the longitudinal component of u and the subscript ⊥ to the transverse
ones.

According to the theory of ref. [3a,b], the fluctuations around the HCS are described by
fluctuating hydrodynamic Langevin equations, and obey an ‘adiabatic’ fluctuation dissipation
theorem. The results from the structure factors, Sij(k, τ), obtained by numerically integrat-
ing the fluctuating hydrodynamic equations of ref. [3b], could be integrated over the full
hydrodynamic range of wave numbers to obtain the decay of E(t) for all times t > t0.

Here, however, we present an analytic method that enables us to calculate the asymptotic
decay for t ≫ t0/ǫ explicitly. For such times only modes in the dissipative regime with k ≪ ǫ
will contribute to the integrands in (3). In this regime, the dispersion relations for the modes,
relative to the HCS, are well known [5,3c].

The structure factors for the (d − 1) transverse components u⊥α and the longitudinal one
ul in the range k ≪ γ0 ∼ ǫ can be deduced from ref. [3b], and yield,

V −1〈|u⊥α(k, τ)|2〉 = (T0/ρ)e−2∆⊥k2τ
(

1 + ∆⊥k2/γ0

)

, (4)

with a diffusivity ∆⊥ = ν/l20ω, where ν = η/ρ is the kinematic viscosity. The longitudinal
structure factor is given by a similar expression with ∆⊥ replaced by ∆‖. The explicit form
of the longitudinal diffusivity (given in ref. [3b] as ∆‖ = γ0ξ

2
‖/l20) is not needed here. One can

verify from the explicit expressions that ∆‖ > ∆⊥, and even ∆‖ ≫ ∆⊥ for γ0 → 0.
It should be noted that the dimensionless diffusivities, ∆⊥ and ∆‖, do not depend on the

local temperature, since transport coefficients and collision frequencies are proportional to
√

T .
By inserting eq. (4) into (3) and performing the k-integrals, one easily finds that the

contributions Euu(t) of the term 〈|u|2〉 to eq. (3) decay as,

Euu(t) ≃ T0

2nld0

{

d − 1

(∆⊥)d/2
+

1

(∆‖)d/2

}(

1

8πτ

)d/2

. (5)
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Next, we consider the contributions EnT (t) in (3) from the n-T fluctuations. Calculation
of the time dependence of δn(k, τ) and δT (k, τ) in the dissipative regime is in principle
straightforward, but technically much more involved. One solves the initial value problem for
the coupled linearized hydrodynamic equations by determining its eigenvalues (to O(k2)-terms
included), and eigenvectors (to O(k)-terms). The result for k ≪ ǫ is,

δn(k, τ) ≃ ik

γ0
C1e

(γ0−∆‖k2)τul(k, 0) + · · ·

δT (k, τ) ≃ ik

γ0
C2e

−(γ0+∆‖k2)τul(k, 0) + · · · , (6)

where the dots represent subdominant decaying terms, and Cn(n = 1, 2) are some constants.
The technical details are available through ref. [6].

The first equation in (6) exhibits the clustering instability. It shows that the density
fluctuation is growing at an exponential rate. We are not aware of any publication on
a freely evolving rapid granular flows or IHS fluids, that explicitly demonstrate how the
clustering instability is driven through the coupling to the long wavelength longitudinal velocity
fluctuations—except for the closely related nonlinear slaving mechanism between density and
flow field, discussed by Goldhirsch et al. [2]—, whereas all other fluctuations remain bounded
by their values in the initial thermal equilibrium state, i.e. the fluctuations in the flow field
decay diffusively at rates ∆⊥k2 and ∆‖k

2, and those in the temperature decay rapidly at a
rate (γ0 + ∆‖k

2).
The above discussion also implies that an incompressible granular flow (∇ · u = 0) would

not exhibit a clustering instability, at least not in a linear stability analysis. Moreover, an
initial density fluctuation δn(k, 0) would not cause any clustering instability. Furthermore,
we observe that 〈δn(k, τ)δT (−k, τ)〉 remains bounded, because the exponential increase of the
first factor is balanced by an exponential decrease of the second. The resulting integral yields
EnT (t) ∝ O(τ−d/2−1), which is a subleading asymptotic term when compared to (5).

It can be shown similarly that the three mode contribution Enuu(t), neglected in the
transition from eq. (1) to (3) remains bounded, and decays as τ−d, again a subleading
correction. The dominant large time contribution Euu(t) is plotted in figs. 2a,b, where the
lines labeled 2 and 3 represent the contributions of the transverse and longitudinal modes,
respectively. The former contribution is a factor e3 ≃ 20 larger than the latter.

The result (6) also shows that there is no balancing of unstable density fluctuations in the
structure factor Snn(k, τ) ∼ 〈|δn(k, τ)|2〉. Consequently, the predictions of the hydrodynamic
Langevin equations for Snn breakdown at the crossover from the homogeneous cooling regime,
as explained in ref. [3b], whereas those for S⊥, S‖ and SnT , used in this paper are expected
to remain valid until far into the nonlinear clustering regime.

In summary, in the decay of the total energy E(t), one can distinguish two different
behaviors: homogeneous cooling for τ < τc, where EHCS(t) ≃ d

2T0 exp(−2γ0τ) is given by
Haff’s law, and a diffusive decay for τ > τc, where E(t) ≃ Euu(τ) is solely determined
by the flow field, all long wavelength components of which decay diffusively. The equality
Euu = EHCS defines the crossover time τc, typical values of which are listed in the figure
captions and table 1.

Before comparing the preceding results with MD simulations, a final comment about the
relation between the ‘internal’ kinetic time τ and the ‘external’ time t is needed: in the
homogeneous cooling state the relation between both times is correctly predicted by τ =
(1/γ0) ln(1 + γ0t/t0) in eq. (2). In the nonlinear clustering regime the relation between both
times is not understood. The value of τ(t), as measured in the computer simulations for τ > τc,
increases faster than those given by (2). For the cases corresponding to figs. 1a,b the time τ



Extension of Haff’s cooling law in granular flows 5

becomes roughly linear in t for τ larger than 80.
In fig. 2a the theoretical prediction for E(t) is compared with computer simulations in a

dense system (φ = 0.245) of N = 50000 IHS particles at low dissipation (α = 0.9). The
density or coverage is defined as φ = 1

4πNσ2/L2, where σ is the diameter of a disk. The
agreement remains good until far into the nonlinear clustering regime with τ ≫ τc ≃ 70 (see
fig. 1a,b). The density field n(r, t) contains small (τ = 80) and large (τ = 160; see fig. 1b)
spatial inhomogeneities. The flow field shows both at τ = 80 (see fig. 1a) and at τ = 160
well-developed vortex patterns. To describe the crossover regime around τc one would have to
evaluate E(t) in the total hydrodynamic time regime (t > t0), by performing the numerical
calculations described in the paragraph below eq. (3). The same good agreement is found at
small inelasticities (α = 0.975, 0.9) for all densities (φ = 0.05, 0.11, 0.245, 0.4) in the larger
systems with N = 50000 particles, as summarized in Table 1. When the number of particles
is reduced to N = 20000 and N = 5000, the deviations steadily increase, suggesting finite size
effects.
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Fig. 2. –

Energy decay E(t) vs. τ in simulations (◦), with N = 50000 IHS, (a) at low inelasticity
(α = 0.9, φ = 0.245, τc ≃ 70), and (b) at high inelasticity (α = 0.6, φ = 0.05, τc ≃ 23),
compared with theoretical prediction (labeled as 1+2+3, solid line), containing homogeneous
cooling (1), vorticity diffusion (2) and longitudinal diffusion (3). At the latest simulation times
(τl in Table 1) both systems are in the nonlinear clustering regime (see fig. 1b).

Figure 2b shows a similar plot of E(t) in a low density system (φ = 0.05) with a rather large
inelasticity (α = 0.6), and consequently a short crossover time τc = 23. There is very good
agreement between theory and simulations over the whole time interval, until the time of the
latest measurement τl = 80. At still larger inelasticities and higher densities (α = 0.4, φ = 0.4)
the theoretical prediction is an order of magnitude smaller than the simulated E(t).

Table 1 also shows that the deviations at α = 0.6 between theory and simulations
increase with increasing density (see φ = 0.05, 0.11, 0.4), suggesting that the increase of
∆(m, α)/∆(m, 1) with m = (‖,⊥) as α → 0 is much larger at high than at low density. A
possible explanation might be that the Enskog theory for a dense IHS fluid, which is also based
on molecular chaos, breaks down at higher inelasticities. The effects of dynamic correlations
are expected to increase strongly with decreasing α, when frequent inelastic collisions force
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α φ τc τ‖ τl Esim/Etheor

0.975 0.245 340 27 500 0.65∗

0.9 0.245 70 240 160 0.8
0.9 0.4 68 56 160 1
0.6 0.05 23 104 80 1
0.6 0.11 19 3000 160 1.4
0.6 0.4 15 150 80 4
0.4 0.4 11 190 80 10

Table I. – Comparison Esim(τl) with Etheor(τl) ( ∗

N = 2 × 104; in all others cases N = 5 × 104).

the particles to move more and more parallel. But so far ring kinetic theory [7] for calculating
transport coefficients in IHS fluids has not yet been developed.

The present theory is only applicable to thermodynamically large systems, because in
deriving (3) the k-sums have been replaced by k-integrals. In the limit of small inelasticities
(γ0 → 0), the smallest wave number is k ∼ 1/L, and the restriction k ≪ γ0 might be violated
at small L.

For finite systems deviations from these predictions may occur because of interference effects
through the periodic boundaries. In elastic hard sphere fluids such effects can be expected for
times larger than the acoustic traversal time of the system. Here the fastest spreading mode is
the longitudinal diffusion, and one may expect interference effects when the relevant diffusion
length, ξ‖ ≡

√

8∆‖τ , satisfies ξ‖ >∼ 1
2L. This implies τ >∼ τ‖ ≡ L2/32∆‖. For the simulations

in fig. 1 and 2a the time of the latest measurements, τl = 160, is of the order of τ‖ = 240, and
the ratio R(τl) ≡ Esim/Etheor ≃ 0.8. In fig. 2b, τl = 80 ≪ τ‖ = 104, and τ‖ = 23, and the
ratio R(τl) = 1.

In summary, the mode coupling theory, applied to a freely evolving IHS fluid at small
inelasticity ǫ, explains how the hydrodynamic modes in the elastic range (ǫ ≪ k < 1)
are responsible for Haff’s homogeneous cooling law (2) at times t <∼ t0/ǫ, and those in the
dissipative range (k ≪ ǫ) for the diffusive decay, E(t) ∼ τ−d/2 valid for t ≪ t0/ǫ. In fact,
the full range of hydrodynamic times (t > t0) can be evaluated numerically by applying the
theory of refs. [3a,b] over the full range of hydrodynamic wavenumbers (k < 1). The solid
line in figs. 2a,b, representing the sum of homogeneous cooling and transverse and longitudinal
velocity diffusion, is simply an interpolation between the theoretical long and short time results.
The agreement between theory and simulations is excellent over the large time interval from
homogeneous cooling until far into the nonlinear clustering regime.

We also observe that the motion of the IHS fluid at the largest τ -values (see fig. 1a,b and
2a,b) is almost ‘frozen in’, as the kinetic energy has typically decayed by a factor of order
10−3. Therefore, we do not expect a later crossover to truly nonlinear regime, which would
imply that the decay law, derived here, is asymptotic indeed. At large inelasticities (α <∼ 0.4)
the present theory, which is based on a separation of time scales for small ǫ, is not applicable,
and the value of E(t), observed in the simulations, is an order of magnitude larger than the
prediction of the present theory.
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