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We present an ab initio quantum investigation of the high-order harmonic generation �HHG� cutoff exten-

sion using intense few-cycle chirped laser pulses. For a few-cycle chirped driving laser pulse, it is shown that

significant cutoff extension can be achieved through the optimization of the chirping rate parameters. The HHG

power spectrum is calculated by solving accurately and efficiently the time-dependent Schrödinger equation by

means of the time-dependent generalized pseudospectral method. The time-frequency characteristics of the

HHG power spectrum are analyzed in detail by means of the wavelet transform of the time-dependent induced

dipole acceleration. In addition, we perform classical trajectory simulation of the strong-field electron dynam-

ics and electron return map. It is found that the quantum and classical results provide complementary and

consistent information regarding the underlying mechanisms responsible for the substantial extension of the

cutoff region.

DOI: 10.1103/PhysRevA.75.033807 PACS number�s�: 42.65.Ky, 42.65.Re, 32.80.Rm

Recent developments in attosecond metrology have al-

lowed the production of laser pulses with reproducible tem-

poral evolution of the electric field by using phase-stabilized

optical frequency combs �1,2�. Attosecond laser pulses can

be produced by means of the high-order harmonic generation

�HHG� process in rare gases �3–5�. Coherent control tech-

niques can be applied to the study of the interaction between

matter and laser fields to obtain a desirable outcome by ma-

nipulating the temporal shape of the interacting laser field

with high precision �6�. It has also been shown theoretically

and experimentally that the enhancement of selective har-

monics can be accomplished by adjusting the pulse shape of

the excitation laser pulse via an evolutionary algorithm opti-

mization scheme �7,8�. Similar HHG enhancement can be

achieved by coherently controlling the dynamics of the elec-

tron wave packet via chirping the femtosecond laser pulse

�9�. Indeed, there has been an increasing interest recently in

the use of frequency- and amplitude-chirped pulses to per-

form quantum control of physical and chemical processes.

For instance, chirped pulses have been applied to the control

of population transfer in Rydberg atoms �10�, and in the mea-

surement of attosecond electronic dynamics �11�.
In this paper, we present a detailed ab initio quantum

investigation of the HHG cutoff extension by means of the

optimization of the chirping parameters of intense few-cycle

driving laser pulses. The time-dependent Schrödinger equa-

tion �TDSE� is solved accurately and efficiently by means of

the time-dependent generalized pseudospectral �TDGPS�
technique �12�. The time-frequency characteristics of the

emitted pulses are analyzed by means of the wavelet trans-

form of the induced dipole acceleration �13�. Our results

show that a significant extension in the harmonic generation

cutoff can be realized by the use of optimized chirped laser

pulses. Since the extended cutoff position is now located at

higher frequency, the time duration of the attosecond pulse

produced is also reduced.

The HHG and attosecond xuv pulse generation �14� can

be studied by solving the following TDSE �in atomic units�:

i
�

�t
��r,t� = Ĥ��r,t� = �Ĥ0 + V̂�r,t����r,t� . �1�

Here, Ĥ0 is the field-free Hamiltonian of atomic hydrogen,

and V̂�r , t� is the time-dependent atom-field interaction. For a

linearly polarized laser field �F � ẑ�, V̂�r , t� can be expressed

in the length form �15� as

V̂�r,t� = − F · rE�t� = − Fzf�t�cos��t + ��t�� , �2�

where f�t� is the laser field envelope, � the laser frequency,

and F the peak laser field amplitude. The time profile of the

carrier envelope phase �CEP�, ��t�, considered in this work,

has the following time-varying hyperbolic tangent form:

��t� = − � tanh� t − t0

�
� . �3�

The chirp form is controlled by adjusting the two parameters

� �rad� �for controlling the frequency sweeping range�, and �
�a.u.� �for controlling the steepness of the chirping function�.
t0 is set at the middle of the sweep. The instantaneous fre-

quency of the pulse is then of the form

��t� = � + d��t�/dt = � −
�

�

1

cosh2� t − t0

�
�

. �4�

When �=0, the CEP is 0, and the pulse is chirp-free. Due to

the recent advancement of comb laser technology �2,16�, it is

highly likely that such a time-varying CEP can be achieved

in the near future. Note that other forms of frequency-chirped

pulses have already been employed experimentally, for ex-

ample, in driving multiphoton transitions between Rydberg

states �10,17�.
Equation �1� is solved accurately and efficiently by means

of the time-dependent generalized pseudo spectral �TDGPS�
method �12�. The TDGPS technique has been shown to be

considerably more accurate and computationally more effi-
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cient than the conventional time-dependent propagation tech-

niques using equal-spacing grid discretization �18�. It has

been successfully applied to the study of field-induced

Rydberg-atom high-resolution spectroscopy �19�, and strong-

field HHG processes of atomic �12,13,20� and molecular

�21,22� systems. Recently, the TDGPS method has been fur-

ther extended to the fully ab initio investigation of the HHG

of helium atoms, involving the accurate solution of a six-

dimensional TDSE �23�. The numerical scheme of the

TDGPS method consists of two essential steps. �a� The spa-

tial coordinates are optimally discretized in a nonuniform

spatial grid by means of the generalized pseudospectral tech-

nique �24�. This discretization is characterized by denser

grids near the nuclear origin and sparser grids for larger dis-

tances. �b� A second-order split-operator technique in the en-

ergy representation, which allows the explicit elimination of

undesirable fast-oscillating high-energy components, is used

for the efficient time propagation of the wave function �12�,

��r,t + �t� � exp�− iĤ0�t/2�exp�− iV̂�r,�,t + �t/2��t�

� exp�− iĤ0�t/2���r,t� + O��t3� . �5�

The unitarity of the wave function is automatically preserved

by Eq. �5� and the norm of the field-free wave function is

preserved to at least ten digits of accuracy during the TDGPS

time propagation of the wave function. Having determined

the time-dependent wave function ��r , t�, we can then calcu-

late the time-dependent induced dipole acceleration as �12�

dA�t� = 	��r,t�
 −
z

r3
+ Ff�t�cos��t + ��t��
��r,t�� , �6�

from which the HHG power spectrum can be determined.

We performed the calculations with few-cycle chirped

pulses corresponding to laser parameters of 5 fs full width at

half maximum Gaussian laser pulse with peak intensity
I=5�1014 W/cm2 and wavelength 	=800 nm. First of all,
we present the effects of chirped frequency on the laser
pulse. The left column of Figs. 1�a�–1�c� shows the hyper-
bolic tangent form of the time-varying CEP ��t� achieved by

fixing �=200 a.u., while varying the � parameter. The corre-
sponding laser pulse is shown in the right column. Reshaping
the laser pulse by chirping the frequency of the laser field has
a direct consequence of breaking the oscillatory periodicity
of the laser field. On the other hand, the amplitude of the
Gaussian envelope laser pulse remains invariant to the
chirped frequency. Second, we investigate the HHG power

spectra under the influence of a chirped laser pulse with in-

creasing � values as shown in Figs. 2�a�–2�d�. One notable

feature common to the presented HHG power spectra is the

appearance of a quasicontinuum region near the cutoff re-

gime displaying almost structureless patterns. More impor-

tantly, the cutoff position for the �=6.25 case �Fig. 2�c�� is

markedly extended, compared with the �=0 �chirp-free� case

�Fig. 2�a��. Indeed, a cutoff extension of at least 150 har-

monic orders is observed between the cases of �=6.25 and

�=0. If the � parameter is further increased, as is seen in

Fig. 2�d� for �=10.25, the cutoff extension is not as far

reaching as in the case of Fig. 2�c�. Thus the optimal cutoff

extension can be achieved by adjusting �. Finally, when � is

varied while fixing �, the HHG cutoff position does not

change considerably. Consequently, the extension of the

HHG cutoff position is much more dependent on � than on

�. On the other hand, if �
0, then the cutoff position will be

shortened and will emerge at considerably lower frequency

than that of ��0.

We note that the strong-field approximation �SFA� is com-

monly used in the investigation of HHG processes, particu-

larly for the case of longer laser pulse excitation �25�. How-

ever, the SFA is based on several approximations, including

FIG. 1. �Color online� Effects

of the chirped frequency on the la-

ser field. �a�–�c� in the left column

indicate the time-dependent CEP

��t� modeled by a hyperbolic tan-

gent function. The corresponding

individual laser pulse is shown

�solid line� in the right column.

The dotted lines indicate the cor-

responding chirp-free ��=0� laser

pulses.
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�a� negligible ionization of the ground state, �b� dropping the
Coulomb potential and treating only the ground and the
�free-particle� continuum states, and �c� limitation to the
weak or medium strong monochromatic laser fields. Due to
the large extent of depletion of the ground state’s population
�not shown� caused by the ultrashort chirped laser pulse, and
the lack of field periodicity of the laser, the SFA can only
provide qualitative results in this case. Furthermore, the con-

tinuum states need to be treated more accurately.

To facilitate the exploration of the underlying mechanism

responsible for the cutoff extension driven by a few-cycle

chirped laser pulse, we perform a classical simulation of the

electron dynamics. According to the semiclassical model

�26�, the HHG process consists of the following three steps.

First, the electron tunnels through the barrier formed by the

atomic Coulomb potential and the laser field. It then oscil-

lates quasifreely driven by the Lorenz force and acquires

kinetic energy from the laser field. Lastly, after the laser

reverses its direction, the returning electron will emit har-

monic photons by radiative recombination with the parent

ion core. The photon energy of the highest harmonic of the

spectrum is then determined approximately by the maximum

kinetic energy gained by the electron as Ip+3.17Up, where

Up is the quiver energy of free electrons in an oscillating

field and Ip the ionization potential.

Chirping the laser pulse will modify the trajectory of the

electron wave packet. Figures 3�a� and 3�b� show the chirp-

free and chirped driving laser fields, respectively. The param-

eters used for the chirped laser pulse are �=6.25 rad and

�=200 a.u. The tunneling electron wave packet will be

launched when the laser field reaches a local maximum. In

the case of the chirp-free laser pulse, there are three major

local maximum points A, B, and C �Fig. 3�a��. The wave

packet tunneling events for the chirped case are located at

points A� and B�, as shown in Fig. 3�b�.
Figures 3�c� and 3�d� depict the electron recollision en-

ergy map. Each peak in the energy map denotes a recollision

event. For the chirped case �Fig. 3�d��, there are two major

emission events taking place. Event A� �not shown� is lo-

cated at about −0.2 optical cycles �OC� in the lower-

harmonic frequency side while the most prominent burst,

event B�, is situated approximately at 0.6 OC. Likewise, for

the chirp-free case, there are three major rescattering events

�labeled A, B, and C�. The dark regions �in gray scale� as

seen in Figs. 3�c� and 3�d� indicate a significantly larger

number of trajectories than those of white regions. Recolli-
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FIG. 2. �Color online� Effects

of the driving chirped laser pulse

on the HHG power spectra for H

atoms. �a�–�d� indicate the power

spectra generated by various

sweeping parameters � �in rad�
for �a� 0, �b� 1.5, �c� 6.25, and �c�
10.25, respectively.

FIG. 3. �Color online�. Chirp-free results are displayed in the

left column, and chirped results in the right column ��=6.25 rad,

�=200 a.u.�. �a�, �b� Driving laser pulse and envelope; �c�, �d� clas-

sical returning energy maps. Gray scale from maximum �black� to

1 /10 of maximum. �e�, �f� Wavelet time-frequency profile �log10

scale� of the HHG power spectra of hydrogen atoms driven by a

few-cycle laser pulse. The chirp-free and chirped laser parameters

are the same as those in Figs. 2�a� and 2�c�, respectively.
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sion of the electron with its parent ion is dominated by the

“short trajectory” and can trigger the emission of an ener-

getic attosecond pulse of �soft-x-ray� photons.

Figures 3�e� and 3�f� show the modulus of the quantum

time-frequency profile corresponding to chirp-free and

chirped laser pulses, respectively, obtained by the wavelet

transform of the induced dipole acceleration dA�t� �7,13�,

A�t0,�� =� dA�t��W„��t − t0�…dt � d��t� . �7�

For the chirped case, there is one major emission burst la-

beled B� in Fig. 3�f�. Similarly, for the chirp-free case, there

are three major emission bursts labeled A, B, and C shown in

Fig. 3�e�. Events B� and B are the most prominent bursts for

the chirped and chirp-free laser pulses, respectively. Each

burst emission time remarkably corresponds to the classical

recollision time shown, in the corresponding returning

energy-map figure �Figs. 3�c� and 3�d��. This indicates that

the HHG emissions are generated by a sequence of recolli-

sions of the electron wave packet with the ion core

�20,27,30�. Note that the maximum returning energy shown

in Fig. 3�d� �B� event� is considerably higher than that of the

chirp-free case, shown in Fig. 3�c�. As a result, the maximum

photon energy of the cutoff harmonics �B� event� of Fig. 3�f�
is extended for at least 150 harmonic orders, compared with

the chirp-free case �Fig. 3�e��.
A plausible explanation regarding the cutoff extension

mechanism has to do with the excess energy acquired by the

electron in the laser field. As the chirping becomes more

pronounced close to the center of the laser pulse, the instan-

taneous frequency becomes increasingly smaller until reach-

ing a minimum value. For the second half of the laser pulse,

the instantaneous frequency ��t� �Eq. �4�� increases again.

Since the pondermotive energy Up acquired by the electron

is inversely proportional to the instantaneous frequency

�Up�F /�2�t�� �Fig. 4�a��, the energy attained by the electron

will achieve the maximum value near the minimum ��t�. In

this manner, the electron has substantial more returning en-

ergy at the recollision event with the core, leading to the

observed extension of the cutoff.

We accentuate that the present paper is a purely single-

atom response study. In this manner, the treatment of the

propagation effects caused by the medium is beyond the

scope of the present investigation. We note that the com-

monly used cutoff law Ip+3.17Up, based on the single-atom

response, is not strongly affected by the propagation effects.

Furthermore, our few-cycle excitation study suggests that the

short trajectory is the dominant contributor to the HHG and

cutoff extension. It has been shown theoretically �28� and

experimentally �29� that three-dimensional propagation ef-

fects favor contributions from the short trajectories. In this

manner, each half cycle of the laser field results into a single

dominant contribution to the high harmonics.

Finally, we note that the pulse duration of the attosecond

burst produced by chirped pulses is substantially shorter than

that of the chirp-free pulses. To substantiate such a fact, the

dipole time profiles of the harmonics near the cutoff, ob-

tained from the wavelet time-frequency analysis, are pre-

sented. We see that each consecutive harmonic is synchro-

nized and the attosecond pulse width is reduced from

0.188±0.002 OC for the chirp-free case �Fig. 4�b�� to

0.0404±0.002 OC �108 as� for the chirped pulse laser �Fig.

4�c��. Detailed discussion of the control and generation of

attosecond pulses by few-cycle chirp-free laser fields was

presented in �14�. We note that, in a different but related

approach �31�, it has been recently proposed that by chirping

FIG. 4. �Color online� �a� In-

stantaneous frequency ��t� of the

chirped laser field. Laser param-

eters are the same as those in Fig.

2�c�. Dipole time profiles of con-

secutive harmonics near the cutoff

for the chirp-free �b� and chirped

�c� laser pulses.
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and optimizing the excitation laser pulse phase, single at-

tosecond pulses may also be synthesized. Our goal in this

paper is, however, quite different, and is focused on the op-

timization of the chirping parameter to achieve the HHG

cutoff extension, leading to the possibility of the generation

of attosecond pulses in the considerably higher-frequency re-

gime.

In conclusion, we have presented a fully ab initio quan-

tum investigation and classical trajectory simulation for the

exploration of the HHG cutoff extension phenomenon con-

trolled by a few-cycle chirped laser pulse. It is shown that

quantum and classical results provide complementary and

consistent information regarding the mechanisms for the

HHG cutoff extension. Furthermore, the time duration of the

emitted attosecond bursts produced by the chirped laser

pulse is significantly reduced from that of the chirp-free laser

pulses.
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