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—NOTES —

EXTENSION OF MICHELL'S THEOREM TO PROBLEMS OF
PLASTICITY AND CREEP*

By BERNARD BUDIANSKY (Harvard University)

A well known theorem of linear, isotropic elasticity due to J. H. Michell [1] gives
the conditions under which the generalized plane stress distribution in a multiply-
connected sheet subjected to prescribed boundary stresses is independent of Poisson's
ratio. Such independence exists if, and only if, the resultant force (not necessarily the
couple) on each boundary vanishes. It is shown in this paper that the same independence
of the elastic value of Poisson's ratio holds under the same conditions even when plastic
flow and creep occur1.

Let <raB(x, y; t), tafi(x, y\ t), and ua(x, y, t) be the time dependent stress, strain, and
single-valued displacement distributions2 that constitute a solution to the following
time-dependent boundary value problem for the region R bounded externally by the
curve C0 and internally by the curves C, (i = 1,2, • • • AT). In R:

<7«l>.a = 0, (1)

^ [(I ~F" v)&a/3 ~f" faP J (2)

tafl 2(Ma,P ~~l~ (3)
On C, :

<ra*nl0 = Tl,° (i = 0,1,2, ••• N). (4)
In this formulation E is Young's modulus, v is Poisson's ratio, n'^ is the unit outward
normal to the boundary C\ , and the T'^ are prescribed, time-dependent distributions
of boundary traction3. The functions /a/S (= f0ct) represent the plasticity and creep
contributions to the strain, and are permitted to depend on time and the detailed history
of stress. The stress-strain relation (2) therefore represents the most general (isothermal)
plasticity and creep law for elastically isotropic materials.

Next, consider a different, material obeying the same stress-strain law (2) with the
exception that Poisson's ratio is replaced by v* ^ v; the value of E, and the functional
dependence of fa0 on time and stress history are assumed to remain unchanged. To
determine whether or not <ral3 remains a solution of the same boundary value problem
for the new material, it is only necessary to see whether the strains

tin = J [(! + v*)<yaf ~ v*<Tyy8al>] + /afs (5)

are derivable by means of the strain-displacement equation (3) from some single-valued
displacement u*a .

♦Received August 12, 1957.
'In the case of elasticity, independence of Poisson's ratio is equivalent (by dimensional analysis)

to independence of all elastic constants; this is no longer true in the present case of plasticity and creep.
2The usual summation convention and subscript notation for tensors and vectors are used here,

with Greek subscripts taking on the values 1, 2.
'Whether Michell's conditions are fulfilled or not, the 7^*' must, of course, satisfy conditions of

equilibrium of the body as a whole.
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Now let

«a/l ^al3 • (®)

Then, from (2) and (5),

e<*0 fyySafi)- (7)

Next consider the integral

J = V^H tr-fdA, (8)
R

where raP is any distribution of stress satisfying equilibrium:

TcH.a = 0 (9)

and producing zero boundary tractions:

Ta(Sni,') = 0 on Ct (i = 0, 1,2, ••• N). (10)

Now, if t'ap is derivable from a single-valued displacement, it follows from the principle
of virtual work that the integral J given by (8) vanishes. But a converse theorem is
also valid; if J = 0 for all ra(S satisfying (9) and (10), then t'af is derivable from a single-
valued displacement [2, 3]\ Substituting (7) into (8) gives

J = If ^<TafiTaff ~ °"«=rw) dA. (11)
B

The stresses Tafi can be related to a stress function </> by

Taj3 = </>,yySa/) — </>,a0 (12)

and then (11) becomes

J = — JJ" <rae4>,ap dA. (13)
R

As a consequence of the boundary conditions (10) on raS , it follows that <t>, a is single
valued, and, furthermore, has a constant value, say KJ,*', on each boundary (see, for
example, [5], p. 191). It is therefore possible to transform (13) as follows:

J = — Jf t(Vae&.cd.H — (<rafi.fi)4>.a] dA,
R

- - E (f dS,
»-0 J

Ci

= - E dS, where = (f T? dS.
i- 0 J

Ci

4The proof in [2] is specifically limited to simply-connected regions; the proof in [3], and the support-
ing theorems contained in [4], are valid for multiply-connected regions.
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Hence, if P„) = 0 on each boundary, J vanishes for all admissible choices of Ta/>. Hence,
by the converse theorem mentioned above, t'af is derivable from a single valued dis-
placement. The same is then necessarily true of = ea0 + t'afi, and hence <raf, remains
a solution for the stress when Poisson's ratio is changed. On the other hand, if P"' does
not vanish on some boundaries, a suitable choice of ra(3 can always be made to render
J non-zero. But this would necessarily imply that the strains e'a/j (and hence e*0) are
not derivable from a single valued displacement, whence <ra0 would certainly not consti-
tute a solution for the new material.

The present theorem can be useful in simplifying the initial formulation of some
problems. For example, the choice v = $ in conjunction with a total stress-strain law of
plasticity permits the use of a single formula for the sum of the elastic and plastic com-
ponents of strain; in other problems, the choice v = 0 might be more appropriate. In
addition, the present theorem may conceivably have significance in connection with
photoplasticity.
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ON ISOPERIMETRIC INEQUALITIES IN PLASTICITY*
By WALTER SCHUMANN (Brown University)

Abstract. The purpose of this paper is the proof of the inequality P > 6wM0, where
P is the total limit load, M0 the yield moment of a thin, perfectly plastic, simply sup-
ported, uniformly loaded plate of arbitrary shape and connection.

Introduction. The theory of thin, rigid-perfectly plastic plates, given by Hopkins
and Prager [1]** has been applied to circular plates with various load and edge con-
ditions. However, if one tries to extend this theory to non-symmetrical cases, serious
difficulties arise in seeking examples of exact solutions, although some cases have been
solved (see for instance [2]). As a contribution to the estimation of the limit load in an
arbitrary plate we shall use here the isoperimetric inequality, which relates a circular
domain to an arbitrary domain in a convenient manner. One of the principal theorems
of limit analysis [3] and the methods for isoperimetric problems given in Polya's and
Szego's book [4] will be used. Similar problems have been proposed and solved for other
physical quantities, as for example the torsional rigidity, the principal frequency, etc.

*Received August 16, 1957. The results presented in this paper were obtained in the course of re-
search conducted under Contract Nonr 562(10) by the Office of Naval Research and Brown University.

**Numbers in square brackets refer to the bibliography at the end of the paper.


