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Summary

1. Nakagawa & Schielzeth extended the widely used goodness-of-fit statistic R2 to apply to generalized linear

mixed models (GLMMs). However, their R2
GLMM method is restricted to models with the simplest random

effects structure, known as random intercepts models. It is not applicable to another common random effects

structure, random slopesmodels.

2. I show thatR2
GLMM can be extended to random slopes models using a simple formula that is straightforward

to implement in statistical software. This extension substantially widens the potential application ofR2
GLMM.
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Introduction

The coefficient of determination, R2, is a widely used statistic

for assessing the goodness-of-fit, on a scale from 0 to 1, of a

linear regressionmodel (LM). It is defined as the proportion of

variance in the response variable that is explained by the

explanatory variables or, equivalently, the proportional reduc-

tion in unexplained variance. Unexplained variance can be

viewed as variance in model prediction error, soR2 can also be

defined in terms of reduction in prediction error variance. Inso-

far as it is justifiable to make the leap from ‘prediction’ to

‘understanding’, R2 can be intuitively interpreted as a measure

of how much better we understand a system once we have

measured andmodelled some of its components.

R2 has been extended to apply to generalized linear models

(GLMs) (Maddala 1983) and linear mixed effects models

(LMMs) (Snijders & Bosker 1994) [reviewed by (Nakagawa &

Schielzeth 2013)]. Nakagawa & Schielzeth (2013) proposed a

further generalization of R2 to generalized linear mixed effects

models (GLMMs), a useful advance given the ubiquity of

GLMMs for data analysis in ecology and evolution (Bolker

et al. 2009). A function to estimate this R2
GLMM statistic,

r.squaredGLMM, has been included in the MuMIn package

(Barto�n 2014) for the R statistical software (R Core Team

2014). However, Nakagawa and Schielzeth’sR2
GLMM formula

is applicable to only a subset of GLMMs known as random

intercepts models. Random intercepts models are used to

model clustered observations, for example, where multiple

observations are taken on each of a sample of individuals. Cor-

relations between clustered observations within individuals are

accounted for by allowing each subject to have a different

intercept representing the deviation of that subject from the

global intercept. Random intercepts are typically modelled as

being sampled from a normal distribution with mean zero and

a variance parameter that is estimated from the data. Although

random intercepts are probably the most popular random

effects models in ecology and evolution, other random effect

specifications are also common, in particular random slopes

models, where not only the intercept but also the slope of the

regression line is allowed to vary between individuals. Random

intercepts and slopes are typically modelled as normally dis-

tributed deviations from the global intercept and slope, respec-

tively. For example, random slopes models, under the name

of ‘random regression’ models, are used to investigate individ-

ual variation in response to different environments (Nussey,

Wilson & Brommer 2007). The aim of this article is to show

how Nakagawa and Schielzeth’s R2
GLMM can be further

extended to encompass random slopesmodels.

Nakagawa andSchielzeth’sR2
GLMM

Nakagawa & Schielzeth (2013) defined two R2 statistics for

GLMMs, marginal and conditional R2
GLMM, that allow sepa-

ration of the contributions of fixed and random effects to

explaining variation in the responses. Marginal R2
GLMM

gauges the variance explained by the fixed effects as a propor-

tion of the sum of all the variance components:

R2
GLMMðmÞ ¼

r2
f

r2
f þ

Pu
l¼1 r

2
l þ r2

e þ r2
d

; eqn 1

where r2
f is the variance attributable to the fixed effects, r2

l

is the variance of the lth of u random effects, r2
e is the vari-

ance due to additive dispersion and r2
d is the distribution-

specific variance. The residual variance, r2
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as r2
e þ r2

d for the purposes of this manuscript but see

Nakagawa & Schielzeth (2013) for an alternative definition

of dispersion. Conditional R2 additionally includes in the

numerator the variance explained by the random effects:

R2
GLMMðcÞ ¼

r2
f þ

Pu
l¼1 r

2
l

r2
f þ

Pu
l¼1 r

2
l þ r2

e þ r2
d

: eqn 2

It is the definition of the random effect variances, the r2
l ,

that requires generalization to allow R2
GLMM (m) and

R2
GLMM (c) to be extended beyond random intercepts models.

In Nakagawa and Schielzeth’s formula, r2
l is simply the

variance of the l th random intercept. This formula is correct

for random intercept models because each observation has

the same random effect variance. However, in other random

effects specifications, the random effect variance can differ

between observations, and, as pointed out by Nakagawa and

Schielzeth, this causes difficulties in computing a single

random effect variance component.

Extension ofR2
GLMM to randomslopesmodels

Consider the simplest and most familiar random slopes

GLMM, a LMM with a single random intercept and a single

random slope:

yij ¼ b0 þ b1xij þ a0j þ a1jxij þ eij; eqn 3

a0j
a1j

� �
�N

0
0

� �
;R

� �
; eqn 4

R ¼ r2
a0 ra0a1

ra0a1 r2
a1

� �
; eqn 5

eij �Nð0;r2
e Þ; eqn 6

where Yij and xij are, respectively, the response and predictor

values (covariates) for the ith observation on the jth individual.

Random deviation of the jth individual from the fixed global

intercept, b0, is represented by a0j, while random deviation

from the fixed global slope, b1, is represented by a1j. Because
intercepts and slopes are typically correlated, three parameters

are required tomodel the random effect, which are represented

by the covariancematrixΣ.The leading diagonal ofΣ consists

of the random intercept variance, r2
a0, and the random slope

variance, r2
a1, while the off-diagonal element is the covariance,

ra0a1, between the random intercept and random slope.

Finally, ɛij is the residual of the ith observation on the jth indi-

vidual and r2
e is the residual variance. For LMMs, r2

d ¼ 0, so

thatr2
e ¼ r2

e .

The difficulty of defining r2
l for this model arises from the

dependence of the random effect variance component on xij,

which implies that r2
l cannot be defined from Σ alone, but

requires input from the xij. An observation-specific random

effect variance,r2
lij, can be defined, given xij, as

r2
lij ¼ varða0j þ a1jxijÞ; eqn 7

showing the dependence of r2
lij on xij. For example, when

xij = 0 (i.e. at the intercept),

r2
lij ¼ varða0jÞ ¼ r2

a0; eqn 8

while when xij = 1,

r2
lij ¼ varða0j þ a1jÞ
¼ varða0jÞ þ varða1jÞ þ 2covða0j; a1jÞ
¼ r2

a0 þ r2
a0 þ 2ra0a1

eqn 9

(Snijders & Bosker 2012). In the most extreme case where the

xij values are unique, there will be as many random effect

variances as observations. The first step to estimating the

random effect variance component is to estimate each r2
lij.

The random effect portion of the model, a0j + a1jxij, can then
be viewed as a mixture of n normal distributions with a com-

mon mean of zero but up to n different variances, where n is

the number of observations. When the mean is constant, the

variance of a mixture is simply the mean of the individual

variances (Behboodian 1970). The mean random effect vari-

ance is therefore

r2
l ¼ ð

X
j

X
i
r2
lijÞ=n: eqn 10

A simple and general formula for r2
l given any value of xij

can be derived as follows. For any random effects specification,

let Z be the design matrix of the random effects of a GLMM

with n rows and k columns corresponding to the k random

effects, and Σ the covariance matrix of the random effects of

dimension k. For example, in the simple random slopes model

in equations 3-6, the first column ofZ is a vector of ones corre-

sponding to the random intercept, while the second is the pre-

dictor variable, the xij. The vector of observation-level random

effect variances is the leading diagonal of the n 9 n matrix

ZΣZ0, where Z0 is the transpose of Z (Laird & Ware 1982).

The mean random effect variance, r2
l , is the mean of this

vector, that is,

r2
l ¼ TrðZRZ0Þ=n; eqn 11

where the Tr denotes the trace operation, which sums the

leading diagonal. An index notation version of the matrix

notation equation 11 is contained within equation 20 of Snij-

ders & Bosker (1994). The advantage of the matrix version is

computational simplicity. Equation 11 gives the same results

as Nakagawa & Schielzeth’s method for random intercepts

models but can also be used for random slopes models as

well as models with no intercept. An estimate of r2
l for use

in Equations 1 and 2 can be easily computed from the esti-

mated covariance matrix of the lth random effect. Examples

of the application of this procedure to estimating R2
GLMM

from random slopes GLMMs using R are provided as Data

S1.

The Supplementary R code also illustrates a simplified

method of estimating the term b0 in equation A6 of Nakagawa

& Schielzeth (2013), which approximates r2
d for a Poisson

GLMM. Rather than refit the model after centring or drop-

ping the covariates as recommended, b0 can be more easily

estimated by taking themean ofXb̂, the linear predictor, where

X is the design matrix for the fixed effects and b̂ is the vector of

fixed effect estimates.
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These extensions to R2
GLMM have been incorporated into

the r.squaredGLMM function in version 1.10.0 of theMuMIn

package (Barto�n 2014).

Discussion

The extension described above allows both marginal and

conditional R2
GLMM to be estimated from a random slopes

model, obviating the need to approximateR2
GLMM from the

corresponding random intercepts model as recommended

by Nakagawa & Schielzeth (2013). It is clearly preferable to

estimate R2
GLMM from the correct model given that there is

no computational cost but is the improvement in either

marginal or conditional R2
GLMM likely to be substantial?

Nakagawa & Schielzeth (2013) suggest that marginal and

conditionR2
GLMM will usually be very similar when approx-

imated from a random intercepts fit, and Snijders & Bosker

(2012) make a similar claim for their related R2
1 and R2

2

statistics. Not surprisingly, the gain in accuracy in both

R2
GLMM statistics will depend on howwell the random inter-

cepts model approximates the random slopes model. The

accuracy of the marginal R2
GLMM approximation will

depend on the accuracy of the global slope (or slopes) esti-

mate from the random intercepts model, because the scale

of the global slope (or slopes) estimate determines r2
f

(Nakagawa & Schielzeth 2013), which in turn determines

marginal R2
GLMM. For balanced data, where the numbers

of observations and the covariate distributions are balanced

between groups, this approximation should be good, so the

estimates of the global slope and marginal R2
GLMM are

likely to be very similar under both models. However, unbal-

anced data are common in ecology, for example where sam-

pling strategies are constrained in space by variable access to

sampling sites or in time by fluctuating resources, and in

such cases the improvement in marginal R2
GLMM could be

considerable. For example, if one individual (or site, etc.)

yields an unusually large number of observations, the global

slope estimate will be biased towards that individual in a

random intercepts model but not in a random slopes model.

Examples of both scenarios are given in the Supplementary

R code (Data S1).

Improvement in conditional R2
GLMM is easier to predict

and explain. Regardless of the adequacy of the marginal

R2
GLMM approximation, if the random slopes model fits sub-

stantially better than the random intercepts model, it should

have lower residual variance (or less overdispersion, in the

context of overdispersed Poisson or binomial GLMMs) and

therefore higher conditionalR2
GLMM.

This extension will apply to other statistics that incorporate

a random effects variance component calculated from a ran-

dom slopes model, including the intraclass correlation coeffi-

cient (ICC), which gauges variance between groups (e.g.

individuals or sites) as a proportion of the total variance. ICC

can be used to measure intraindividual repeatability, also

known as consistency, and has been applied widely in ecology

and evolutionary biology (Nakagawa & Schielzeth 2010). Like

R2, ICC has also been generalized to random intercepts

GLMMs by Nakagawa & Schielzeth (2010), but not to ran-

dom slopesGLMMs. Equation 11 could also be applied to cal-

culating repeatability (Nakagawa & Schielzeth 2010) by fixing

a column of Z to a single value. For example, age dependence

in phenotypic consistency could be investigated by estimating

ICC conditioned on a range of ages.

In conclusion, the extension of R2
GLMM to random slopes

GLMMs substantially widens the range of models to which

this useful measure can be applied.
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