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Abstract—In this paper, we have derived analytic expressions
for the phase correlation of downsampled images. We have shown
that for downsampled images the signal power in the phase corre-
lation is not concentrated in a single peak, but rather in several co-
herent peaks mostly adjacent to each other. These coherent peaks
correspond to the polyphase transform of a filtered unit impulse
centered at the point of registration. The analytic results provide
a closed-form solution to subpixel translation estimation, and are
used for detailed error analysis. Excellent results have been ob-
tained for subpixel translation estimation of images of different na-
ture and across different spectral bands.

Index Terms—Image alignment, phase correlation, subpixel reg-
istration.

I. INTRODUCTION

A NALYSIS and fusion of data in an image sequence often
require registration of the images. A wide variety of

methods and techniques [4] can be found in the literature for
solving this fundamental and challenging problem. Although
in many applications pixel-level registration may be adequate,
some important problems in remote sensing [13], [22], [25],
[26] and biomedical imaging [5], [9] have introduced the
requirement for subpixel registration.

In this paper, we are interested in the refinement of coarsely
registered images to subpixel accuracy, where by coarse regis-
tration we imply pixel-level registration. We will assume that
the error in registration at this refinement level is a translation
within the bounds of the noise and the error of the imaging
system. Therefore we confine our attention only to the problem
of subpixel translation estimation. We are also interested in sub-
pixel registration across different spectral bands.

The most commonly used approach to subpixel registration
is based on interpolation. Examples include correlation inter-
polation [6], [28], intensity interpolation [28], phase correlation
interpolation [21], [28] and the geometric methods [2], [8]. It is
obvious that the accuracy of these methods depends highly on
the quality of the interpolation algorithms.

One popular approach for subpixel registration without in-
terpolation is based on the differential properties of image se-
quences [11]–[13], [17], [28], [30]. The main idea in this ap-
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proach is to relate the temporal derivatives of the sequence to the
spatial derivatives of the reference frame using the so called gra-
dient constraint equation under intensity conservation assump-
tion [10], [11], [17]. Due to the intensity conservation assump-
tion, these methods often require that the inter-frame displace-
ments to be relatively small compared to the intensity gradi-
ents of the reference frame. Also, to reduce the sensitivity of
the derivative operators to the noise process, in general, some
regularization is required and the gradient constraint is com-
bined within some local neighborhood of each pixel. However,
the main pitfall of this approach is probably the so called aper-
ture problem [10], where for some patterns such as a gradual
curve, the available information in a local neighborhood of a
pixel (small aperture) is not sufficient to disambiguate the true
registration parameters.

A second possible approach without interpolation is to for-
mulate subpixel registration as an optimization problem. Ex-
amples of this approach include [14], [27], [29]. In this ap-
proach the problem is formulated as a cost function to be min-
imized with respect to the registration parameters of the inter-
frame transformation model. As in the gradient based methods
these methods are highly dependent on image intensity con-
servation assumption and would fail when applied across mul-
tiple spectral bands or when considerable amount of luminance
variations are present between frames. This shortcoming can
probably be alleviated by an adequate normalization of var-
ious spectral bands. Also note that these methods as well as the
gradient-based methods implicitly include interpolation by ap-
plying local smoothing and regularizing operators.

There are also other techniques that are based on the local
normalized correlation [1], polynomial regression [32], the dis-
crete cosine transform [15], and the use of control points using
a model-based approach [7].

This work is particularly motivated by some important fea-
tures of the phase correlation method which make its use at-
tractive for multispectral registration, and hence analytic results
have been derived to demonstrate how the method can be ex-
tended to subpixel accuracy. A condensed version of part of this
work was presented in [23] and [24].

This paper is organized as follows. In the next section, we
describe the phase correlation method and outline its impor-
tant properties. In Section III, we present our extension of the
method to subpixel registration. Section IV provides thorough
analysis of various sources of error. Experimental results are
then given in Section V for different modalities of images in-
cluding satellite images across different spectral bands. Finally
in Section VI some concluding remarks are provided.

1057–7149/02$17.00 © 2002 IEEE
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(a) (b)

(c) (d)

Fig. 1. (a) and (b) Aerial images of Paris with displacements along both axes, (c) standard cross-correlation, and (d) phase correlation.

II. PHASE CORRELATION METHOD

The idea behind this method [16], [21] is quite simple and
is based on the Fourier shift property [20], which states that a
shift in the coordinate frames of two functions is transformed
in the Fourier domain as linear phase differences. This can be
described as follows:

Let and be two functions that are absolutely
integrable over . Let also

(1)

According to the Fourier shift property

(2)

Hence the normalized cross power spectrum is given by

(3)

where indicates the complex conjugate.
The normalized cross power spectrum may also be viewed as

the cross power spectrum of whitened signals. There are two
possible ways of solving (3) for ( ). One way is to di-
rectly work in the Fourier domain. For this purpose, consider a
three-dimensional (3-D) Euclidean space whose canonical ref-
erence frame is given by the two frequency axes and the phase
difference between the two images. In this space
defines a plane through the origin perpendicular to the vector
( ) whose slopes along the two frequency axes specify the
shifts along the two spatial axes [i.e., ( )]. This approach is

rather inaccurate since it requires fitting a plane to noisy phase
difference data.

The second possible approach which is more practical and
also more robust to noise is to first inverse Fourier transform the
normalized cross power spectrum. It is then a simple matter to
determine ( ), since from (3) the result is
which is a Dirac delta function centered at ( ).

In practice, when dealing with images, and are speci-
fied only in finite size discretized arrays. However, replacing the
Fourier transform by the discrete Fourier transform (DFT) and
the Dirac delta function by a unit impulse, and also assuming a
periodic extension of the images outside their compact support,
these results will still hold and work remarkably well [16].

A. Properties of the Method

The most remarkable property of the phase correlation
method compared to the classical cross correlation method is
the accuracy by which the peak of the correlation function can
be detected. Fig. 1 shows an example of two displaced aerial
images. The phase correlation method provides a distinct sharp
peak at the point of registration whereas the standard cross
correlation yields several broad peaks and a main peak whose
maximum is not always exactly centered at the right point.

A second important property is due to whitening of the signals
by normalization, which makes the phase correlation notably ro-
bust to those types of noise that are correlated to the image func-
tion, e.g., uniform variations of illumination, offsets in average
intensity, and fixed gain errors due to calibration. This property
also makes phase correlation suitable for registration across dif-
ferent spectral bands.
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Using the convolution theorem, it can be shown that the
method can also handle blurred images, provided that the
blurring kernel is relatively invariant from one frame to another.
One may for instance use this property to register images con-
taminated with wide-band additive noise, by taking the phase
correlation in the low-frequency portion of the spectrum [12].

In the discrete case, however, (3) is valid only if the shift
vector ( ) is of integer values. Therefore, when applied to
discrete images, the method would fail to detect noninteger sub-
pixel shifts. To our best knowledge the only practical approach
proposed in the literature for adapting the method to subpixel
estimation is the use of some interpolation methods [21], [28].

Also, as is known [16] the phase correlation always contains a
single coherent peak at the point of registration corresponding to
signal power, and some incoherent peaks which can be assumed
to be distributed normally over a mean value of zero. The am-
plitude of the coherent peak is a direct measure of the degree of
congruence between the two images. More precisely, the power
in the coherent peak corresponds to the percentage of overlap-
ping areas, while the power in incoherent peaks correspond to
the percentage of nonoverlapping areas.

III. SUBPIXEL REGISTRATION

Our motivation is to find a method for subpixel registration
with the advantages of the phasecorrelationmethod. For this pur-
pose, we will derive analytic expressions to extend the method to
subpixel (i.e., noninteger) shift estimation. Our model is based
on the assumption that images with subpixel shifts were in fact
originally displaced by integer values, which subsequently have
reduced to subpixel values due to down-sampling. Therefore, in
the following section, we will first examine the normalized cross
power spectrum of two downsampled images.

A. Analytic Derivations

Consider two discrete images given by
and , where is an in-
teger valued vector. Let also and

denote their DFTs. Then the cor-
responding DFTs after down-sampling the images by factors of

and along and axes respectively, will be given by (see
[1, pp. 201–211], [29, pp. 194–195])

(4)

and

(5)

Therefore, the cross-power spectrum of the downsampled im-
ages is given by (6), shown at the bottom of the page, where

(7)

It follows from these results that, the normalized cross power
spectrum of two downsampled images is, merely, a polyphase
decomposition [31] of a filtered unit impulse, i.e., the cross
power spectrum consists of the sum of all polyphase compo-
nents of a filtered unit impulse.

Despite its misleading appearance, in the absence of
aliasing, does not depend on , and is
in fact an ideal bandpass filter. We shall assume hereafter
that aliasing does not occur or is avoided by prefiltering
(see also [12]). Under this assumption, we now show that

are ideal bandpass filters
for any input . For this purpose, note that in the absence
of aliasing the spectral supports of

(8)

do not overlap.1 This is clear since

if

For instance let and be both in [0, 2 [ let also .
Then by simply substituting the bounds ofand (i.e., 0 and
2 ), we find that

when

and

1The spectral support of a function is the domain outside which the spectrum
of the function is identically zero.

(6)
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when

and

when

and

when

and

which implies that if after down-sampling no spectral fold-over
(overlap) occurs, then the supports of the following functions

will be disjoint (nonoverlapping). In fact, as seen from the
previous discussion, the supports of these functions are found
by partitioning the total two-dimensional (2-D) bandwidth

into equal rectangular supports along
the two frequency axes. This can be readily generalized to any

and .
Now, we sketch a simple proof of the fact that does

not depend on :
Let and both take their values in [0, 2[ and denote this

2-D support by . Let also denote the disjoint rectan-
gular supports of the functions in (8) (i.e., ,

outside , and ). Since
the spectral supports are disjoint, inside the support , all
the terms in the denominator of (7) are zero except for the term
corresponding to . On the other hand outside
the support the numerator is zero. Hence

in because in we have

outside because outside

we have

(9)

In order to visualize better, let us show a schematic view in
one dimension too, where a one-dimensional (1-D) signal
has been downsampled by a factor of two resulting in

. Assuming that ,
we have for , and for ,

Fig. 2. Schematic view of down-sampling by a factor of two for a 1-D signal.

Fig. 3. Schematic view of the filters^h in 1-D.

. Outside everything is re-
peated periodically. The spectrum of the downsampled signal
is thus the sum of two disjoint (nonoverlapping) spectra

and , where in , and
in . This is shown in Fig. 2.

As shown in Fig. 3, we can immediately see that by dividing
or by the sum of the two, we get ideal

bandpass filters, and this is independently of the form of. In
fact, depends only on the support of
and not its values within that support.

From the frequency response of the filters in (9), it immedi-
ately follows that the cross power spectrum of two downsam-
pled images may be viewed as a downsampled version of a fil-
tered unit impulse, where the filter has a rectangular frequency
response. In other words, phase correlation leads to a downsam-
pled 2-D Dirichlet kernel which as shown later is very closely
approximated by a 2-D sinc function.
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Fig. 4. Schematic diagram of the overlay of two images.

The main result of this section can, therefore, be summarized
as follows:

In general, in the discrete case the phase correlation
yields a unit impulse. However, in the case of downsam-
pled images the result is a downsampled version of a fil-
tered unit impulse.

Wewill show in the following that this result implies thatphase
correlation yields a downsampled 2-D Dirichlet kernel. There-
fore in the case of downsampled images, phase correlation does
not contain only a single coherent peak, but rather several co-
herent peaks with the most eminent ones largely next to each
other.

B. Estimating the Sum of Polyphase Components

Equation (6), ideally, provides the normalized cross power
spectrum of two downsampled images. However, since for dis-
crete finite-size images the relation holds under periodicity as-
sumption (see Section IV), in practice some additive noise will
be introduced due to the nonoverlapped regions (see Fig. 4).
This additive noise will be assumed to be distributed normally
over a mean value of zero, as in the case of integer displace-
ments [16]. In other words, we will assume to have

(10)

where is a zero-mean Gaussian noise andis the noisy
phase correlation.

Using (6), one can readily estimate the sum of the polyphase
components in the cross power spectrum. We shall shortly see
that this sum is all that is required for estimating the subpixel
translations.

The discrete inverse Fourier transform of (6) yields

(11)

where and are the image width and height before down-
sampling.

We will show in the next section that for image sizes used in
practice the Dirichlet function in (11) is very closely approxi-

mated by a sinc unction, and that substituting it by a sinc func-
tion is unconsequential. Therefore, we have

(12)

Substituting from (12) into (10), we get

(13)
In general, for subpixel shifts, the noise level is very low and
one can easily identify the main peak and the immediate adja-
cent peaks of the 2-D sinc function by simple inspection. How-
ever, in this section, we will suggest a method of estimating an
upper bound for the noise variance and a lower bound for the
signal variance, which in turn will allow us to separate the noise
process by setting a threshold value.

We shall first recall that, since the cross power spectrum has
been normalized, we will be only interested in the normalized
values of the variances taking values in the interval [0, 1].

Since the nonoverlapped regions are of subpixel width (see
Fig. 4) and also since the noise power is given by the percentage
of nonoverlapped area in each image, we can estimate the fol-
lowing upper bound for the noise variance in terms of image
dimensions after down-sampling, i.e.,and :

(14)

Similarly, a lower bound for the total signal power would be

(15)

These estimations are shown schematically in Fig. 4.
The minimum signal-to-noise ratio is thus given by

(16)

It is obvious that for subpixel shifts the SNR is very large.
Therefore, the choice of a noise threshold valueis not a great
concern. Nevertheless, in the next section we will provide a rig-
orous method of choosing it. Thus, the signal is simply detected
by using

if (17)

Once has been estimated, can be calculated
by a straightforward application of (12) to a set of points. Note
that results will be more reliable if (12) is applied to points where
the signal power is mostly concentrated. In fact, as stated ear-
lier, for two imageswithsubpixel displacements the signal power
is largely concentrated in the vicinity of the main peak of the
phase correlation (modulo periodicity). To be more precise, for
subpixel displacements the signal power in the phase correla-
tion is usually concentrated in a main peak at some coordinates

and two side-peaks at and where
(modulo ) and (modulo ). Using

these three points one can then solve for the subpixel shift values.
We will explain the method using an example.
Consider the situation where the signal power is mostly con-

centrated at a main peak with coordinates (0, 0) and two side
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peaks at (1, 0) and (0, 1). By applying (12) to the first two points,
we will find

(18)

(19)

Dividing both sides and rearranging, we get

(20)

or

(21)

And after simplifying, we obtain

(22)

where is the subpixel displacement along the
-axis.
Note that, no knowledge of the down-sampling rateis re-

quired. Note also that two solutions will be obtained. This am-
biguity is due to the isotropic form of . However, the
correct solution is easy to identify since it is in the interval [1,
1] and it has the same sign as . Similarly, we can find

by using and , which again must
be in the interval [ 1, 1] with the same sign as .

IV. ERRORANALYSIS

In this section, we consider the following five sources of
error:

• error due to approximating the Dirichlet kernel by a sinc
function;

• error due to nonoverlapped regions in the two images;
• error due to aliasing;
• border errors due to periodicity assumption;
• and error due to wide-band random noise.

The absolute pointwise error in the approximation in (12) is
given by . This error tends to zero as and

tend to infinity as

(23)

(24)

Fig. 5. An example of the variations of the absolute difference between a sinc
and a Dirichlet function forx = 1,M = 2, andW = 10.

Fig. 6. Error in the main peak of the phase correlation forx = 1 andM = 20

as a function of the downsampled image widthX .

(25)

In practice, for finite values of and , this error is highly
oscillatory and attains its maximum value of 1 at coordinates

,
where and are integers, and and are the image
dimensions after down-sampling. Since in practiceand
are much larger than and respectively, the maximum error
occurs way after the main peak and several side-lobes of the
Dirichlet kernel. Fig. 5 shows an example of the variation of
this error for a 1-D case.

The worst case would be if the maximum error occurs in the
region which would imply that
and . But this would mean that and

, i.e., the images to be registered would be ! Fig. 6
shows the variations of the error in the main peak of the phase
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correlation as a function of the image width in 1-D or and
. This example corresponds to the case when a subpixel

accuracy of 0.05 is required. Note that even for an unrealistically
small image width of two pixels, the error in the main peak of
phase correlation does not exceed0.0012. Note also that this
error drops rapidly to extremely small values asincreases.
For instance, from the graph in Fig. 6, for a subpixel accuracy
of 0.05 even a small image of five-pixels wide would cause an
insignificant error of less than 2 10 in the height of the main
peak of the phase correlation, which clearly is unconsequential
in the calculation of the subpixel shifts using (13).

For the errors due to nonoverlapping regions, our analyses
are similar to [16]. The only difference here, is that the signal
power is not concentrated in a single coherent peak, but rather
distributed in a set of coherent peaks mostly adjacent to each
other.

Since we have assumed a normal distribution of the
noise , the probability that the noise value exceedswill be
given by

(26)

The last equality is due to normalization of the cross power spec-
trum between zero and one.

On the other hand, in this interval, we can write the following
inequality:

(27)

This inequality follows from the fact that, in the inte-
grand on the left hand side is always larger than the integrand
on the right hand side. Therefore, substituting (26) into (27) and
computing the integral on the right hand side, we will obtain

(28)

And after rearranging and simplifying, we will have

(29)

Therefore, for small probability values , we can re-
move the noise by thresholding all values below. To choose
a value for , consider the nontrivial case of the inequality
(29) given by

(30)

or

(31)

which allows determining the upper bound of . It is ob-
vious that the right hand side of the previous inequality is always
in .

Aliasing is another possible source of error, which occurs
when the down-sampling factors (i.e., and ) exceed the
critical values (say and ), above which the Nyquist crite-
rion is not satisfied. In particular, aliasing results in overlaps
between adjacent replica. In this paper, we will assume that our
image acquisition devices can only cause first-order aliasing.
This implies that overlapping in the base-band occurs only with
the immediate adjacent replica. Note that first-order aliasing can
still cause severe errors.

Analysis of the aliasing error under some general frameworks
have already been investigated in the past literature [3], [19].
However in this paper we shall exploit the particular nature
of the problem in hand. Let us therefore assume that the im-
ages prior to down-sampling were band-limited to and

along each frequency axis, i.e.,

for and (32)

Let also and . Clearly then aliasing will occur,
and will distort some frequencies adjacent to along each
frequency axis. The extent of aliasing depends on the amount
by which and exceed and , respectively.

In our case, we are interested in the effect of aliasing on
phase correlation. For this purpose note that the normalized
cross power spectrum is merely the convolution of two whitened
images, which when under-sampled would have aliasing at high
frequencies. Both whitening and convolution involve point-wise
operations in the Fourier domain, and hence the process of com-
puting the normalized cross power spectrum does not modify the
extent of aliasing. This implies that we can perform our analysis
of the aliasing error directly on the cross power spectrum rather
than on individual images. The advantage is that the cross power
spectrum of two shifted images (as described in Section III-A)
has a particular structure, which can be exploited.

Let and , where and are some
positive constants larger than one. A natural approach to avoid
the aliasing error in the estimated registration parameters is to
low-pass filter the cross power spectrum, so that all subbands
in the aliased regions are filtered out. Therefore if all high-fre-
quency aliased subbands indexed in the range

and are filtered out, then we get

(33)
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Fig. 7. Absolute pointwise aliasing error forS = T = 2.

(34)

which upon inverse transforming gives

(35)

Two comments are in order. First note that the analyses de-
scribed in Section III still hold after low-pass filtering, since the
remaining set of subbands still form a polyphase transform of
a filtered unit impulse, except that the bandwidth of the filter is
now smaller. Secondly, using our technique, the shift parameters
can still be correctly estimated, since they are given by

and . Since the
filtered cross power spectrum in (35) provides an error-free esti-
mation of the shift parameters, the aliasing error is simply given
by the difference between (35) and an unfiltered version of the
cross power spectrum. The absolute pointwise error is therefore
given by

(36)

Fig. 8. Absolute pointwise aliasing error with 10% spectral overlap.

A close inspection of this error shows that for fixed values
of and , the error is independent of , , , , and

. In particular, this error is highly oscillatory, and for integer
values of all parameters attains its maximum value at .2

Unfortunately, this also implies that the aliasing error would
mainly affect the coherent peaks of the phase correlation.

Let us now consider the worst scenario for a first-order
aliasing. This occurs when . Substituting these
values in (36) and simplifying, we get

(37)

(38)

Fig. 7 shows the variations of for and
some arbitrary values of other parameters.

Note that the maximum error for a given pair is quite
substantial, and hence would introduce severe error in the esti-
mated registration parameters. In practice, fortunately, the situ-
ation is not as bad as it appears to be. Recall that in the previous
analysis we had assumed the worst case of . This

2Note that the parametersM ,N ,K,L,W ,H , x , andy take only integer
values, and hence the interested reader should take into account this constraint
for reproducing the results and the graphs in this section.
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(a) (b)

(c) (d)

Fig. 9. (a) and (b) Aerial images of Pentagon with subpixel displacements of(� ; � ) = (0:5; 0:5), (c) zoom in the phase correlation in the neighborhood of
the main peak, and (d) zoom in the neighborhood of the main peak of a perfect 2-D discrete Dirichlet function with the same values of� and� .

corresponds to the situation where the entire baseband is con-
taminated with first-order aliasing. Clearly, an acquisition de-
vice with such a low sampling density would be of little use, if
any. In practice, for most image acquisition systems, we have

and , which implies that only a small
portion of the spectrum at high frequencies is contaminated with
aliasing. Also, the error due to aliasing drops very rapidly as
and become smaller than 2. Fig. 8 shows, for instance, the
absolute pointwise error when 10% of the spectrum is aliased.
Note that even with a relatively high level of aliasing of 10% the
maximum error is of the order of 0.01. This error is clearly small
(compared to the amplitude of the coherent peaks in the phase
correlation), and hence its influence is effectively negligible in
our calculations.

A fourth source of error is introduced by assuming that the
signal is repeated periodically. We must emphasize that peri-
odicity is in fact an immediate consequence of using DFT for
computing the Fourier spectrum of finite-size discrete signals,
and is not an assumption made for the derivation of the results
in Section III. In fact, any discrete signal/image processing al-
gorithm which resorts to DFT (and hence to its fast implementa-
tions, i.e., FFT) is implicitly making this assumption even if this
fact is not mentioned explicitly. This is due to the well-known
result that any discrete signal has a-periodic Fourier spec-
trum. Therefore by applying the duality, if both the signal and

its spectrum are discrete (as in a DFT-pair), then they must be
both periodic. Note that compactly supported signals and peri-
odic signals are treated in the same manner in the context of DFT
(see [18, Ch. 8]). Of course, the Fourier transform of periodic
signals introduces some technical issues (related to its conver-
gence), which is outside the scope of this paper, and hence the
reader is referred to classical literature (e.g., [18]).

In this paper, we explicitly referred to this assumption, in order
to emphasize the fact that negative shifts are estimated by consid-
ering the periodicity of DFT-pairs. We must also emphasize that
the proposed method does not rely on compact local operators
(e.g., gradient operators), which in general introduce border
artifacts.Therefore, theonlyerror that iscausedbytheperiodicity
assumption is the introduction of border discontinuities, which
can affect the convergence of the Fourier transform. But, since
discontinuity is a pointwise concept, and also since we are only
concerned with discontinuities at the image borders, these errors
would at most affect the nonoverlapping regions at the borders,
andhenceaspointedoutearlierourerroranalysis fornonoverlap-
ping regions equally applies to border discontinuities. We shall
also remind the reader that the convergence of Fourier transform
can still be guaranteed for signals that include discontinuities,
provided that some local smoothness constraints are assumed
in the neighborhood of the discontinuity. We refer the interested
reader on this subject to excellent literature such as [20].
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(a) (b) (c)

Fig. 10. Some of the images used for experimentation: (a) and (b) aerial images of Pentagon and Paris and (c) a SPOT satellite image.

TABLE I
TABLE OF RESULTS

A final source of error could be wide-band random noise. In-
clusion of this error in our model would in fact introduce a new
level of complexity in our problem, which would require thor-
ough analysis. Since wide-band random noise affects mainly the
high frequencies, at this stage we have only considered low-pass
filtering as a remedy, which has also been put into effect in our
experimentations for avoiding aliasing.

V. EXPERIMENTAL RESULTS

In order to verify the algorithm experimentally, some simu-
lations were performed by shifting images according to the fol-
lowing model:

frame number (39)

where are shifted versions of a high-resolution image con-
volved by a blurring kernel which characterizes image degra-
dations. Each frame is then downsampled at a rate larger than
the maximum shifts so that the correspondence between dif-
ferent frames is reduced to subpixel level. Note that, no knowl-
edge of the blurring kernel is required for the registration. The

(a) (b)

Fig. 11. (a) and (b) Two SPOT satellite images with artificially introduced
luminance variations.

TABLE II
TABLE OF RESULTS FORSIMULATIONS WITH LUMINANCE VARIATIONS

only assumption on is that its response is invariant from one
frame to another.

The algorithm has been tested on several images of different
nature. Fig. 9 shows an example of two aerial images that
are coarsely realigned and hence still contain subpixel shifts.
Fig. 9(c) shows a zoom in the area where the main peaks occur
in the phase correlation of these two images. The actual subpixel
shifts in this simulation were and . A close
inspection of the phase correlation within the vicinity of the main
peak shows that due to the subpixel nature of the correspondence,
there is no single coherent peak (i.e., a single unit impulse as with
integer displacements). Instead, the signal power is distributed
in the form of polyphase components of a filtered unit impulse
(i.e., a 2-D Dirichlet function) centered at the point of corre-
spondence. Fig. 9(d) provides a comparison with a perfect 2-D
Dirichlet function with the same values of subpixel shifts.

In Fig. 10, some of the images to which the algorithm was
applied have been shown with results summarized in Table I.
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(a) (b) (c)

Fig. 12. SPOT satellite image: (a) XS1, (b) XS2, and (c) XS3.

TABLE III
SIMULATION RESULTSACROSSDIFFERENTSPECTRAL BANDS, TAKING XS1

AS REFERENCEFRAME

We then applied the method to some images by artificially
introducing luminance variations. Results for a test image are
shown in Fig. 11 and Table II. These simulations confirm the
fact that the method is robust to luminance variations, which
only contribute to the magnitude and not the phase response.

A set of experimentations were also performed on satellite
images across different spectral bands of SPOT channels (XS1,
XS2 and XS3), which were provided by the French space
agency (CNES). In these experimentations XS1 was taken as
the reference frame and XS2 and XS3 images were registered
with respect to XS1. The test images are shown in Fig. 12 and
the results are given in Table III.

Further experimentations were performed on a real sequence
shown in Fig. 13. Since for these real data the actual registra-
tion parameters were unknown, the performance was evaluated
by the percentage of power in the main peak (i.e., SNR) of phase
correlation after pixel-level and subpixel level alignments. The
sequence was obtained by a hand-held camera, and the frames
contained both lateral pixel-level translations and some rota-
tions. The image frames were first registered at pixel level accu-
racy using an optical flow method [10]. This yielded a coarsely
aligned sequence, which was then refined for subpixel trans-
lational motions using our technique. These experimentations
were performed in the context of super-resolution. Results for
registration are shown in Table IV.

Fig. 13. Frame from a real sequence obtained by a hand-held camera.

TABLE IV
RESULTS FOR THECAR SEQUENCE. REGISTRATION PERFORMEDRELATIVE TO

ONE OF THEFRAMES TAKEN AS A REFERENCE

VI. SOME CONCLUDING REMARKS

We have derived analytic expressions which demonstrate how
the phase correlation method can be used to estimate subpixel
shifts. The advantages of the method are as follows.

• High accuracy:Experimentations show that excellent re-
sults can be obtained using the proposed method.

• Accurate error analysis:Since closed-form expressions
are available, it is possible to perform accurate error anal-
ysis and performance evaluation.

• Multispectral registration: Due to prewhitening, the
method provides a very efficient means of registering im-
ages at subpixel accuracy across different spectral bands.

The main drawback of the method is its limitation to trans-
lations. Also caution must be exercised when applying the
proposed technique. The availability of closed-form solutions
might introduce a misleading impression that, compared to
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other existing methods, our method can provide the subpixel
shifts up to any number of significant figures. However, the
“significance” of any estimation beyond certain number of
figures is obviously limited by the signal to noise ratio in the
phase correlation. Note also that, our classification of existing
methods in Section I in terms of the use of interpolation tech-
niques refers to an explicit use of interpolation. For instance
one might argue that our technique is implicitly resorting to
Shannon’s sampling interpolation via the sinc function, and
hence involves, in a sense, an infinite order interpolation.

For the aliasing error, we experimented with both prefiltered
and unfiltered phase correlation. Our experience shows that for
currently used nonexperimental imaging systems the aliasing
error is so negligible that the prefiltering stage does not sub-
stantially affect the results.
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