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Extension of Pirogov—Sinai Theory of Phase Transitions to
Infinite Range Interactions I. Cluster Expansion

Yong Moon Park*

Department of Mathematics, Yonsei University, Scoul 120, Korea

Abstract. This paper is the first part of an extension of the Pirogov—Sinai
theory of phase transitions at low temperatures, applicable to lattice systems
with finite range interactions, to infinite range interactions. Transforming the
systems to a version of an interacting contour model, we develop a cluster
expansion. Making appropriate assumptions about the interactions, we prove
that for sufficiently low temperatures the expansion converges and the cluster
property holds.

In the sequel, we will use the cluster expansion method developed here to
investigate the structure of a phase diagram for a given system. We will also
give some applications of our results.

1. Introduction

The understanding of phase transitions remains one of the main objects in statistical
physics. Since Peierls { 14] invented an argument to show that the Ising model on
v-dimensional lattice, v = 2, with nearest neighbor ferromagnetic interactions has
spontaneous magnetization at low temperatures, the argument has been made
mathematically precise [2,8] and extended in many directions, and new methods
have been invented to prove coexistence of phases in various systems (see the
references in [16, 18 and 1]). Most methods require that the different phases are
related by a symmetry of Hamiltonians and that the systems satisfy the reflection
positivity [4-7,16]. An exception is the Pirogov—Sinai theory of phase transitions
{15,18] and its extensions [1,3,9,19].

However, the Pirogov-Sinai theory (PS theory) and its extensions in the present
forms are applicable only to classical (lattice) systems with finite range interactions.
The main purpose in this paper and its sequel [13] is to extend the PS theory to
classical lattice systems with infinite range interactions. The extension is meaningful
for the following reasons: There are obviously many interesting lattice models with
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infinite range interactions. On the other hand, one may hope that the PS theory
can be eventually extended to particle systems interacting via (infinite range)
two-body potentials in continuous R, v = 2.

The PS theory describing the behaviour of phase diagrams of lattice models
was based on the notion of a contour model and a contour model with a parameter
[15,18]. In [19], Zahradnik gave an alternative version of the PS theory without
the use of the contour model with a parameter. Instead, he introduced a truncated
contour model, not appearing in the usual PS theory. It turns out that Zahradnik’s
approach can be modified and improved to be applicable to our situation.

An intuitive reason why an extension of the PS theory to infinite range
interactions should be possible may be given as follows: Consider the Hamiltonian
given by interactions @,, A < Z*. Then, for any fixed positive real number s> 1,
the Hamiltonian H , on the finite region A < Z” can be written as

HA= Z (DA + Z (DA = /A,s + /;\,s'
AcA: Ac A
diam(4)<s diam(A4)>s

Suppose that we can choose s = 1 in such a way that H', ; contains all the essential
properties in the PS theory and that H’, , is sufficiently smaller than H’, ; in some
sense. Then it is reasonable to expect that the PS theory for H , can be developed
by means of an expansion method to control H', ;. The smallness of H', , may be
insured by imposing some decay properties on the interaction @,. But we must be
careful about the above reasoning, because the theory will be formulated in contour
language. See the expression (1.1) and the discussion below.

Let us first discuss the general strategy of our extension. If interactions are
finite range, there are no interactions between disjoint contours if one defines
contours appropriately. This is the case in the usual PS theory [15, 18, 19]. However,
iftheinteractions are infinite range, it is apparent that interactions between contours
should be allowed. Introducing the notion of external contour systems [18] and
stable ground states [ 19] we will transform the model to a version of an interacting
contour model. The extension will be carried out in two stages: (a) Construction
of pure phases for stable ground states and (b) Investigation of the full phase
diagrams. In this paper we construct the pure phases for stable ground states by
developing a cluster expansion method which turns out to be similar to a small
activity expansion in statistical mechanics. For any stable ground state and for
sufficiently low temperature, we show that the cluster expansion converges and
that the cluster property holds. This implies that in the region of convergence the
phase corresponding to stable ground states coexist and that they are pure states.
In the sequel [13], we will use the cluster expansion method developed in this
paper, and a modified and improved version of the truncated contour model method
used by Zahradnik in [19] to investigate the structures of the phase diagrams. We
will also give some applications of our result in Sect. 5 of part 1I [13].

In order to avoid unnecessary notational complications, we limit ourself to the
systems with infinite range two-body interactions (plus arbitrary finite range
interactions), which are translation invariant. Our results can be easily extended
to a more general class of interactions without much difficulties. We believe that
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the results can also be extended to continuous lattice spin systems [3] and to
Widom-Rowlinson models [1].

We now describe briefly the basic ideas, techniques and results on the derivation
and on the proof of convergence of the cluster expansion, and outline the contents
of this paper. We introduce the notion of contours, boundaries of configurations
and external contour systems following [18 and 19] in Sect. 2.1. For any
configuration w for which its external boundary is given by an external g-contour
system 0= {I",,I,,...,I',}, we transform the Hamiltonian to a version of an
interacting contour Hamiltonian:

H@O;w)= )Y @ (o) + Y 0,1, Tw), (1.1)

red rr'e

where @, and @, are one and two body contour interactions respectively. For the
details, see Sect. 2.2. In Sect. 2.3 we list assumptions on interactions (Peierls
condition and regularity condition), and give definitions of stable ground states,
partition function and contour correlation functions. In this way we transform
the model to a version of an interacting contour model. The main result on the
convergence and the cluster property of contour correlation functions is given in
Theorem 2.3.4.

We derive the cluster expansion for contour correlation functions in
Sects. 3.1-3.3. If the one-body contour interaction @, in (1.1) satisfies the property
in the PS theory (stability condition) and if the two-body contour interaction @,
is sufficiently smaller than @, (regularity condition), an expansion method can be
developed. We establish decoupling and recoupling identities, which will generate
decoupling and recoupling processes respectively. We use the identities to derive
the cluster expansion of the following type: Let A < Z¥ be a bounded region and
let p ,(0) be correlation functions of external contour systems. Then

palD= 3 K(@0:,....0,)9400(00)), (1.2)

{8105}

where g is a contour functional satisfying an integral equation of Kirkwood—
Salsburg type:

ga=1+K g4 (1.3)

on a Banach space #, where K ,is an operator on % . Using the decoupling identity
(3.1.8), and following a usual decoupling process similar to that in [11,12], it is
easy to obtain the expansion (1.2). However, contrary to standard cluster expansions
[11,12,16], the decoupling process is not enough for deriving the integral equation
(1.3). Thus, in order to derive Eq. (1.3} and to control the operator K ,, we use a
new technique, namely the recoupling process.

In Sect. 4.1 we state the results on the convergence of the cluster expansion as
A tends to 7° (Theorem 4.1.1) and on the cluster property (Theorem 4.1.2) which
imply our main results. In Sect. 4.2, we establish some useful uniform bounds.
Using the uniform bounds and a modification of the method used in [18], we
prove convergence of the cluster expansion. In Sect. 4.4, we give a sketch of a proof
of the cluster property. The appendix contains a proof of a technical lemma
(Proposition 4.2.2.).



190 Y. M. Park

Let us make one additional comment on some difficulties in this paper. Our
extension is based on the use of the integral equation (1.3) [ 16, 12, 18]. The operator
K, in (1.3) is of the form:

K,=7.Kz, K=K, +K,+K,+K,. (1.4)

The operators K, and K, defined in (3.3.18) and (3.3.19), respectively, have very
complicated structures, which originate from the use of the recoupling process to
derive (1.3). In the PS theory, these operators are absent. This paper becomes
lengthy, because we have put a lot of effort into estimating the norms of K, and K.

In principle, it may be possible to derive a polymer type expansion [17,11] by
using decoupling and recoupling procedures used in this paper. Then our main
results would follow from a method of combinatoric estimates [ 10, 11, 17]. Because
of coding problems arising from the complicated expression of K, we did not pursue
this idea.

II. Notations, Definitions and Main Results
2.1. Basic Notations, Contours and External Contour Systems

We will follow the notations used in Sinai [18] and Zahradnik [19] very closely.
Let Z¥ be a v-dimensional lattice space (v = 2), and let £2 be a finite set of spin
values. Forany A < 7, denote by £24 the set of all configurations on A. Throughout
this paper we use the norm

x| = max|x;|, xeZ". (2.1.1)
115y
Given A < Z¥, we denote by bd(A) the boundary of A:
bd(A) = {xeA: dist(x, A°) =1}, (2.1.2)

where A° denotes the complement of A. A set 4 < Z” is called connected if for any
two points x,x'e 4 there exists a sequence x = x;,X,,..., X, =x" of points x,e4
such that fx;—x;_(|l=1 for i=2,...,n. For each finite AcZ" and each
configuration wef”, denote by w , the restriction of w on A.

Fix some family Q < 2 and a real number s = 1. The family @ and the real
number s =1 will be chosen appropriately once a model is given. Given geQ,
denote by w, the constant configuration w(x) =g for all xeZ”. We will call o,
geQ, the ground states. For a ground state w, we say that a point xeZ" is a
g-correct point of a configuration w if for each yeZ"such that || x — y|| £ 5, w(y) = g.
We say that xeZ" is a boundary point of a configuration ¢ if it is incorrect for
each ground ¢'€Q. A boundary of a configuration o is defined as a union of all
boundary points, denoted by dw. A restriction  to any finite connected component
of dw will be called a contour of a configuration w, and this component will be
called the support of this contour. Thus a contour I is given by I = (M, @),
where M is the support of I'; M =suppl. A contour is said to be finite if
card(supp I') < c0.

Let I" be a contour, 4 component of (supp ") will be called a g-component
if the neighboring spins of I have the value g. If the exterior component of (supp I7)°
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is a g-component, then I will be called g-contour and denoted by I'“ For any
ground state w,,q'€Q, denote by Int, I the union of all interior ¢'-components
of (supp I"). We write

IntI"={)Int, I, V(I')=suppl ulntT, (2.1.3)

q'eQ
ext!{ =(V(I)y. |I'|=|suppl|,

where for any set 4 < 7%, | A] is the cardinality of A.
A finite connected subset B < Z¥ will be called simple if B¢ has no interior
components, i.e., B¢ is connected. For a given finite A = 7¥ and a ge(, let

G A) =TV A, dist(V(IT9), A) 2 2}. (2.1.4)

We emphasize that in the definition of %,(A) we used the condition V(') < A.
Note, however, that if A is simple, then %, (A) is the family of all g-contours in
Int(A). Let €,(Z") be the set of all finite g-contours. The family of all external
g-contour systems is defined by

E N ={0={T,TY....,I'T:TIeE,(A), distVI ), VIH=2 if i+j}.
(2.1.5)

The empty set ¢ also belongs to &,(A). We note that for a given deé(A) any
contour I &0 is external in the sence that I" < (V(I ")) for any I"'ed if " £1T.
Let &,(Z") be the family of all g-contour systems consisting of finite g-contours.

For a given g-contour I'e%,(A), denote by £2(I") the set of all configurations
Wy on V(I7), which satisfying the condition that being extended by g to whole
Z*, they have I" as one of its external g-contours.

Before closing this section we give a comment on the family of external g-contour
systems &,(A). For any bounded A < Z* and s = 1, denote

A, = {xeA:dist(x, A9) > 5. (2.1.6)

Let A = Z” be simple. Then, for any configuration w with the property that w(y) = ¢
for any ye(A,), there exists a unique maximal subset ext(dw) of dw, called the
external g-boundary of w, such that o, €&,(A). Conversely, for any finite A
and any ded (A), there exists at least one configuration w such that the restriction
of w to its external g-boundary coincides with .

2.2. Hamiltonians and Contour Hamiltonians

In order to avoid unnecessary notational complications we mainly consider systems
with infinite range two-body interactions plus arbitrary finite range interactions.
Let some family {@,} of finite range interactions (functions on £24) be given,
invariant with respect to shifts in Z* and with a finite interaction radius s(@,=0
if diam(A) > s). For any x, yeZ", let J,_,:42 x 2— R be a symmetric function. For
a finite A = Z¥ and a configuration w, the Hamiltonian is given by

H (04w 4) = Z Dy(wy)+ Z J o ylo(x), o(y)). (2.2.1)
Ad?/ﬁz;b: xyinA#£¢
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We will impose a decay property on the two-body interaction J,_, later.

Let A be a simple, finite and connected region and let @ be a configuration
such that its external boundary ,,,, be given by an external g-contour system
{(I'\,I,,...,T,}€&,(A). Forany B < Z7”, let wg , denote the constant configuration
on B with its value geQ. Then

HA(wA|wAC,q) = H(w/\lw/\“,q) - H(wA,qla)A“,q) + H(wA,qlwA”,q)a (222)

and

n

HA(wA’wAC,q) - HA(CUA,q|wAc,q) = z Z [Py(e0,)— (DA(CUA,q)]
)

=1 4w,

3

(erl Vg9,
{x,y}m(( U V(FJ)>/V(I",J>:¢
=1 !

.[JXAy(w(X): C()(y)) - Jx—y(q= Q)]
1 n
+5 Z Z [Jx—y(a)(x)aw(y))_ﬁ‘]x~y(qa Q)]

2475 1 el

yeV([I3)
(2.2.3)
Let w(x; V(I;)) be the configuration defined by
wlx) if xeV(I))
V() = 2.4
(s V(I) {q xev(l) (224)

Then from (2.2.3) it follows that

H A0 7|02 pe,g) = H A0 4,410 4 4) = ‘Zl O (I 0)+ _%Z ) O, (1, I'm), (2.2.5)
i= iFj=
where for a given configuration o with w ;. = {11, 2,...,1,}€6,(A), @, and
@, are defined by

O, (0= Z [@A(CUA)_(DA(CUA,q)]

AcV(Iy)
+ Y ey V), o VD))~ Je-y(g,9)] (2.2.6)
N V(T)#¢

and

1
@2(riarj;w)z A I;I“» [Jx*y(w(x)acnﬁ‘]x—y(qaq)]
sy

1
~ Z [Jx—y(w(x), (,O(y)) - Jx—y(qa q)]s (227)
2l

+

respectively. We note that @, (I";w) depends only on the values of w on V(I).
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From (2.2.2)-(2.2.5) it follows that

HA(a)A[U)AC,q) = '21 O (I;m)+ .#Z . D, (1, Fj; w) + HA(wA,q|wAf,q)' (2.2.8)
i= iFj=

Obviously the last term in the above does not depend on w ,. Therefore, discarding
this term from H 4{w 4l 4 ,) does not effect the conditional Gibbs densities. Thus
for any configuration o for which its external g-boundary is given by an external
g-contour system 0= {I"},I,,...,I',}e&,(A) we definc the contour Hamiltonian
by

H@Oo)=) &, (I0)+ Y O, w), (2.2.9)

reé rr'ee

where @, and @, have been defined in (2.2.6) and (2.2.7) respectively.
2.3. Assumptions, Definitions and Main Results

Recall the definitions of the set of g-contours €,(A) and the family of external
g-contour systems &,(A} in (2.1.4) and (2.1.5) respectively. For any finite A < Z”
and any geQ we define the partition function by
Z,M=3 11 X e (2.3.1)
8 (A) Tel oy sl
The term corresponding to the empty set ¢ = ¢ in the above equals to 1. Notice
that for a simple A the above definition coincides with the usual one corresponding
to g-boundary conditions on (A,)’. For any I"e% (Z"), define the crystal partition
function by

Z,IM)= 3 e M (2.3.2)
we (1)
For A= Int, I, it follows from (2.3.1) that
ZntMy="Y J] Y e e (2.3.3)

e (Int Ty I'ed oy (el
For a given external g-contour system ded (A) we define the external g-contour
correlation functions by

1 ,
pA,q(a) = ﬂ7 Z H n Z Z e~ HiEwe :a))’ (234)
q( ) des Ay Ted I'ed wy el oy e
cud Eﬁql/\)

where the sum is taken over all g-contour systems ¢, compatible with ¢ in the
sense that dud'ed,(A).
We now list assumptions on the interactions and then list our main results.

Assumption 2.3.1. [Peierls condition] For any g-contour I" = (M, w,,) let
AN M|

D)= Z 'TA)\’/ [Dy(,) — @A(U)A,q)]
AnM#¢
- , M
by O o) el
{xy)nM#¢:

A=y Ss
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Then there exists a sufficiently large 7> 0 such that
)z T

holds for any g-contour [

Since we have absorbed f =1/T into the Hamiltonian H(0, w), the parameter
7 is propositional to . Next, we give an assumption on the decay property of the
two-body potential.

Assumption 2.3.2. [Regularity condition] The two-body potential satisfies the
bound

sup|J, - (@(x), oY < eI x — v i), (2.3.5)

where 6 is a metric on Z” such that
sup Y e N <M < o0 (2.3.6)

x yel‘

for some constant M >0, and J:R— R, is a non-negative function satisfying
@ 1
22 ZJ(ZS+V+H))H)§@T, (2.3.7)
r:()yei‘
for the positive real number s introduced in the definition of contours.
Remark. (a) If the two-body potential decays as
sup(J,_ (@(x), 0N < bfx —y [ ~*7,

for some A>2v+1 and e&>v, then one may choose the metric 6(x,y) as
d(x,y) =elog(l + || x — y||). In applications, 7 is usually of the form t = cf/s” for
some constant ¢ independent of ff and s. Note that we have absorbed f into the
Hamiltonian. In this case, (2.3.7) holds for sufficiently large s or small b. See
Appendix A of the sequel [13].

(b) Instead of the condition on the metric é in (2.3.6), the following condition

ox,y)—o0 as |x—yll-w (2.3.8)

is sufficient to get our main results (Theorem 2.3.4, Theorem 4.1.1 and Theorem
4.12). We impose the condition (2.3.6) stronger than (2.3.8) to investigate the
structure of the phase diagrams.

Next, we define a contour functional ¥(I") by

e "=Z(I)Z,(Int ). (2.3.9)
As in [19], we introduce the notion of the stable ground states
Definition 233 A g-contour I is called stable if
() z 5Tl

A ground state geQ is called stable if every I"eé,(Z") is stable.
In the sequel [13] we will analyze the stability condition in detail. At present,
we remark that if all ground states are related by a symmetry, then the Peierls
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condition and the regularity condition imply the stability. See for an instance
Proposition 4.2 in Part II [13].

Theorem 2.34. Let geQ be stable and assume that the regularity condition in
Assumption 2.3.2 holds. Then for sufficiently larger 1, the following results hold.

(a) The infinite volume limit
pq(a) = hm p/\,q(a)a
A=Y
exists for any 0eé& (Z*) as A tends to 7.

(b) The infinite volume limit contour correlation functions p,(0) satisfy the cluster
property: For any 6,0'e€& (£°) with U ' ed (Z7),

P00~ p,(0)p, (@)~ 0

as dist(d, ") tends to infinity.

In principle, it would be possible to estimate the decay rate of the clustering in
terms of the metric é by checking carefully each step in the proof of the above
theorem in Sect. 4.4. Using the above result (and Proposition 2.1 i n Part IT) with
the argument used in [ 18], one may construct a pure phase on 2 for each stable
ge@. See the discussion given below Proposition 2.1 of Part IT [13].

ITL. The Cluster Expansion
3.1. Abbreviated Notations and Identities

Before developing the cluster expansion, we introduce more abbreviated notations.
We then state decoupling and recoupling identities which we will use to develop
the cluster expansion.

From now on we fix a (stable) ground state geQ and suppress g from notations.
We also write ¥(Z7*) and £(Z”) as € and & respectively. For any I'e% and Jeé,
we write

Viy=\Jvr), jdo= 3% jdw—]—”da) (3.1.1)
red r “’V(r)E-Q(r) Tee

and for any 0,0'eé(A) with 0w d'ef(A) we also write

0,0, 0)= Y, 0,0, o), @(0,00)= Y, Y &1 T50) (.12)

r'ee redI'ed
Then it follows from (2.2.9) that
H(Cud';0)=H(0;w)+ H(;w)+ @,(6,0; w). (3.1.3)

Using the notations in (3.1.1), and the definitions of partition function and contour
correlation functions in (2.3.1) and (2.3.4) respectively, we may express that

= Y fdwe " (3.1.4)
ced(A) ¢
and
1 N
pA(a)—— Y fdwfdwe Hiewt.m) (3.1.5)

(A) Fed(ANV(E)) ¢ o
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From (3.1.3) it follows that
e H(éudw) —e H([‘;u))er(C\’;w)e—GJZ(@,E":U))’ (316)
for any 0,0'e& with du d'eé.
Next, for any I'e% and ded, denote
GO rw)y=e 2009 10 g0, Iiw)=e ®O009 1, (3.1.7)
Then it follows that the decoupling identities

o PiET ) H[(eiw”r”—)+1]—]+ Y Hg I (3.1.8)

r'ed $#8, =8 Ied,

ga@ o) =[[Le @ —141]-1= Y (ﬂ g(E]"’;a))) (3.1.9)

ree p#ycd \Tedy

and

hold for any @,¢'e& with ¢dud'e&. On the other hand, it also follows that the
recoupling identity

1 _ 67@2(5,5':(0) — ] . 1—[ e (152(0,1"/:(;)) — n [(l _ 6"02(5,]‘/;w)) + e—lpz(f’,r’;w)]
r'ed r'ed
_ n e D,(8,1 1) — Z < n (_ l)g(a, I (D))(’ @28 - )
* 3
r'ed Q:é(?'lcﬁ/ F'Eﬁ/l

(3.1.10)
holds for any 0,0'e& with 6 eé.
In order to simplify notation and expressions further, we will use the following
conventions:
(a) Whenever we use an expression like F(0,...,0,;w) for given external

contour systems {¢,,...,0,}, it means that F depends only on configurations w in
(v d;), where

Quay= ) AN, (3.1.11)
Teud,
{b) We will use the abused expressions such as

F(o;0)=Y [dwF(0,;w). (3.1.12)

The above really means that F(J; ) is given by

F(&; ) Zjdw F(@,0;0u). (3.1.13)

Thus, F(6;w) in (3.1.12) is still dependent on we2(0).

Throughout this paper and the sequel [137] we will use the above conventions
without mentioning them explicitly.
3.2. The Cluster Expansion

Let B< Z® be a finite subset. For any external g-contour system ¢, d’e&(B) and
for any configuration w for which du ¢’ is the external g-boundary of w we define

fa@w)= Y [daoe o), (3.2.1)

des(B ) &
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Using (3.1.6), the decoupling identity (3.1.8), writing ¢’ = ¢, v ¢” and summing over
d", we obtain
Lty =e 0 5 dw( [1g6@.T w))./g ol00) (322)
216EB\V(@) ¢, Iedy

where the term in the sum corresponding to @, = ¢ is allowed. Notice that

ZB\V(O) = fo v @) (3.23)

by (3.1.4) and (3.2.1).

For a simplification of notation, denote
K@, wy=e ™ K(0,0;m)=e " T] g(6, ;). (3.2.4)
red

From (3.2.2) we have

fo@:0) =R@ZEVE+ Y [doRO2:0)f o) (25)
¢ #E1e(B\V(E) &y

Tterating (3.2.5) we obtain
[(0;0) = K(&0) Z(B\V(2))

+i< 2 dewKocI, )...Iz(ﬁn—1>5rﬁw)m6";w)>

{8102, L= ¢

(oo o)) 520

where in the sum X' the summation is over all {¢,,0,,...,¢,} satisfying
VO, eE(B\V(0)),0;# ¢ and V(B)n V(@)= if i # j.
We write

K(G0)= K@)/ ]] Z0ntI), K(6,0;0)=K(@,0;0)/[]Z0nt ),
lee reé

K(al>82;(u)' ( n 1761170)) ( n?w)

~

K(61952’--~50;1;0))

Il

K(619827--°36n): n _‘.dwK(a 8n>U)) (327)

i=1
and

ZAVEN]] Z( IntF)
J)=— A 3.2.8
9.0 20 (328
Then from (3.2.6) it follows that

J al@; w) = K(0: )g 4(0) Z(A)

. < X [1]dwK@. 01,...5,,;60)>

R AN PR L NS

w(fw(_o 5i>>Z(A)- (32.9)



198 Y. M. Park

Since
pA(0) = j:dwa(@; w)/Z(A),

we obtain from (3.2.9) that

pAD)=K@)g )+ Y Y K(@,ﬁl,...,an)gA<6u< U cl-)), (3.2.10
=18 g ly) i=1
where in the sum 2’ the summation is over all {@,,4,,...,d,) satisfying
V0,e8(ANV (D)), 0;# ¢ and V(3,)n V(0,) = ¢ if i # j. The above expression is called
the cluster expansion.
Let us express the decoupling process (3.2.9) and the cluster expansion (3.2.10)
into more compact forms. For any 6,0'e&(Z") with ¢ ud'e&(Z°) with du &' e&(2Y)
we define

K(3;w) if =¢
dowK(0,04,...,0,,w) if 0 # .
A, (G o)) = a,zﬁ,,} Hlf ) ¢ (3.2.11)
v, =0d,0,% ¢,

Vign V(aj) =¢

Then the expression (3.2.9) can be written as

fa@w)y= Y A@,(0;0))g A@ UV Z(A). (3.2.12)
ed(A V()
If we define
A0, 0) = jde 7, (0; w)), (3.2.13)

then the cluster expansion also can be written into the compact form

pa@)= Y  [dwA(0,(0;w)g,0ud)

Fes AV e
= Y  A@,0gA0ud). (3.2.14)
& ed(AVV(D)
The expressions in (3.2.12) and (3.2.14) will be called the decoupling process and
the cluster expansion respectively.

3.3. An Integral Equation of a Kirkwood—Salshurg Type

We now derive an integral equation of a Kirkwood-Saisburg type of the following
form for the external boundary functional g ,(¢) defined in (3.2.8):

ga=1+K g4 (3.3.1)

on a Banach space %, where K, is an operator on #. As mentioned in the
introduction, we will use a recoupling process generated by the recoupling identity
(3.1.10). It may be possible to derive an integral equation of type (3.3.1) by using
only the decoupling process (3.2.9) (or (3.2.12)). Then one would have some
difficulties in the estimation of the norm of K ,. We believe that, in order to derive
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the integral equation (3.3.1) and to control the operator K ,in (3.3.1) simultaneously,
it seems that the use of the recoupling identity (3.1.10) is unavoidable.

Let us start to derive an integral equation for ¢ ,. For any I'4e%, let [1,] be
the family of external contour systems defined by

[Iy]={Ie%:dist(suppl,, VIN<1} (3.3.2)

Then, from the definition of Z(B) in (3.1.4) it is easy to check that for any given
Toe&(B),

ZB)=Z(B\VI,))vIntIy)+ Y > jd(ujda;e”””"""'/""”, (3.3.3)

re(roléesm vy &
1'e%(B)

and

Z((B\V([o))vIntIy)

> [dewe™ M
Ges((B\V(IMhulntlg) é

Yo Jdo fdaoe T, (3.3.4)
destB V(e "
&"ed(Intl )

For a finite B = 7" and I ,e%(B), write
ZB\V(I ) Z(ntd o) = [Z(B\V(I)) Z(Int I'y) — Z((B\V(I'g)) wInt Ip)]
+ ZU(B\V(I'g)ulnt Iy). (3.3.5)

We will estimate the first in the right-hand side in the above by using the recoupling
identity (3.1.10).

Let Be2Z' and I'yeé(B). For given ¢, ={I"(,I",,...,I,}eé&(IntI ) and
&1eé(B\V(I,)), denote

20y, 0= ) [l {* Il g(FCFi;w)}, (3.3.6)

5. a Aot q o

100y f e 1,80y rMeép,
PN

DO =ELl g E e

where in the sum it can be happen that 0, né -, # ¢. Then, using the recoupling
identity (3.1.10) and (3.1.9) we obtain that for any ¢"e&(Int ), &'e&(B\V(I)),
| — o B0 Z Z ﬁml, & wye” tI)I(E"E”—&M)). (3.3.7)

& #Cq =" f'/l =é

We use (3.34), (3.3.7) and the fact that H(6";w)=H(G,)+ H(@" — 0.} +
®,(0,,0" —3,;w) by (3.1.3), and we then write ¢'=0,ud] and sum over d]
to obtain

ZIB\V(I o NWZ(Int ['y)— Z((B\V(I y))wInt )

= Z j‘ jdﬂ)e 'H(ﬁ/,u))er H(['”A“))[l s mz(f"ﬁ”;w}]

des(BYV () d &

ed(IntIy)
= > Y Yo fdof {doH(@,.0);0)
d#"ed(Intly) b #6y =& 8e8B V(T & &y

e MmN T (@7 = 2w o), (3.3.8)
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where
Tonrg (@ =2)udio)= F [doe T WG (339)
ledB\V(Iudy) ]
Let us denote

G0y, 0w)= [] 9@y, I, m). (3.3.10)
I'eby
Then by the decoupling identity (3.1.8)
e P = N G(0,, 05 w), (33.11)
060,

where the term corresponding to &5 = ¢ equals to 1. Substituting (3.3.11) with
0,=0"— 0, into (3.3.8), writing 0" — d, = 03 U 03 and summing over J; we obtain
from (3.3.8) (and the expression of f3(0; @) in (3.2.1)) that

ZB\V(I' ) Z(IntI'y) — Z((B\V (I ) vint I'y)

= > Yo fdofdo|de
eyuéhed(Intly)y 6 ed(B\V(Ig)) &, & A
A1 #¢
‘H(3(,07;0)G(24,0%; cu)e"H("‘;‘“)_]‘"(B\V(,_O»U(Imro\m]))(E)’l oy ), (3.3.12)
where the case for 8, = ¢ is allowed.
Next, from the definition of (¢, ) in (3.2.1) it follows that

/ Y
f(B\V(FO))u(ImI"O\V(i‘l))(51 vy @)

= fovep(01V 8 0) — > fB.\Wl)({F}uE)/lua’ ) (3.3.13)

el
Using (3.2.12) (with A = B\V(d,)) and {3.3.13) we obtain the following relation:
ﬁB\ V(Fp)ullnt 1"0\1/(51))(6/1 U dy;m)

= > A(@',(019 0% 0)) g 10,01V 03 W) Z(B\V(2,))

Fed(B\V (3, ud) L)

-y Y A0 (0w, T ;)

e[yl des(BWV (@, uejudyul)

-gB\ml)(a’1 ud,ud OIZ(B\V(3)) (3.3.14)
One notices that
gmw(a; L VI Z(B\V(0,))=Z(B\V(0,udiud,ud)) ] Z(ntl),
Fedjudyud
e (3.3.15)

by the definition of g 4(0) in (3.2.8).
We are now ready to derive an integral equation for g ,(¢). Let f be a function

defined on the set of finite external g-contour systems & in Z*. Such functions form
a Banach space #

#

N

e={[:6(L) =Tl f I =sup& | f(O)) < o0}, (3.3.16)
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where £ >0 and |9] = > |I"|. Let 1 be the function in # - defined by

I'ed
Ho)=1, 1()=0 if 0#¢.

We introduce the operator x4, on & by

(AS)©@) =7 4(0) 1 ©), (3.3.17)

where 7 4(0) =1 if de&(A) and y ,(0) =0 otherwise.
We next define some operators on # .. For a given deé and a fixed I';ed,
define operators K, and K; on Z#, by

(K, /)(0) = z ) Z f dw f dw j dw
2l ealim Iy C1EEUT V@) E a8
G #P

'{em"‘")/ [ Z(IntF)]ﬁ(ﬁlﬁ’l;w)G(ﬁl,a’z;w)

I'eéy

A0, (07 v 05 w))
Y VAN ([T S TSI AT
S0 =To)u@,ud,ud,ud)), (3.3.18)
and

(K3 /)(©0) = > Z | dew f do j do

¢y ofhed(IntIy) & ed@V V) &
Ly FP

‘2 (1

-[e A/ ] Z(IntI')Jﬁ(ﬁl,(?’l;w)G(&l,@/z;w)

I'eéy
rello): VAR (TS PN VI LVLAVIANE S )

Feb{M V(@ - Ty)oibyodaM
A@ (0 0yl o) f((6 — To)ul(d,wdiudyu{l Fud))
(3.3.19)
Replacing B by A\V(0 — Iy) in (3.3.12) and (3.3.14), and using (3.3.15) and the
definitions in (3.3.18) and (3.3.19), 1t 13 not hard to check that
{ZA\V(O)Z(Int Ty) — Z((A\V(@)vIntITy)} [T Z(ntI')]/Z(A)

I'ec- I'y

= (1 aK3 7249 @) + (1 aK3 7 49 A(0), (3.3.20)

holds for any de&(A) and a fixed I',eé.
We next consider the partition function Z(A\V(¢ —I'y)). Replacing B by
A\V(0—Ty) in (3.3.3) we have
Z(ANV(@— 1))
=Z((A\V(@)uIntTy)+ Y Y [do j de 1)
Ie[ly] des(Avie--rop I &

=Z(A\V(@)ulnt o)+ Y [dof, .. (o)

re(ro} I
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=Z((A\V(@)ulnt )+ Y [doA@,({T}o)
Ie[lg] e viEe-Ton I
Gawe (T O)VZANV(O = Ty)). (3.3.21)

Here we have used (3.2.12) in the last step. We define an operator on # ; by
K, NO)=— Y Y JdeA@ () f(0—To)yuIud).
re(fylé'es@  vi—ron I
(3.3.22)
Then, from (3.2.8), (3.3.21) and the fact that
Ia oo FO)(FU NZAV(@E =T )=Z(A\V(i—-THul ud) H Z(Int 1),
rerud
(3.3.23)
if follows that

gald=To)={Z(A\V(@)uIntTy) [] Z(IntI)]/Z(A) — (1 AKsx 49 AO).

Irec—Iy
(3.3.24)
Combining (3.3.20) and (3.3.24) together, we obtain that
Gal@ —To) =g A0) — (x alKy + K3+ Ky) 2 49 )(0). (3.3.25)
Finally, let
K )0 = f(e—T), (3.3.26)
and let
(K/)(0) = (K, + K, + K5 + K, ) £)(9), (3.3.27)

if 6 # ¢, and (K f)(¢) =0 otherwise. Since g ,(¢) = 1 by the definition in (3.2.8) we
obtain the following equation:

ga=1+y1,Kz,9 4 (3.3.28)

The above relation is the integral equation of a Kirkwood—Salsburg type we were
looking for.

IV. Convergence of the Cluster Expansion
4.1. Statement of Main Results

We list our main results on the cluster expansion in this section. For any ¢eé(Z”),
denote

2|=S I, V@)=V, Inta=|)IntT. “.1.1)
I'eé

Iec Ieé

Let 6 be the metric introduced in Assumption 2.3.2 and for any I, [ "'e% and xeZ2’,
let

O, x)=min{d(y,x):yeV (")}, o1 )=min{d(J,x):xeV(I)}. (4.1.2)
Without loss of generality one may assume that for any x, yeZ”,

ox, ) Slix—yl. (4.1.3)
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Otherwise one may replace é(x, y) by || x — y || in (2.3.5). For any external g-contour
systems 0, 0'e&(Z"), denote

6(010") = max min {6(I", x) }. 4.1.4)

xeVi(é) Ted
Note that 6(9]0') is not symmetric function on & x &.
The following are main results on the cluster expansion:

Theorem 4.1.1. Let a stable qgeQ be chosen. Under Assumption 2.3.2, the following
results hold for sufficiently large T

(@) The cluster expansion (3.2.10) is summable absolutely, uniformly in A.
Furthermore the bound

p al0) = exp(—1/0]/6),

holds for any de&(A), uniformly in A.
(b) The infinite volume limit

p(0) = Lim p ,(9),

A-Z”

exists for each de&(2"). Furthermore the bound

19 A(0) — p(@)] < exp{ —gw —5(5,AC>}

also holds for each 0e&(Z”), where 6(0, A°) =min{d(x, y):xesuppd, ye A}
Theorem 4.1.2. Under the assumptions the same as those in Theorem 4.1.1, the cluster
property holds: For any 0,0'e&(Z%) with éud'e&(ZY),

p(0wd) —p(@)p(d')—

as dist(V(0), V(0')) tends to infinity.

The main results {Theorem 2.3.4(a) and Theorem 2.3.4(b})) in Sect. 2.3. are just
consequences of the above results. The above results will be proved by using the
following results;

Proposition 4.1.3. Under the conditions as in Theorem 4.1.1, the infinite volume limit

g(0)= lim g 4(0),

AT

exist for any de&(Z°). The integral equation
g=1+Kg,
holds on the Banach space F ., = exp{+ t/8).

Proposition 4.1.4. Under the conditions as in Theorem 4.1.1, the bound

19 4(0) ) < ex < {0] — >>

holds for any finite A < 7" and any oa“’(/\) where 0{C,A°) is the distance between
supp & and A° with respect to the metric J
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Proposition 4.1.4 will be also used to investigate the structure of phase diagram
in the sequel [ 13]. In the rest of the paper we will produce the proofs of our results.

4.2. Some Useful Estimates

In this section, we derive useful estimates which will be used to prove the main
results. We first state a Peierls type estimate from the reference [18].

Lemma 4.2.1. [Lemma 2.7 of [18]]. Let a = max{vIn(2s+ 1), In|Q2] + 3"}, where
sz 1 is the parameter used to define contours. Then

HTe€Z)y:d(x, VIINZE1, |I'f=n}]<e™

holds for each xeZ2”.

In the rest of this paper we assume that Assumption 2.3.2 holds and that a
stable ground state geQ is chosen. The results in the following proposition are
consequences of the regularity condition (Assumption 2.3.2).

Proposition 4.2.2. (a) Let B< Z” be a bounded region and let 0,0'e& such that
V(0) < B and V(0') < B. Then for any configuration w for which 0L ¢’ is the external
g-boundary of w, the bound
YN LU, (I, T w)| < min{t|bd(V(0))]/48,7|bd(B)|/48},  (4.2.1)
et IMeé
holds uniformly in », where bd(B) is the boundary of B.
(b) For any q—contour I', the inequality
Y. sup|@y(I I o) exp(6(1 1) — o[ 7| /48) < | bd(V(I7))[ /48, (4.2.2)

regz"viry ©
holds for sufficiently large t
(c) Let B be a finite region in Z°. Then for any given 0e&(Z"\B) the inequality
Y. 2 supl @y (I I w)lexp (8(1, ™) —t|I1/48) < t{bd (B)|/48, (4.2.3)
Te¥Byee @
holds for sufficiently large .
(d) For any finite region B in Z7°, the inequality

> sup| @, (I, I w)exp(o(I, Iy — ¢|I"w I /48) = 7{bd(B)!/48,
I'e%(B) I'e%(7"\B) ©
(4.2.4)

holds for sufficiently large .

Since the method of the proof of the above proposition is somewhat lengthy
and is not used in other places, we postponed the proof to the appendix at the
end of this paper.

We next consider the contour functional g ,(0) defined in (3.2.8). We have the
following uniform estimate:

Lemma 4.2.3. The bound
|9 A(0)] S exp(t]0]/24),
holds for any de&(A), uniformly in A.
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Proof. For any given de&(A) it follows from (3.1.4) that
Znz Y fdw [dwe™ " o),

é Ezﬁ(/\ vy d Il
& eé”(lmc)

Writing H(0' U d"; w) = H(0'; w) + H(0"; w) + @,(0', 0"; w), using (4.2.1) and the fact
that |bd(V(0))| £18], we have
Z(A)Z ZA\V (@) exp(—1]21/48) Y [dwe ), (4.2.5)
&es(Intd) &
Let 0={Iy,1,,....,0,} and let " ={d,,@,,...,8,}, where d;e&(Int I';). Write

n

H(@'0)= 3 H@z0)+ S @y(0,.050)

=1 iFj=1

We use (4.2.1) again (with B = V(é)) to conclude that

Z(nto)= Y [dwe HE' 50 (HZ(IntF))exp(—-r]8|/48). (4.2.6)

2" es{nté) & Ied

The lemma follows from (3.2.8), (4.2.5) and (4.2.6). W

Recall the definitions of K(4,0';w) and 8(0]¢) given in (3.2.7) and (4.1.4)
respectively.

Lemma 4.2.4. For any 0e& and for sufficiently large 1, the bound
Y. fdo sup [K(0,8;0)|exp(8(2]0) — t|@'|/12) S e .

¢# & eE@ V(@) 8 W)

holds, where Q(0') = x ('),

I'ed
Proof. Since max {4(0, x) < max {6(, I'") + diam (1)}
xeV(¢) e
Z {60, I'"y+|I'"}}. 4.2.7
red

From the definition of K(0,0;w) and (4.2.7) it follows that for /24 >1 the
expression in Lemma 4.2.4 is bounded by

dow K (0 w) sup 1g (0, I''; )| &7 -0y 4.2.8)
S
§#des(AV(@) b ae(d) Med
A direct calculation yields

Z H {!g(ﬁ I o ow 11["[,/24}

¢# MV T ed
0 n . y
=% X Jlle@ rywyfe i

n=1(r,  Ohes@\v@)i=1

X ‘1 n N ,
=)l ( Yl Fi;w)ie‘s“’“”"“>
A= 1 =1\ reg(N V)
<exp { S 1g@, Iyl *W} —1. (4.2.9)
Teg(Z\V(#)
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We note that
1 ; .
19(6, T;0)| = @,(8, Ty ) [dse "0 < |@,(0, T w) [V (4.2.10)
0

Here we have used the fact that
sup[(Dz((f o) < Z sup | D,(I'", I'; )| < t| /48, 4.2.11)
reg o
by (4.2.1). Using (4.2.10) and (4.2.2) we obtain that for sufficiently large ©
Z lg(a,]—*;w)ier)(ﬁ,['}f‘(ﬂ"\,M é Z ‘(pz(a’ F;(O)ier)((.l_)— Tl /48
Te%(Z"\ V(&) Teg(7\V(6)

Z Z |(D(F, I—*/;(U)’ei)(l"/,]") -ty 71748

Teg(P V() TNed

< 7/bd (V(0))1/48.

IA

Thus we conclude that
(4.2.9) < ™, (4.2.12)

On the other hand, we use (2.2.9), (4.2.1) and the stability condition in Definition
2.3.3 to obtain the bound

[doK(8;w) = jdwe o) T Z(Int I') S exp(— 157]21/48).  (4.2.13)

Iee

The lemma follows from (4.2.8), (4.2.9), (4.2.12) and (4.2.13). &
We produce estimates which will be uscd in the proofs of the main result.

Proposition 4.2.5. (a) Let B < 7 be finite and let H(0,, &y ; w) be defined as in (3.3.6).
Then for sufficiently large 1, the bound
Y Y suplH(@.. 8y w)| "V < exp(r]bd(B)|/12)
8c6(B) 81e8(Z\B) @

holds.

(b) For 0e&(Z"} and &' e&(Z2°\V(0)), let A(0";(0;w)) be defined as in (3.2.11).
Then for sufficiently large 1, the bound,

Z fda){A(c’V;(a ))[e 5(218")+7 |<7/\/‘8§er—r\8!,4.
b #E eIV @

holds.
Proof. (a) From the definition of H(¢,,0};w) in (3.3.6) and from (4.2.7) it follows
that for 1/24 > 1,

Z lﬁ(ﬁ, (73;0))]8‘“”5/‘] eyl I8

b#C 8B
[ XA LVARY:)
o
< X
<2 X
n=14r g Dy i€é(B) {01}

ué EF(Z \BLC; # ¢

: N Ualm
N e

i=1 Ied;
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T =1 n! DEEB)  DE6(B) (it}
LB I B) x
n e
<n L] 19 I w)] ”r’r"’]eTrf"g)e o } (4.2.14)
i= Ieé;

In order to prove the proposition we use a finite interaction method. As the first
step we define

- CJ ANYEALT
A= X (H lgw,rn)!eb(“*’)e”*e ST (428)

¢ #,e6(Z By \Ted,
n-1 n-1
We write &, = ¢,udy, where ¢, < | ] ¢;, and ¢ (Z"\(Bu(l/( U 8l>>>> Let
i=1 i=1
Ary= Y (H lg(I, T ,; o) |e5<”">> T, (4.2.16)
! Ied

rb#ft;t@ Ué
i1

Z Z < ﬂ ‘g(nrn;w)\gﬁ(F.r,,))

RN
(17#(,, & Iec,ué,

Ub
T R (4.2.17)
red,
We decompose the sum over ¢, in (4.2.15) by

o= 3 Z + Y }_ (4.2.18)

¢ F#0y XAV ,)#td b#E oy
They, by the definition of A,(I,) in (4.2.15) we have
Ay = A1) + AL(L,). (4.2.19)

We will calculate A4,(I,) and A, (1,).
Let us first consider A,(I,). Using the relation (4.2.10) for ¢ = {I"} and (4.2.1)
we obtain that

1 19(F, Ty )T < <H | @, (I, T,z )| X F 1) > AL (4.2.20)

Py
I'ec, I_CL”

We use the method employed in (4.2.9) and the above bound to obtain

A;l(rn)§<exp{ Y @, T w)e rrn)}_1>e/5¢rnms

1
rel)é

=1

= Z (D, (I, rn,a))[e"“—*r“)>e'-Fm 2
FE)UQ'
=1
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Here we have used the first relation in (4.2.10), and (4.2.1) to get the second
inequality. And so (4.2.3) implies that
= > A/, <t|bd(B)|/48. 4.2.21)

I,e%(B)

On the other hand, observe that by (4.2.20)

STl re s e Y, wrF,,,w)ie“fw))ef“‘"““

‘ ]
U A 7 /
e e C\)z
i=1 =1

< oI, (4.222)

Here we have used (4.2.1) to get the last inequality. Using the above bound into
(4.2.17) we obtain

Ar)s ) (H\g(r,rn;m)w&mmfrﬂz)eTW.

= e8 (2 By \Ied”

Writing &, = {I'{,I,..., I}, using (4.2.20) and (4.2.2) we obtain

A;:(Fn)é i {ﬁ( Z [vr 1—< w)l ()F ) - I\F \12>}6¢F,,'12

I e%(B)

<exp{ DL e M
cé(B

é{ Z | D, (I, [ ,; a)) ST, - wrhz4}e A,

Te6(B)

A

and so by (4.2.4) and above inequality we obtain
Ay= Y A (I} < t|{bd(B)|/48.

I,e%(B

Combining (4.2.19), (4.2.21) and (4.2.23) we conclude that
= 3 A,l W) = 11bd(B)}/24.

I"e?(B
Using the above procedure n-times in (4.2.14) we prove that the expression in
(4.2.14) is bounded by

90

Z ribd }/24)" = e PBIE
This proves the part (a) of the proposition completely.
(b) From the definition of A(¢,(d;w)) in (3.2.11), and from the fact that

(49

)<5 0181)+ (¢118,) + - + (8, _10,) it follows that

S [dol A, (@ w)|e" s

¢ e(Z, V() b
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ZZ Zjdwﬂjdm[K(@ol,.,. é,; )

n=1

,eo‘(aaal)( H ea(f_,ﬁi)ﬂ;ai,wm). (4.2.24)
i=1

The inequality (4.2.13), Lemma 4.2.4 and the fact that |/ [ = 4 for any " &% yield
Y [do|R(0,- 1,0, 0)K (8,5 )]0 ol

b #8, 0y
2 J(@ Cp) - TT[é,l /4
< Y sup [K(0,- 0, @) e TnlE
§ 70,000,
< e*T\Dn—ﬂ/"‘,e—t/lZ'

Using the above procedure (and Lemma 4.24) n-times and the definition
K{(d,...,0,;w) in (3.2.7) we conclude that (4.2.24) is bounded by

Zj‘dw 5 deIZ(a,(?l, )!eomr ri&l\/g(l _egz/12)71 éeifw‘{

E
This proves the part (b) of Proposition 4.2.5 completely. B
4.3. Proof of Convergence

In this section we prove Theorem 4.1.1, Proposition 4.1.3 and Proposition 4.1.4.
The Proof of the cluster property is postponed to the next section.

Proof of Theorem 4.1.1 (under the assumption that Proposition 4.1.3 and
Proposition 4.1.4 hold).
(a) From (3.2.10), (4.2.13), Lemma 4.2.3 and Proposition 4.2.5(b) it follows that

PADSK@E T+ Y [doA@: @G M s e
P#TeEAWVIE) ¢
for sufficiently large 7. This proves part (a).

(b) By part (a) of the theorem, the cluster expansion (3.2.14) is summable
absolutely and uniformly in A. Thus, the existence of the limit follows from (3.2.14)
and Proposition 4.1.3. Notice that — §(3|0")—o(Cuwd, A€ )_ —8(0, A°), where
0(2|¢') is defined in (4.1.4). Since | p ,(0) — p(0)] £ Zjd(ulA (G ) g A0 ) —

g(8u d')|, the bound follows from Proposition 4. 1.4 and Proposition 4.2.5(b).
]
In order to show Proposition 4.1.3 and Proposition 4.1.4 we will use a
modification of the method used in [18]. For each finite subset W < Z'we define
the norm || /||, of external boundary functionals f defined on &(Z°) by

1S = sup{ £ (@) exp(6(3, W) — =[01/8), (4.3.1)
where
3(C, W) =mind(V (1), We), 3¢, W*) = sup (x, W), (43.2)

It is easy to check that the above norm defines a Banach space

Fw={1E6L")->C: |fllw<w}, (4.3.3)
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of contour functionals. Notice that #,=%, where # is the Banach space
introduced in (3.3.16) with & =exp(z/8). In application we will choose W by A.
For any d,0'eé with dud'ed, it is easy to show that o6(d, W) <d(@ud’; W)+
8(0]0") has been defined in (4.1.4), and so

~3(@Ud WY S — 58, W) + 6(8]8), (4.3.4)

for any 0,0eé& with dudeéd, and any finite W < 7",
Before proving Proposition 4.1.3 and Proposition 4.1.4 we need the following
result:

Proposition 4.3.1. Let K be the operator defined in (3.3.27). Then for sufficiently
large .|| K|y S exp(— |1 41/28), where | K|y is the operator norm of K in the
Banach space F .

Proof. Assume that || /||, < 1. Then from the definition of K; in (3.3.26) it follows
that
(K, S)O) Sexp(—0(0 — T, W) +1{0 — 1,1/8)
Sexp(— 6(d; W) + t{d1/8)exp(— 1|1, !/8),
and so
Ky llw = exp(—1/15[/8). (4.35)

We next consider K, defined in (3.3.18). Let de&(Z”) and I',e0 be given. For any
0,,01,05,0'€8(Z”) such that (0 —I,)ud,udiud,uded and d,,05eé(Int ),
(4.3.4) and (4.1.4) simply

—0((0 —THu(@,udyud,wd ), WY —8(0ud,udyud,ud, We)
—8(0, W)+ 6(8]0, v udyud)
-0

(0, W) + 8(I |8, 0 wdyud).

A IAHIA

Since 0,,5e&(Int I'y),
(Il 0w Ly udY 60,0, w0, wd) S (0,10)) +0(0,10%) + 0(0,0040),
and so
—0((0— TI'y)u(@,wdywdyud), W) < —8(0, W) +4d(,16))
+06(0,]05) + 8(d,wdyL|e).  (43.6)

We first show that for sufficiently large r,

Y Y [ dwK(9,;w)
810Ee8(IntIy). §#6166Z V(o) &4
1 #d

< sup 117(01,0;@)6(51,6;:@)!)eml,s

weQ(Cyudy)

exp(d(01]07) + 6(0,103) — |0y W 33 1/8) = exp(t| 1o ]/12). (4.3.7)
Note that §(0,10,)—1(8,/8< Y {8(8,,I")—1|I""|/24} for ©/12>1. From

Y
I’ed,
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(4.2.9), (4.2.12) and the definition of G(d,,d,; w) in (3.3.10), it follows that
Y.sup| G(2,,05; ) exp(d(0,105) — 1183 1/8) < exp(t]d, |/24), (4.3.8)
i o

and so by (4.2.13) and Proposition 4.2.5(a) the expression in (4.3.7) is bounded by
) Y. JdoK@;w)exp(t|d,|/6)

& #6y86(IntTg) &y ed(Z\ V(T ) &
1 /v 0 1

sup| (0,03 w)|exp(0(9,107) — 71 811/8) S exp(t| [o|/12).

This proves the bound in (4.3.7).
From the definition of K, in (3.3.18) and the relation in (4.3.6) it follows that

1K w = )y Y o {dofdofdo
¢ # 8 uihes(Int ) ¢ # & e8ZNV(E) 6, & &
8 #

K(01;0)[H(@,, 0y 0) G0, 05 w))]
> |A(0', (070 05; )]
EedZM\ V(3 - Tghudyuéiudy)

exp(6(0, 101 ) + (0, ]05) + 6(07 W d5[2"))

exp(r|d, u oy udhud|/8 — 1l | /8). 4.3.9
We now use Proposition 4.2.5(b) and the bound in (4.3.7) (in that order) to obtain
from (4.3.9) that

1K iy S exp(tiL]/12 — 1| T|/8) = exp(—1{17|/24), (4.3.10)

for sufficiently large 7.

We next consider K, defined in (3.3.19). Employing the method similar to that
used to obtain (4.3.10), and Lemma 4.2.1 (and the method similar to that to obtain
(4.3.13) below), 1t is not hard to check that

IKsllws D exp(—til|/24 —t{I"|/8)

Te[fy]

S| Tglexp(—1|T7|/24) S exp(— 111 /25), (4.3.11)

for sufficiently large 7. Here we have used the fact that card({I" e[ ]:|{I'{=n}) <
({15l + n)exp(an) by Lemma 4.2.1 and the definition of [I;] in (3.3.2).
Finally, consider K, defined in (3.3.22). Note that for I'e[I,],

— (0~ Tyl Ud, W) < —8(0uT Ud, W) < — 80, W) + (01T ud)

S =00, W)+ ol T"wd)
S =00, W)+ +0oU10'). (4.3.12)
Using (4.3.12), Proposition 4.2.5(b) and Lemma 4.2.1, it is easy to check that
Ky lw = exp(—1/11/26), (4.3.13)

for sufficiently large . Combining (4.3.5), (4.3.10), (4.3.11) and (4.3.13) we proved
the Proposition completely. B
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We are now ready to show Proposition 4.1.3 and Proposition 4.1.4. We will
use a method similar to that used in the proof of Proposition 2.1 in Sect. 8 of
Chapter 2 in [18].

Proof of Proposition 4.1.3. Tt is obvious that Proposition 4.1.3 is a consequence of
Proposition 4.1.4. W

Proof of Proposition 4.1.4. To prove the proposition, first we consider K as an
operator on the Banach space & =%, _,. Since ||K||; <1 by Proposition 4.3.1.
and ||1],=1, g is defined as the solution of the equation

g=1+Kg. (4.3.14)
That is, .
g= Z K"1. (4.3.15)
n=0
On the other hand
ga=1+x Ky ag s (4.3.16)
by (3.3.28), and
g—9a=9g—%adtxad —9ga (43.17)

From (4.3.14) and (4.3.16) it follows that

149 = 9a= XK@ =149+ 24K a9 — 9 4)- (4.3.18)
Thus ¥ ,g — ¢ 4 1S again a fixed point and

20

149 =9a= Y, (04K 14, (4.3.19)
where
na= 1 aK(g — 1 49) (4.3.20)

By Proposition 4.3.1 the series in (4.3.19) converges in any of the Banach space
F 4 1s finite.

We next estimate 7 ,. Observe that
0 if 0"eé(A)
g(0") if 0"¢E(A).
If "¢&(A), then there exist at least one contour I'"€9” such that d(I'", A°) <1,
which implies (I, A°) < 1. Write

(g —249)0") = { (4.3.21)

4
M40 =Y Nap Mai=1aKilg =249, 1=1,23,4 (4.3.22)

i=1
From the definition of K, in (3.3.26), and (4.3.21), it follows that for any de&(A),
N (@) =g =190 —T)=0. (4.3.23)

Next, we consider 1, ,(d). We write

N4.20) =2 K;(8;0")9((0 — Ig)w2"), (4.3.24)
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where 0" = 3,00, L0V, (0 —T,)Vd"¢&(A) and the kernel K,(6;0") is defined
according to the expression in (3.3.18). Since (0 —Ig)ud"¢&(A),0((0— I o)V
0", A°) < 1, and so by (4.3.6),

— 1< —8(0, A%) + 8(,10,) + 6(8,18,) + 8(d, L L) D). (4.3.25)
Thus by (4.3.24) and (4.3.25) n 4, is bounded by
2@ < lgll,e TeBe@ 0% K, (6;0")]

3" =8 udyudyud
exp(6(0,107) + 6(0,]05) + 6(0; LWL |') — 1|0 L D|/8).

Compare the above expression with that in (4.3.9). Thus repeating the argument
that gave the result in (4.3.10), we obtain

|’7A,2(5)| < e*é(@,AC)+rl8l/8 ”ng)el‘ﬂFOI/M. (4326)

Employing the method similar to that used above and repeating the arguments
used to obtain (4.3.11) and (4.3.13) one may obtain

14,30+ 11 4,4 (0)] < e8| g | 2! Aol (4.3.27)
Thus for sufficiently large t, (4.3.23), (4.3.26) and (4.3.27) imply
AP (4.3.28)

and so by (4.3.19) and Proposition 4.3.1 we concluded that
149 = galla< (L= K| )" Hinalla< 1,

for sufficiently large t. The above bound, (4.3.17) and (4.3.21) imply the proposition
directly. B

4.4. Sketch of the Proof of Cluster Property

Because of notational complications involved, the detailed proof of Theorem 4.1.2
would be very lengthy. Thus we will give an outline of the proof and leave technical
details to the reader.

We first describe the procedure of the proof we follow. For any 0,0'e8(Z")
with dud'ed(2), let

Pzrwie)(0) = /}im pA\V[@’)(a)’ gZV\V(ﬁ')(a) = lim g4, (0). (44.1)
~2" A7

The existence of the above limit follows from the method used in the proofs of
Theorem 4.1.1 and Proposition 4.1.3. Assume that for any 9,d'e& with dud'eé,

Prvi)(0) — p(0) =0, (4.4.2)
and
(0L )
(@) - sz\V(a’)(a) -0, 4.4.3)
as d(0,0") — o0 (8(0,9")— co). Then it follows that

oud
pOLE) - p(O)p(@) = [”—(p(;’—)) - pzv\m«,(a)]pm + [y — p(@1p(0) 0
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as 6(6,d'y— oo. Hence, in order to show Theorem 4.1.2 it suffices to show (4.4.2)
and (4.4.3).
Let us denote that for any B < Z°,

[Bl={0e&:d(V(d),B)< 1}. (4.4.4)
From (3.2.12) and (4.4.1) it follows that
p@= 3  [dwA(@",(d;w)g@ud"),
e Z\V(©@) &
Pz (0) = Z jdcoA(a” (G )Gz per (O D). 4.4.5)
e®@\V(oud) o
Thus
100 = pryey DN Y [dolAQ@",(0;w)ig(@uwad”)
"e[v(@y] o
+ Y JdolA@",(80)1g(0w ") = g yn(@U ).

eB@\V(oLd')) ¢
(4.4.6)
We note that the summands in (4.4.6) are summable over 0”"e&(Z") (by Theorem
4.1.1). Thus the first term in the right-hand side of (4.4.6) tends to zero as 6(6, ") —
In fact, using Lemma 4.2.3 and Proposition 4.2.5(b) one may show that the first

term in (4.4.6) is bounded by cexp(— 6(0,7")). Thus in order to proof (4.4.2) one
need to show that for any given de&(Z°\V (7)),

g(d) — gz"\wa')(a) -0, (4.4.7)

as 6(d,0')— oo.

To show (4.4.7) we use the method similar to that used in the proof of
Proposition 4.1.4. Following the steps in (4.3.14)—(4.3.20) one may show that (4.4.7)
holds if

I %2 v K@ — %z vy P 2wy < 05 (4.4.8)
holds. Using the fact that

0 if feq@\V(@)

(9— Xz"\V(a’)g)(a) = {g(@) it oe[V(@)],

and the method similar to that used to obtain (4.3.28), one can show that (4.4.8)
holds. This proves (4.4.7) and so (4.4.2).
Finally we consider (4.4.3). For a given 0'e&(A), denote

ZA0)= Y fdo jdwe Hiowd o) (4.4.9)
= A\V(c)
and
Gaz(0)=[Z(A\V(0;0) || Z(nt I')1/Z(A; ). (4.4.10)
I'ed

Using the method to derive the cluster expansion (3.2.10) (and (4.4.5)) we obtain
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PACYT) S (A (BN 000"
P al0') O eSAV (@) 8 ’
+ Z fde(a",(a;w))
" eB(A\V (D)) 8
[Z(AV(©@;\0") [] 2Z(ntI')}/Z(A;0). (4.4.11)
Tedu(d™\a"

Again it is easy to check that the summands in the above expression are absolutely
summable over ¢”€4(Z"), uniformly in A. Thus the second term in the right-hand
side of (4.4.11) tends to zero uniformly in A as §(d, &') — 0. In fact, it can be shown
that the second term is bounded by cexp(—6(d,0')). By comparing the second
expression of (4.4.5) and the first term of (4.4.11) (in the limit as A—Z") one
concludes that (4.4.3) holds if for any given de&(Z*\V(3)),

§(9) ~ gy, (0) 0, (4.4.12)
as 6(d,0') - oo, where

gz(0) = lim g, ;(D).

A7’
The above limit exists by the method used in the proof of Proposition 4.1.3.
To prove (4.4.12), one uses the method in Sect. 3.3. to develop an integral
equation for §, » to obtain
!7/\,@’ =1+ XA\V(@’)KXA\V(a’)gA,ﬁ’ + XAKXAQM’, (4.4.13)
where g, ; is a functional in # bounded by

1gaz] = exp(r|0Ud'}/12),

and K, K=K, + K, + K,, is an operator obtained from the definitions of K,,K,
and K, by replacing the sum over 8;e&(A\V(d)) by the sum over ¢, €& (A\V(0))
with the restriction 07 N 0" # ¢. Thus it can be shown that

1Ky < o0,
and so
(1 AK¥ 4G ,4,)(0) =0, (4.4.14)
uniformly in A as §(d, ) — 0. Since by (4.4.13)
(Gas = Iave)(©0) = 1 AK¥ 4G40, (4.4.15)

(4.4.14) and (4.4.15) imply (4.4.12). Thus we have proved (4.4.3). We leave the
technical details to the reader. W

Appendix. Proof of Proposition 4.2.2

Proof of Proposition 4.2.2. In this Appendix we prove Proposition 4.2.2.
(a) As before we denote that for any given B« Z¥

B, = {xeB:dist(x, B) > s}, (B‘),={xeB:dist(x, B) > s}. (A1)
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Then from the definition of contours in Sect. 2.1 and the regularity assumption in
assumption 2.3.2 it follows that
sup eI T )| £2 ;;n J(lx—yl), (A.2)
yeV (I}

and so the expression in (4.2.1) is bounded by

2% ) J(x =)

. xeBs ye(B€)s
2y Y Y JUx—yl)<min ’ (A3)
Foo 1oy xeV (D) 2.3 Y Jx—=yh.
yer s xe(V(@)) ye(VeF)s

Let us estimate the first expression in (A.3). The number of sites in B, having
distance » from bd{B,) in less than |bd(B,}|. Thus the first expression in (A.3) is
bounded by

2bd(BYI Y T J@s+n+ [y]) (A4)

n=0 yez”

Similarly the second expression in (A.3) is bounded by

21bd(V(9),)l ZO 2 J@s+n+yl), (A.5)
n=0 ye7”
(A.4) and (A.5) and (2.3.7) imply part (a) of the proposition.
(b) By the regularity condition (2.3.5) the expression in (4.2.2) is bounded by

2% Y J(x—yhe (A.6)
reg@\v(r) xeV(I)s
yeV(IM)s

For a given site xeV(I'),, let y(I"’) be the site in V(') with |x — y{(I""}| =
dist(x, V(I""),). Then it follows that for given xeV(I'), and I"'e€(Z*\V(I")),

Y. JUx=yD=VII(Ix =y (A7)

yeV(I)s

For given xeB< 7", let
D,.,={I"eB(R"): dist(x, V(I'")) =l x — y |l }.
Then by (A.7) and Lemma 4.2.1 the expression in (A.6) is bounded by

2 Z Z Jix—y) Z lV(I‘/)ie‘ru"ws

xeV{(I)s ye(V (I)¢)s Ir'eg,,
<2 % 3 JUlx—yh
xeV (s ye(V(I'))s

<2bd(V(I) S Y J@s+n+ [y,

n=0 yez¥

for sufficiently large 7. Thus by (2.3.7) and the above bound we proved the part
(b) of the proposition.



Extension of Pirogov-Sinai Theory. | 217

(c) By (2.3.5) the expression in (4.2.3) is bounded by
2% Y Y Jx—yhe <2 Y Y S J(flx—pl)e

reg(B) I'eg ¥eV(I)s Iew(B) xeV (s ye(B)s
yeV(I')s

(A.8)
For a given finite B < 7", let
9, ={I €€ (B): dist(V(I"),bd(B)) <r}

Then by Lemma 4.2.1, the expression in {A.8) is bounded by

23 T I@s+r+lyl) Y e T2 Y Y J@s+r+ | y])bd(B).

r=0yez" reg, r=0 ye7"

Part (c) of the proposition follows from (2.3.7) and the above bound.

(d) Again by (2.3.5) the expression in (4.3.4) is bounded by

2 XN J(x—yle

Te#(B) I''e%(2"B) XV (1)s
yeV(I')s

X +
S Y T JQs+rlyl) T rle Y e
r=0ye7¥ ez, 1"/6’6’5
yeV(I™)

<2(bd(B)| 3, JQs+r+ [y

for sufficiently large . Here we have used Lemma 4.2.1 to get the last inequality.
The part (d) of the proposition follows from (2.3.7) and the above bound. This
proved Proposition 4.2.2 completely. B
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Note added in proof. It has been realized that one has to multiply the factor 1/(J[T ;] &'+ 1) to the
summand in the second term in the right hand side of (3.3.3). Thus each summand appeared in the
summations ) 3 in Section 3.3 must also be multiplied by the above factor. Since the factor is

Ie(lgl @
bounded by 1, no changes arc needed in the rest of the paper.





