Syracuse University SURFACE

Mathematics - Faculty Scholarship

Mathematics

7-1-2010

Extension of Plurisubharmonic Functions with Growth Control

Dan Coman Syracuse University

Vincent Guedj Universit´e Aix-Marseille 1

Ahmed Zeriahi Universite Paul Sabatier,

Follow this and additional works at: https://surface.syr.edu/mat

Part of the Mathematics Commons

Recommended Citation

Coman, Dan; Guedj, Vincent; and Zeriahi, Ahmed, "Extension of Plurisubharmonic Functions with Growth Control" (2010). *Mathematics - Faculty Scholarship*. 22. https://surface.syr.edu/mat/22

This Article is brought to you for free and open access by the Mathematics at SURFACE. It has been accepted for inclusion in Mathematics - Faculty Scholarship by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

EXTENSION OF PLURISUBHARMONIC FUNCTIONS WITH GROWTH CONTROL

DAN COMAN, VINCENT GUEDJ AND AHMED ZERIAHI

ABSTRACT. Suppose that X is an analytic subvariety of a Stein manifold M and that φ is a plurisubharmonic (psh) function on X which is dominated by a continuous psh exhaustion function u of M. Given any number c > 1, we show that φ admits a psh extension to M which is dominated by cu on M.

We use this result to prove that any ω -psh function on a subvariety of the complex projective space is the restriction of a global ω -psh function, where ω is the Fubini-Study Kähler form.

INTRODUCTION

Let $X \subset \mathbb{C}^n$ be a (closed) analytic subvariety. In the case when X is smooth it is well known that a plurisubharmonic (psh) function on X extends to a psh function on \mathbb{C}^n [Sa] (see also [BL, Theorem 3.2]). Using different methods, Coltoiu generalized this result to the case when X is singular [Co, Proposition 2].

In this article we follow Coltoiu's approach and show that it is possible to obtain extensions with global growth control:

Theorem A. Let X be an analytic subvariety of a Stein manifold M and let φ be a psh function on X. Assume that u is a continuous psh exhaustion function on M so that $\varphi(z) < u(z)$ for all $z \in X$. Then for every c > 1 there exists a psh function $\psi = \psi_c$ on M so that $\psi|_x = \varphi$ and $\psi(z) < c \max\{u(z), 0\}$ for all $z \in M$.

We recall that a function $\varphi: X \to [-\infty, +\infty)$ is called psh if $\varphi \not\equiv -\infty$ on X and if every point $z \in X$ has a neighborhood U in \mathbb{C}^n so that $\varphi = u|_U$ for some psh function u on U. We refer to [FN] and [D2, section 1] for a detailed discussion of this notion. We note here that if φ is not identically $-\infty$ on an irreducible component Y of X then φ is locally integrable on Y with respect to the area measure of Y. Let us stress that the more general notion of *weakly psh* function is not appropriate for the extension problem (see section 3).

We then look at a similar problem on a compact Kähler manifold V. Here psh functions have to be replaced by quasiplurisubharmonic (qpsh) ones. Given a Kähler form ω , we let

 $PSH(V,\omega) = \{\varphi \in L^1(V, [-\infty, +\infty)) : \varphi \text{ upper semicontinuous, } dd^c \varphi \ge -\omega\}$

denote the set of ω -plurisubharmonic (ω -psh) functions. If $X \subset V$ is an analytic subvariety, we define similarly the class $PSH(X, \omega|_X)$ of ω -psh functions on X (see section 2 for precise definitions).

²⁰⁰⁰ Mathematics Subject Classification. Primary 32U05; Secondary: 32C25, 32Q15, 32Q28. First author is supported by the NSF Grant DMS-0900934.

By restriction, ω -psh functions on V yield $\omega|_X$ -psh functions on X. Assuming that ω is a *Hodge form*, i.e. a Kähler form with integer cohomology class, our second result is that every $\omega|_X$ -psh function on X arises in this way.

Theorem B. Let X be a subvariety of a projective manifold V equipped with a Hodge form ω . Then any $\omega|_X$ -psh function on X is the restriction of an ω -psh function on V.

Note that in the assumptions of Theorem B there exists a positive holomorphic line bundle L on V whose first Chern class $c_1(L)$ is represented by ω . In this case the ω -psh functions are in one-to-one correspondence with the set of (singular) positive metrics of L (see [GZ]). Thus an alternate formulation of Theorem B is the following:

Theorem B'. Let X be a subvariety of a projective manifold V and L be an ample line bundle on V. Then any (singular) positive metric of $L|_X$ is the restriction of a (singular) positive metric of L on V.

Recall that it is possible to regularize qpsh functions on \mathbb{P}^n , since it is a homogeneous manifold. Hence Theorem B has the following immediate corollary:

Corollary C. Let X be a subvariety of a projective manifold V equipped with a Hodge form ω . If $\varphi \in PSH(X, \omega|_X)$ then there exists a sequence of smooth functions $\varphi_j \in PSH(V, \omega)$ which decrease pointwise on V so that $\lim \varphi_j = \varphi$ on X.

When X is smooth this regularization result is well known to hold even when the cohomology class of ω is not integral (see [D3], [BK]).

Corollary C allows to show that the singular Kähler-Einstein currents constructed in [EGZ1] have *continuous* potentials, a result that has been obtained recently in [EGZ2] by completely different methods (see also [DZ] for partial results in this direction).

We prove Theorem A in section 1. The compact setting is considered in section 2, where Theorem B is derived from Theorem A. In section 3 we discuss the special situation when X is an algebraic subvariety of \mathbb{C}^n . As an application of Theorem B, we give a characterization of those psh functions in the Lelong class $\mathcal{L}(X)$ which admit an extension in the Lelong class $\mathcal{L}(\mathbb{C}^n)$ (see section 3 for the necessary definitions). In particular, we give simple examples of algebraic curves $X \subset \mathbb{C}^2$ and of functions $\eta \in \mathcal{L}(X)$ which do not have extensions in $\mathcal{L}(\mathbb{C}^2)$.

1. Proof of Theorem A

The following proposition will allow us to reduce the proof of Theorem A to the case $M = \mathbb{C}^n$. We include its short proof for the convenience of the reader.

Proposition 1.1. Let V be a complex submanifold of \mathbb{C}^N and u be a continuous psh exhaustion function on V. Then there exists a continuous psh exhaustion function \widetilde{u} on \mathbb{C}^N so that $\widetilde{u}|_V = u$.

Proof. The argument is very similar to the one of Sadullaev ([Sa],[BL, Theorem 3.2]). By [Si], there exists an open neighborhood W of V in \mathbb{C}^N and a holomorphic retraction $r: W \to V$. We can find an open neighborhood U of V so that $U \subset W$ and ||r(z) - z|| < 2 for every $z \in U$. Indeed, if B(p, r) denotes the open ball in \mathbb{C}^N centered at p and of radius r, then $U_p = r^{-1}(B(p, 1)) \cap B(p, 1)$ is an open

neighborhood of $p \in V$, and we let $U = \bigcup_{p \in V} U_p$. Since u is a continuous psh exhaustion function on V, it follows that the function u(r(z)) is continuous psh on U and $\lim_{z \in U, ||z|| \to +\infty} u(r(z)) = +\infty$.

It is well known that there exist entire functions f_0, \ldots, f_N , so that $V = \{z \in \mathbb{C}^N : f_k(z) = 0, \ 0 \le k \le N\}$ (see [Ch, p.63]). The function $\rho = \log(\sum |f_k|^2)$ is psh on \mathbb{C}^N and $V = \{\rho = -\infty\}$.

Let D be an open set so that $V \subset D \subset \overline{D} \subset U$. Since ρ is continuous on $\mathbb{C}^N \setminus V$, we can find a convex increasing function χ on $[0, +\infty)$ which verifies for every $R \geq 0$ the following two properties:

(i) $\chi(R) > R - \rho(z)$ for all $z \in \mathbb{C}^N \setminus D$ with ||z|| = R. (ii) $\chi(R) > u(r(z)) - \rho(z)$ for all $z \in \partial D$ with ||z|| = R. Then

$$\widetilde{u}(z) = \begin{cases} \max\{u(r(z)), \chi(||z||) + \rho(z)\}, \text{ if } z \in D, \\ \chi(||z||) + \rho(z), \text{ if } z \in \mathbb{C}^N \setminus D, \end{cases}$$

is a continuous psh exhaustion function on \mathbb{C}^N and $\tilde{u} = u$ on V.

Employing the methods of Coltoiu [Co] we now construct psh extensions with growth control over bounded sets in \mathbb{C}^n .

Proposition 1.2. Let χ be a psh function on a subvariety $X \subset \mathbb{C}^n$ and let v be a continuous psh function on \mathbb{C}^n with $\chi < v$ on X. If R > 0, there exists a psh function $\tilde{\chi} = \tilde{\chi}_R$ on \mathbb{C}^n so that $\tilde{\chi}|_X = \chi$ and $\tilde{\chi}(z) < v(z)$ for all $z \in \mathbb{C}^n$ with $||z|| \leq R$.

Proof. We use a similar argument to the one in the proof of Proposition 2 in [Co]. Consider the subvariety $A = (X \times \mathbb{C}) \cup (\mathbb{C}^n \times \{0\}) \subset \mathbb{C}^{n+1}$, and let

$$D = \{(z, w) \in X \times \mathbb{C} : \log |w| + \chi(z) < 0\} \cup (\mathbb{C}^n \times \{0\}) \subset A.$$

Since $D \cap (X \times \mathbb{C})$ is Runge in $X \times \mathbb{C}$, it follows that D is Runge in A. Let

$$K = \{(z, w) \in \mathbb{C}^{n+1} : \rho(z, w) = \max\{\log^+(||z||/R), \log|w| + v(z)\} \le 0\}.$$

Since v is continuous, ρ is a continuous psh exhaustion function on \mathbb{C}^{n+1} , so K is a polynomially convex compact set. As $\chi < v$ on X, we have $K \cap A \subset D$. By [Co, Theorem 3] there exists a Runge domain $\widetilde{D} \subset \mathbb{C}^{n+1}$, with $\widetilde{D} \cap A = D$ and $K \subset \widetilde{D}$. Let $\delta(z, w)$ denote the distance from $(z, w) \in \widetilde{D}$ to $\partial \widetilde{D}$ in the *w*-direction. Since \widetilde{D} is pseudoconvex, $-\log \delta$ is psh on \widetilde{D} (see e.g. [FS, Proposition 9.2]). Hence $\widetilde{\chi}(z) = -\log \delta(z, 0)$ is psh on \mathbb{C}^n , as $\mathbb{C}^n \times \{0\} \subset \widetilde{D}$. Since $\widetilde{D} \cap A = D$, it follows that $\widetilde{\chi}|_X = \chi$. Moreover, $K \subset \widetilde{D}$ implies that $\widetilde{\chi}(z) < v(z)$ for all $z \in \mathbb{C}^n$ with $\|z\| \leq R$.

The proof of Theorem A proceeds like this. Given a partition

$$\mathbb{C}^n = \bigcup \{ m_{j-1} < u \le m_j \},\$$

where $m_j \nearrow +\infty$, we apply Proposition 1.2 inductively to construct an extension dominated in each "annulus" $\{m_{j-1} < u \le m_j\}$ by $\gamma_j u$, where $\gamma_j > 1$ is an increasing sequence defined in terms of the m_j 's. Theorem A will follow by showing that it is possible to choose $\{m_j\}$ rapidly increasing so that $\lim \gamma_j$ is arbitrarily close to 1.

We fix next an increasing sequence $\{m_j\}_{j\geq -1}$ so that

$$m_{-1} = m_0 = 0 < m_1 < m_2 < \dots, \ \{u < m_1\} \neq \emptyset, \ m_j \nearrow +\infty.$$

Define inductively a sequence $\{\gamma_i\}_{i>0}$, as follows:

(1)
$$\gamma_0 = 1, \ \gamma_j(m_j - m_{j-1}) = \gamma_{j-1}(m_j - m_{j-2}) + 1 \text{ for } j \ge 1.$$

Clearly, $\gamma_j > \gamma_{j-1} > 1$ for all j > 1.

Proposition 1.3. Let X, φ , u be as in Theorem A with $M = \mathbb{C}^n$, and let $\{m_j\}$, $\{\gamma_j\}$ be as above. There exists a psh function ψ on \mathbb{C}^n so that $\psi|_X = \varphi$ and for all $z \in \mathbb{C}^n$ we have

$$\psi(z) < \begin{cases} \gamma_j u(z), \text{ if } m_{j-1} < u(z) \le m_j, \ j \ge 2, \\ \gamma_1 \max\{u(z), 0\}, \text{ if } u(z) \le m_1. \end{cases}$$

Proof. We introduce the sets

$$D_j = \{ z \in \mathbb{C}^n : u(z) < m_j \}, \ K_j = \{ z \in \mathbb{C}^n : u(z) \le m_j \}.$$

Since u is a continuous psh exhaustion function, K_j is a compact set. Let

 $\rho_j = \gamma_j \max\{u - m_{j-1}, 0\} - j, \ j \ge 0.$

Then ρ_j is psh on \mathbb{C}^n and (1) implies that

(2)
$$\rho_j(z) = \rho_{j-1}(z) \text{ if } u(z) = m_j, \ j \ge 1.$$

We claim that

(3)
$$\rho_j(z) \ge u(z) \text{ if } z \in \mathbb{C}^n \setminus D_j, \ j \ge 0.$$

Indeed, since $\gamma_j \geq 1$ and using (1) we obtain

$$\rho_{j}(z) - u(z) = (\gamma_{j} - 1)u(z) - \gamma_{j}m_{j-1} - j \ge (\gamma_{j} - 1)m_{j} - \gamma_{j}m_{j-1} - j$$

= $(\gamma_{j-1} - 1)m_{j} - \gamma_{j-1}m_{j-2} - j + 1$
$$\ge (\gamma_{j-1} - 1)m_{j-1} - \gamma_{j-1}m_{j-2} - (j-1).$$

So $x_j := (\gamma_j - 1)m_j - \gamma_j m_{j-1} - j \ge x_0 = 0$, and (3) is proved.

Let $\varphi_j = \max\{\varphi, -j\}$. We construct by induction on $j \ge 1$ a sequence of continuous psh functions ψ_j on \mathbb{C}^n with the following properties:

(4)
$$\psi_j(z) > \varphi_j(z) \text{ for } z \in X , \quad \int_{X \cap K_{j-1}} (\psi_j - \varphi_j) < 2^{-j}.$$

(5)
$$\psi_j(z) \ge \rho_j(z) \text{ for } z \in D_j , \ \psi_j(z) = \rho_j(z) \text{ for } z \in \mathbb{C}^n \setminus D_j.$$

(6)
$$\psi_j(z) < \psi_{j-1}(z) \text{ for } z \in K_{j-1}, \text{ where } \psi_0 = \rho_0 = \max\{u, 0\}.$$

Here the integral in (4) is with respect to the area measure on each irreducible component, i.e.

$$\int_{X \cap K} f := \sum \int_{Y \cap K} f \beta^{\dim Y},$$

where the sum is over all irreducible components Y of X which intersect K and β is the standard Kähler form on \mathbb{C}^n . (Note that this is a finite sum.)

Assume that the function ψ_{j-1} is constructed with the desired properties. We construct ψ_j by applying Proposition 1.2 with $\chi = \varphi_j$ and $v = \psi_{j-1}$. (If j = 1, ψ_1 is constructed in the same way by applying Proposition 1.2 with $\chi = \varphi_1$ and $v = \psi_0$.) By (4), $\varphi_j \leq \varphi_{j-1} < \psi_{j-1}$ on X (and for j = 1, clearly $\varphi_1 < \psi_0$ on X). Therefore Proposition 1.2 yields a psh function $\tilde{\varphi}_j$ on \mathbb{C}^n so that $\tilde{\varphi}_j|_X = \varphi_j$ and $\tilde{\varphi}_j < \psi_{j-1}$ on K_j . Using the standard regularization of $\tilde{\varphi}_j$ and the dominated

convergence theorem (as $\varphi_j \geq -j$) we obtain a continuous psh function $\widetilde{\psi}_j$ on \mathbb{C}^n which verifies

$$\widetilde{\psi}_j(z) > \varphi_j(z) \text{ for } z \in X , \quad \int_{X \cap K_j} (\widetilde{\psi}_j - \varphi_j) < 2^{-j}.$$

Moreover, since ψ_{j-1} is continuous, we can ensure by the Hartogs lemma that we also have $\widetilde{\psi}_j(z) < \psi_{j-1}(z)$ for $z \in K_j$.

We now define

$$\psi_j(z) = \begin{cases} \max\{\widetilde{\psi}_j(z), \rho_j(z)\}, \text{ if } z \in D_j, \\ \rho_j(z), \text{ if } z \in \mathbb{C}^n \setminus D_j. \end{cases}$$

By (5) and (2) we have $\tilde{\psi}_j < \psi_{j-1} = \rho_{j-1} = \rho_j$ on ∂D_j (for j = 1, recall that $\psi_0 = \rho_0$ by definition). So ψ_j is a continuous psh function on \mathbb{C}^n which verifies (5). On $X \setminus D_j$ we have by (3) that $\psi_j = \rho_j \ge u > \varphi_j$, while on $X \cap D_j$, $\psi_j \ge \tilde{\psi}_j > \varphi_j$. Since $\rho_j = -j \le \varphi_j < \tilde{\psi}_j$ on $X \cap K_{j-1}$, we see that $\psi_j = \tilde{\psi}_j$ on $X \cap K_{j-1}$ so

$$\int_{X \cap K_{j-1}} (\psi_j - \varphi_j) \le \int_{X \cap K_j} (\widetilde{\psi}_j - \varphi_j) < 2^{-j}$$

Hence ψ_j verifies (4). Finally, we have by (5), $\rho_j = -j < \rho_{j-1} \leq \psi_{j-1}$ on K_{j-1} (and for j = 1, $\rho_1 = -1 < \psi_0 = 0$ on K_0). Since $\tilde{\psi}_j < \psi_{j-1}$ on K_j we conclude that $\psi_j < \psi_{j-1}$ on K_{j-1} , so (6) is verified.

So we have constructed a sequence of continuous psh functions ψ_j on \mathbb{C}^n verifying properties (4)-(6). Since $\bigcup_{j>1} D_j = \mathbb{C}^n$, we have by (6) that the function

$$\psi(z) = \lim_{j \to \infty} \psi_j(z)$$

is well defined and psh on \mathbb{C}^n . As $\ldots < \psi_{j+2} < \psi_{j+1} < \psi_j$ on K_j , it follows that $\psi < \psi_j$ on K_j .

Suppose now that $z \in K_j \setminus D_{j-1}$, for some $j \ge 2$, so $m_{j-1} \le u(z) \le m_j$. By the above construction and property (5), we have

$$\widetilde{\psi}_j(z) < \psi_{j-1}(z) = \rho_{j-1}(z) \Longrightarrow \psi(z) < \psi_j(z) \le \max\{\rho_{j-1}(z), \rho_j(z)\} \le \gamma_j u(z).$$

Similarly, for $z \in K_1$ we have

$$\psi(z) < \psi_1(z) \le \max\{\rho_0(z), \rho_1(z)\} \le \gamma_1 \max\{u(z), 0\}.$$

Hence ψ satisfies the desired global upper estimates on \mathbb{C}^n .

Property (4) implies that $\psi(z) \ge \varphi(z)$ for every $z \in X$. Let K be a compact in \mathbb{C}^n and Y be an irreducible component of X so that $\varphi|_Y \not\equiv -\infty$. By (4) we have that for all j sufficiently large

$$0 \leq \int_{Y \cap K} (\psi_j - \varphi) = \int_{Y \cap K} (\psi_j - \varphi_j) + \int_{Y \cap K} (\varphi_j - \varphi) \leq 2^{-j} + \int_{Y \cap K} (\varphi_j - \varphi).$$

Hence by dominated convergence, $\int_{Y \cap K} (\psi - \varphi) = 0$, which shows that $\psi = \varphi$ on Y.

Assume now that Y is an irreducible component of X so that $\varphi|_Y \equiv -\infty$. Then using (4) and the monotone convergence theorem we conclude that

$$\int_{Y \cap K} \psi = \lim_{j \to \infty} \int_{Y \cap K} \psi_j = \lim_{j \to \infty} \left(\int_{Y \cap K} (\psi_j - \varphi_j) + \int_{Y \cap K} \varphi_j \right) = -\infty,$$

so $\psi|_{Y} \equiv -\infty$. Therefore $\psi = \varphi$ on X, and the proof is finished.

Proof of Theorem A. We consider first the case $M = \mathbb{C}^n$. Fix c > 1. We define inductively a sequence $\{m_j\}$ with the following properties: $m_{-1} = m_0 = 0 < m_1$, $\{u < m_1\} \neq \emptyset$, and for $j \ge 1$, $m_j > m_{j-1}$ is chosen large enough so that

$$a_j = \frac{m_{j-1} - m_{j-2} + 1}{m_j - m_{j-1}} \le \frac{\log c}{2^j}$$
.

Since $\gamma_j \ge \gamma_0 = 1$ we have by (1),

$$\gamma_j(m_j - m_{j-1}) \le \gamma_{j-1}(m_j - m_{j-2} + 1) \Longrightarrow \gamma_j \le \gamma_{j-1}(1 + a_j).$$

Thus

$$\gamma_j < \gamma = \prod_{j=1}^{\infty} (1+a_j), \ \log \gamma \le \sum_{j=1}^{\infty} a_j \le \log c.$$

Let $\psi = \psi_c$ be the psh extension of φ provided by Proposition 1.3 for this sequence $\{m_i\}$. Then for every $z \in \mathbb{C}^n$ we have

$$\psi(z) < \gamma \max\{u(z), 0\} \le c \max\{u(z), 0\}.$$

Assume now that M is a Stein manifold of dimension n. Then M can be properly embedded in \mathbb{C}^{2n+1} , hence we may assume that M is a complex submanifold of \mathbb{C}^{2n+1} (see e.g. [Ho, Theorem 5.3.9]). Proposition 1.1 implies the existence of a continuous psh exhaustion function \tilde{u} on \mathbb{C}^{2n+1} so that $\tilde{u} = u$ on M. By what we already proved, given c > 1 there exists a psh function $\tilde{\psi}$ on \mathbb{C}^{2n+1} which extends φ and such that $\tilde{\psi} < c \max{\{\tilde{u}, 0\}}$ on \mathbb{C}^{2n+1} . We let $\psi = \tilde{\psi}|_{M}$. \Box

We end this section by noting that some hypothesis on the growth of u is necessary in Theorem A. Indeed, suppose that X is a submanifold of \mathbb{C}^n for which there exists a non-constant negative psh function φ on X. Then any psh extension of φ to \mathbb{C}^n cannot be bounded above. However, by Theorem A, given any $\varepsilon > 0$ there exists a psh function $\psi = \psi_{\varepsilon}$ so that $\psi \mid_X = \varphi$ and $\psi(z) < \varepsilon \log^+ ||z||$ on \mathbb{C}^n .

2. EXTENSION OF QPSH FUNCTIONS

Let V be a compact Kähler manifold equipped with a Kähler form ω . We let $PSH(V,\omega)$ denote the set of ω -psh functions on V. These are upper semicontinuous functions $\varphi \in L^1(V, [-\infty, +\infty))$ such that $\omega + dd^c \varphi \ge 0$, where $d = \partial + \overline{\partial}$ and $d^c = \frac{1}{2\pi i}(\partial - \overline{\partial})$. We refer the reader to [GZ] for basic properties of ω -psh functions.

Let X be an analytic subvariety of V. Recall that an upper semicontinuous function $\varphi : X \to [-\infty, +\infty)$ is called $\omega |_X$ -psh if $\varphi \not\equiv -\infty$ on X and if there exist an open cover $\{U_i\}_{i \in I}$ of X and psh functions φ_i, ρ_i defined on U_i , where ρ_i is smooth and $dd^c \rho_i = \omega$, so that $\rho_i + \varphi = \varphi_i$ holds on $X \cap U_i$, for every $i \in I$. Moreover, φ is called *strictly* $\omega |_X$ -psh if it is $(1 - \varepsilon) \omega |_X$ -psh for some small $\varepsilon > 0$. The current $\omega |_X + dd^c \varphi$ is then called a Kähler current on X (see [EGZ1, section 5.2]). We denote by $PSH(X, \omega |_X)$, resp. $PSH^+(X, \omega |_X)$, the class of $\omega |_X$ -psh, resp. strictly $\omega |_X$ -psh functions on X.

Every ω -psh function φ on V yields, by restriction, an $\omega|_X$ -psh function $\varphi|_X$ on X, as soon as $\varphi|_X \neq -\infty$. The question we address here is whether this restriction operator is surjective. In other words, is there equality

$$PSH(X, \omega|_X) \stackrel{!}{=} PSH(V, \omega)|_X.$$

2.1. The smooth case. We start with the elementary observation that smooth strictly ω -psh functions can easily be extended.

Proposition 2.1. Let V be a compact Kähler manifold equipped with a Kähler form ω , and let X be a complex submanifold of V. Then

$$PSH^+(X,\omega|_X) \cap \mathcal{C}^{\infty}(X,\mathbb{R}) = \left(PSH^+(V,\omega) \cap \mathcal{C}^{\infty}(V,\mathbb{R})\right)|_X.$$

We include a proof for the convenience of the reader, although this is probably part of the "folklore" (see e.g. [Sch] for the case where ω is a Hodge form).

Proof. Let $\varphi \in \mathcal{C}^{\infty}(X, \mathbb{R})$ be such that $(1 - \varepsilon)\omega|_X + dd^c \varphi \ge 0$ on X, for some $\varepsilon > 0$. We first choose $\tilde{\varphi}$ to be any smooth extension of φ to V. Consider

$$\psi := \tilde{\varphi} + A\chi \operatorname{dist}(\cdot, X)^2,$$

where χ is a test function supported in a small neighborhood of X and such that $\chi \equiv 1$ near X. Here *dist* is any Riemannian distance on V, for instance the distance associated to the Kähler metric ω . Then ψ is yet another smooth extension of φ to V, which now satisfies $(1 - \varepsilon/2)\omega + dd^c \psi \ge 0$ near X, if A is chosen large enough.

The function $\log(\operatorname{dist}(\cdot, X)^2)$ is well defined and qpsh in a neighborhood of X. Let χ be a test function supported in this neighborhood so that $\chi \equiv 1$ near X. The function $u = \chi \log(\operatorname{dist}(\cdot, X)^2)$ is $N\omega$ -psh on V for a large integer N. Moreover, $\exp(u)$ is smooth and $X = \{u = -\infty\}$. Replacing ω by $N\omega$, φ by $N\varphi$, and ψ by $N\psi$, we may assume that N = 1. Set now

$$\psi_C := \frac{1}{2} \log \left[e^{2\psi} + e^{u+C} \right].$$

This again is a smooth extension of φ , and a straightforward computation yields

$$dd^c \psi_C \ge \frac{2e^{2\psi} dd^c \psi + e^{u+C} dd^c u}{2(e^{2\psi} + e^{u+C})}$$

Hence

$$\left(1 - \frac{\varepsilon}{2}\right)\omega + dd^c\psi_C \ge \frac{2e^{2\psi}\left[\left(1 - \frac{\varepsilon}{2}\right)\omega + dd^c\psi\right] + (1 - \varepsilon)e^{u + C}\omega}{2(e^{2\psi} + e^{u + C})} \ge 0,$$

if C is chosen large enough.

This proof breaks down when φ is singular and hence a different approach is needed. We consider in the next section the particular case when ω is a Hodge form.

2.2. **Proof of Theorem B.** We assume here that ω is a *Hodge form*, i.e. that the cohomology class $\{\omega\}$ belongs to $H^2(V,\mathbb{Z})$ (more precisely to the image of $H^2(V,\mathbb{Z})$) in $H^2(V,\mathbb{R})$ under the mapping induced by the inclusion $\mathbb{Z} \hookrightarrow \mathbb{R}$). We prove the following more precise version of Theorem B.

Theorem 2.2. Let X be a subvariety of a projective manifold V equipped with a Hodge form ω . If $\varphi \in PSH(X, \omega|_X)$ then given any constant a > 0 there exists $\psi \in PSH(V, \omega)$ so that $\psi|_X = \varphi$ and $\max_V \psi < \max_X \varphi + a$.

In the assumptions of Theorem 2.2 there exists a positive holomorphic line bundle L on V whose first Chern class $c_1(L)$ is represented by ω . By Kodaira's embedding theorem L is ample, hence for large k there exists an embedding $\pi : V \hookrightarrow \mathbb{P}^n$ such that $L^k = \pi^* \mathcal{O}(1)$.

Replacing ω by $k\omega$, φ by $k\varphi$, we can assume that $L = \mathcal{O}(1)$, V is an algebraic submanifold of the complex projective space \mathbb{P}^n , and $\omega = \omega_{FS}|_V$ is the Fubini-Study Kähler form. Hence X is an algebraic subvariety of \mathbb{P}^n , and Theorem 2.2 follows if we show that ω_{FS} -psh functions on X extend to ω_{FS} -psh functions on \mathbb{P}^n .

Therefore we assume in the sequel that $X \subset V = \mathbb{P}^n$ and ω is the Fubini-Study Kähler form on \mathbb{P}^n . Let $[z_0 : \ldots : z_n]$ denote the homogeneous coordinates. Without loss of generality, we may assume that they are chosen so that no coordinate hyperplane $\{z_i = 0\}$ contains any irreducible component of X.

Let

$$\theta(z) = \log \frac{\max\{|z_0|, \dots, |z_n|\}}{\sqrt{|z_0|^2 + \dots + |z_n|^2}}, \ z = [z_0 : \dots : z_n] \in \mathbb{P}^n.$$

This is an ω -psh function and for all $z \in \mathbb{P}^n$,

$$-m \le \theta(z) \le 0$$
, where $m = \log \sqrt{n+1}$.

We start by noting that Theorem A yields special subextensions of ω -psh functions on X.

Lemma 2.3. Let $\varepsilon \geq 0$ and u be a continuous $(1 + \varepsilon)\omega$ -psh function on \mathbb{P}^n so that $u(z) \leq 0$ for all $z \in \mathbb{P}^n$. If c > 1 and φ is an ω -psh function on X so that $\varphi < u$, then there exists a $c\omega$ -psh function ψ on \mathbb{P}^n so that

$$\frac{1}{c}\psi(z) \le \frac{1}{1+\varepsilon}u(z), \ \forall z \in \mathbb{P}^n,$$

and

$$\psi(z) = \varphi(z) + (c-1)\theta(z) + (c-1)\min_{\zeta \in \mathbb{P}^n} u(\zeta), \ \forall z \in X.$$

Proof. Let

$$M = -\min_{\zeta \in \mathbb{P}^n} u(\zeta) \ge 0.$$

We work first in an affine chart $\{z_j = 1\} \equiv \mathbb{C}^n$. Let $X_j = X \cap \{z_j = 1\}$ and let $\rho_j \geq 0$ be the potential of ω in this chart with $\rho_j(0) = 0$. Then $\varphi + \rho_j$ is psh on X_j and since $u \leq 0$,

$$\varphi + \rho_j + M < u + \rho_j + M \le \frac{1}{1 + \varepsilon} u + \rho_j + M$$
on X_j .

Note that $(1 + \varepsilon)^{-1}u + \rho_j + M \ge 0$ is a continuous psh exhaustion function on \mathbb{C}^n . Theorem A yields a psh function $\widetilde{\psi}$ on \mathbb{C}^n so that

$$\widetilde{\psi} < \frac{c}{1+\varepsilon} u + c\rho_j + cM \text{ on } \mathbb{C}^n, \ \widetilde{\psi} = \varphi + \rho_j + M \text{ on } X_j.$$

The function $\psi_j = \tilde{\psi} - c\rho_j - cM$ extends uniquely to a $c\omega$ -psh function on \mathbb{P}^n which verifies

$$\psi_j \leq \frac{c}{1+\varepsilon} u \text{ on } \mathbb{P}^n.$$

Moreover on $X \cap \{z_j = 1\}$ we have

$$\psi_j = \varphi - (c-1)\rho_j - (c-1)M = \varphi + (c-1)\theta_j - (c-1)M,$$

where

$$\theta_j(z) = \log \frac{|z_j|}{\sqrt{|z_0|^2 + \ldots + |z_n|^2}}.$$

Hence $\psi_j = -\infty$ on $X \cap \{z_j = 0\}$.

We finally let $\psi = \max\{\psi_0, \dots, \psi_n\}$. This is a $c\omega$ -psh function on \mathbb{P}^n which verifies the desired conclusions, since $\theta = \max\{\theta_0, \dots, \theta_n\}$.

Proof of Theorem 2.2. Fix a > 0. Replacing φ by $\varphi - \max_X \varphi - a$ we may assume that $\max_X \varphi = -a$. We will show that there exists a sequence of smooth ω -psh functions φ_j on \mathbb{P}^n which decrease pointwise on \mathbb{P}^n to a negative ω -psh function ψ so that $\psi = \varphi$ on X.

Let X' be the union of the irreducible components W of X so that $\varphi|_W \not\equiv -\infty$. We first construct by induction on $j \geq 1$ a sequence of numbers $\varepsilon_j \searrow 0$ and a sequence of negative smooth $(1 + \varepsilon_j)\omega$ -psh functions ψ_j on \mathbb{P}^n so that for all $j \geq 2$

$$\frac{\psi_j}{1+\varepsilon_j} < \frac{\psi_{j-1}}{1+\varepsilon_{j-1}} \text{ on } \mathbb{P}^n , \quad \psi_{j-1} > \varphi \text{ on } X , \quad \int_{X'} (\psi_j - \varphi) < \frac{1}{j} , \quad \int_W \psi_j < -j ,$$

for every irreducible component W of X where $\varphi|_W \equiv -\infty$. Here the integrals are with respect to the area measure on each irreducible component X_j of X, i.e.

$$\int_X f := \sum_{X_j} \int_{X_j} f \, \omega^{\dim X_j}.$$

Let $\varepsilon_1 = 1$, $\psi_1 = 0$, and assume that ε_{j-1} , ψ_{j-1} , where $j \ge 2$, are constructed with the above properties. Since $\varphi < \psi_{j-1}|_X$ and the latter is continuous on the compact set X, we can find $\delta > 0$ so that $\varphi < \psi_{j-1} - \delta$ on X.

Let c > 1. By Lemma 2.3, there exists a $c\omega$ -psh function ψ_c so that

$$\frac{\psi_c}{c} \le \frac{\psi_{j-1} - \delta}{1 + \varepsilon_{j-1}} \text{ on } \mathbb{P}^n, \quad \psi_c = \varphi + (c-1)\theta - (c-1)M_{j-1} \text{ on } X_j$$

where

$$M_{j-1} = \delta - \min_{\zeta \in \mathbb{P}^n} \psi_{j-1}(\zeta) \ge 0.$$

We can regularize ψ_c on \mathbb{P}^n : there exists a sequence of smooth $c\omega$ -psh functions decreasing to ψ_c on \mathbb{P}^n . Therefore we can find a smooth $c\omega$ -psh function ψ'_c on \mathbb{P}^n so that

$$\frac{\psi'_c}{c} < \frac{\psi_{j-1} - \frac{\delta}{2}}{1 + \varepsilon_{j-1}} \text{ on } \mathbb{P}^n, \quad \psi'_c > \varphi + (c-1)\theta - (c-1)M_{j-1} \ge \varphi - (c-1)(m+M_{j-1}) \text{ on } X.$$

By dominated, resp. monotone convergence, we can in addition ensure that

$$\int_{X'} (\psi'_c - \varphi) \le \int_{X'} (\psi'_c - \varphi - (c-1)\theta + (c-1)M_{j-1}) < c-1$$
$$\int_W \psi'_c < -j - (c-1)(m+M_{j-1})|W|,$$

for every irreducible component W of X where $\varphi|_W \equiv -\infty$. Here |W| denotes the (projective) area of W.

Now let $\psi_c'' = \psi_c' + (c-1)(m+M_{j-1})$. Then on \mathbb{P}^n we have

$$\frac{\psi_c''}{c} < \frac{\psi_{j-1} - \frac{\delta}{2}}{1 + \varepsilon_{j-1}} + \frac{(c-1)(m+M_{j-1})}{c} < \frac{\psi_{j-1}}{1 + \varepsilon_{j-1}} - \frac{\delta}{4} + (c-1)(m+M_{j-1}).$$

Moreover, $\psi_c'' > \varphi$ on X and

$$\int_{X'} (\psi_c'' - \varphi) = \int_{X'} (\psi_c' - \varphi) + (c - 1)(m + M_{j-1})|X'|$$

$$< (c - 1)(1 + m|X'| + M_{j-1}|X'|),$$

$$\int_W \psi_c'' = \int_W \psi_c' + (c - 1)(m + M_{j-1})|W| < -j,$$

for every irreducible component W of X where $\varphi|_W \equiv -\infty$.

We take $c = 1 + \varepsilon_j$ and $\psi_j = \psi_c''$, where $\varepsilon_j > 0$ is so that

$$\varepsilon_j < \varepsilon_{j-1}/2$$
, $\varepsilon_j(m+M_{j-1}) < \frac{\delta}{4}$, $\varepsilon_j(1+m|X'|+M_{j-1}|X'|) < \frac{1}{j}$.

Then ε_j , ψ_j have the desired properties.

We conclude that $\varphi_j = (1 + \varepsilon_j)^{-1} \psi_j$ is a decreasing sequence of smooth negative ω -psh function on \mathbb{P}^n , so that $\varphi_j > (1 + \varepsilon_j)^{-1} \varphi > \varphi$ on X. Hence $\psi = \lim_{j \to \infty} \varphi_j$ is a negative ω -psh function on \mathbb{P}^n and $\psi \ge \varphi$ on X. Note that

$$\int_{X'} (\varphi_j - \varphi) = \frac{1}{1 + \varepsilon_j} \int_{X'} (\psi_j - \varphi) - \frac{\varepsilon_j}{1 + \varepsilon_j} \int_{X'} \varphi < \frac{1}{j} - \frac{\varepsilon_j}{1 + \varepsilon_j} \int_{X'} \varphi ,$$
$$\int_W \varphi_j = \frac{1}{1 + \varepsilon_j} \int_W \psi_j < -\frac{j}{2} ,$$

for every irreducible component W of X where $\varphi|_W \equiv -\infty$. It follows that $\psi = \varphi$ on X and the proof of Theorem 2.2 is finished. \Box

3. Algebraic subvarieties of \mathbb{C}^n

If X is an analytic subvariety of \mathbb{C}^n and γ is a positive number, we denote by $\mathcal{L}_{\gamma}(X)$ the *Lelong class* of psh functions φ on X which verify $\varphi(z) \leq \gamma \log^+ ||z|| + C$ for all $z \in X$, where C is a constant that depends on φ . We let $\mathcal{L}(X) = \mathcal{L}_1(X)$. By Theorem A, functions $\varphi \in \mathcal{L}(X)$ admit a psh extension in each class $\mathcal{L}_{\gamma}(\mathbb{C}^n)$, for every $\gamma > 1$.¹

We assume in the sequel that X is an *algebraic* subvariety of \mathbb{C}^n and address the question whether it is necessary to allow the arbitrarily small additional growth. More precisely, is it true that

$$\mathcal{L}(X) \stackrel{?}{=} \mathcal{L}(\mathbb{C}^n) |_X,$$

i.e. is every psh function with logarithmic growth on X the restriction of a globally defined psh function with logarithmic growth? We will give a criterion for this to hold, but show that in general this is not the case.

¹If X is algebraic this result is claimed in [BL, Proposition 3.3], but there is a gap in their proof.

3.1. Extension preserving the Lelong class. Consider the standard embedding

$$z \in \mathbb{C}^n \hookrightarrow [1:z] \in \mathbb{P}^n,$$

where [t:z] denote the homogeneous coordinates on \mathbb{P}^n . Let ω be the Fubini-Study Kähler form and let

$$\rho(t, z) = \log \sqrt{|t|^2 + ||z||^2}$$

be its logarithmically homogeneous potential on \mathbb{C}^{n+1} .

We denote by \overline{X} the closure of X in \mathbb{P}^n , so \overline{X} is an algebraic subvariety of \mathbb{P}^n . It is well known that the class $PSH(\mathbb{P}^n, \omega)$ is in one-to-one correspondence with the Lelong class $\mathcal{L}(\mathbb{C}^n)$ (see [GZ]). Let us look at the connection between ω -psh functions on \overline{X} and the class $\mathcal{L}(X)$.

The mapping

$$F_X : PSH(\overline{X}, \omega \mid_{\overline{X}}) \longmapsto \mathcal{L}(X), \ (F_X \varphi)(z) = \rho(1, z) + \varphi([1 : z]),$$

is well defined and injective. However, it is in general not surjective, as shown by Examples 3.2 and 3.3 that follow.

Conversely, a function $\eta \in \mathcal{L}(X)$ induces an upper semicontinuous function $\tilde{\eta}$ on \overline{X} defined in the obvious way:

$$\widetilde{\eta}([t:z]) = \begin{cases} \eta(z) - \rho(1,z), & \text{if } t = 1, \ z \in X, \\\\ \limsup_{[1:\zeta] \to [0:z], \zeta \in X} (\eta(\zeta) - \rho(1,\zeta)), \text{ if } t = 0, \ [0:z] \in \overline{X} \setminus X. \end{cases}$$

The function $\tilde{\eta}$ is in general only weakly ω -psh on \overline{X} , i.e. it is bounded above on \overline{X} and it is $\omega |_{\overline{X}_r}$ -psh on the set \overline{X}_r of regular points of \overline{X} . This notion is in direct analogy to that of weakly psh function on an analytic variety (see [D2, section 1]). We do not pursue it any further here.

Note that $\eta \in F_X\left(PSH(\overline{X}, \omega \mid_{\overline{X}})\right)$ if and only if $\tilde{\eta} \in PSH(\overline{X}, \omega \mid_{\overline{X}})$. The following simple characterization is a consequence of Theorem B.

Proposition 3.1. Let $\eta \in \mathcal{L}(X)$. The following are equivalent:

- (i) There exists $\psi \in \mathcal{L}(\mathbb{C}^n)$ so that $\psi = \eta$ on X.
- (*ii*) $\widetilde{\eta} \in PSH(\overline{X}, \omega \mid_{\overline{X}}).$

(iii) For every point $a \in \overline{X} \setminus X$ the following holds: if (X_j, a) are the irreducible components of the germ (\overline{X}, a) then the value

$$\limsup_{X_j \ni [1:\zeta] \to a} (\eta(\zeta) - \rho(1,\zeta))$$

is independent of j.

In particular, if the germs (\overline{X}, a) are irreducible for all points $a \in \overline{X} \setminus X$ then $\mathcal{L}(X) = \mathcal{L}(\mathbb{C}^n)|_X$.

Proof. Assume that (i) holds. It follows that $\tilde{\eta} = \varphi |_{\overline{\chi}}$, where

$$\varphi([t:z]) := \begin{cases} \psi(z) - \rho(1,z), & \text{if } t = 1, \\ \limsup_{[1:\zeta] \to [0:z]} (\psi(\zeta) - \rho(1,\zeta)), & \text{if } t = 0, \end{cases}$$

is an ω -psh function on \mathbb{P}^n . Hence $\widetilde{\eta} \in PSH(\overline{X}, \omega|_{\overline{X}})$.

Conversely, if (*ii*) holds then by Theorem B there exists an ω -psh function φ on \mathbb{P}^n which extends $\tilde{\eta}$. Hence $\psi(z) = \rho(1, z) + \varphi([1 : z])$ is an extension of η and $\psi \in \mathcal{L}(\mathbb{C}^n)$.

The equivalence of (ii) and (iii) follows easily from [D2, Theorem 1.10].

3.2. Explicit examples. In view of section 3.1, it is easy to construct examples of algebraic curves $X \subset \mathbb{C}^2$ and functions in $\mathcal{L}(X)$ which do not admit an extension in $\mathcal{L}(\mathbb{C}^2)$. We write $z = (x, y) \in \mathbb{C}^2$.

Example 3.2. Let $X = \{y = 0\} \cup \{y = 1\} \subset \mathbb{C}^2 \text{ and } \eta \in \mathcal{L}(X), \text{ where}$ $\pi(z) = \int \rho(1, z), \quad \text{if } z = (x, 0),$

$$\eta(z) = \begin{cases} \rho(z, z), & \text{if } z = (x, 0), \\ \rho(1, z) + 1, & \text{if } z = (x, 1). \end{cases}$$

The function $\tilde{\eta}$ is not ω -psh on $\overline{X} = \{y = 0\} \cup \{y = t\}$, hence η does not have an extension in $\mathcal{L}(\mathbb{C}^2)$. Indeed, the maximum principle is violated along $\{y = 0\}$ near the point a = [0:1:0], since $\tilde{\eta}([t:1:0]) = 0$ for $t \neq 0$, while $\tilde{\eta}([t:1:t]) = 1$.

With a little more effort we can give an example as above where X is an irreducible curve. Let $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$.

Example 3.3. Let $X \subset \mathbb{C}^2$ be the irreducible cubic with equation $xy = x^3 + 1$. Then $\overline{X} = \{[t:x:y] \in \mathbb{P}^2 : xyt = x^3 + t^3\}, \overline{X} = X \cup \{a\}, a = [0:0:1].$

The germ (\overline{X}, a) has two irreducible components X_1, X_2 , both are smooth at a, X_1 being tangent to the line $\{x = 0\}$, and X_2 to the line $\{t = 0\}$.

Note that in fact $X \subset \mathbb{C}^* \times \mathbb{C}$ is the graph of the rational function $y = x^2 + x^{-1}$, $x \in \mathbb{C}^*$. If $(x, y) \in X$ and $x \to 0$ then $(x, y) \to a$ along X_1 , while as $x \to \infty$ then $(x, y) \to a$ along X_2 . The function

$$u(x,y) = \max\{-\log|x|, 2\log|x|+1\}$$

is psh in $\mathbb{C}^* \times \mathbb{C}$. It is easy to check that $\eta := u \mid_X \in \mathcal{L}(X)$ and

$$\limsup_{X_1 \ni [1:\zeta] \to a} (\eta(\zeta) - \rho(1,\zeta)) = 0, \quad \limsup_{X_2 \ni [1:\zeta] \to a} (\eta(\zeta) - \rho(1,\zeta)) = 1.$$

Hence η does not admit an extension in $\mathcal{L}(\mathbb{C}^2)$.

We conclude this section with an example of a cubic X in \mathbb{C}^2 and a psh function on X of the form $\eta = \log |P|$, where P is a polynomial, so that η admits a "transcendental" extension with exactly the same growth, but small additional growth is necessary if we look for an "algebraic" extension.

Proposition 3.4. Let $X = \{x = y^3\}$ and $\eta(x, y) = \log |1 + y|$, so $\eta|_X \in \mathcal{L}_{1/3}(X)$.

Given $k \ge 1$, there is a polynomial $Q_k(x, y)$ of degree k + 1 so that $Q_k(y^3, y) = (y+1)^{3k}$. In particular, $\psi_k = \frac{1}{3k} \log |Q_k| \in \mathcal{L}_{(k+1)/3k}(\mathbb{C}^2)$ is an extension of $\eta|_X$.

There exists no polynomial Q(x,y) of degree k so that $Q(y^3,y) = (y+1)^{3k}$. However, $\eta|_x$ has an extension in $\mathcal{L}_{1/3}(\mathbb{C}^2)$.

Proof. We construct Q_k by replacing y^3 by x in the polynomial

$$(y+1)^{3k} = \sum_{j=0}^{3k} \binom{3k}{j} y^j.$$

Since $j = 3[j/3] + r_j, r_j \in \{0, 1, 2\}$, it follows that

$$Q_k(x,y) = \sum_{j=0}^{3k} \binom{3k}{j} x^{[j/3]} y^{r_j} = 3kx^{k-1}y^2 + l.d.t.$$

We now check that there is no polynomial Q(x, y) of degree k so that $Q(y^3, y) = (y+1)^{3k}$. Indeed, if $Q(x, y) = \sum_{j+l \le k} c_{jl} x^j y^l$ then

$$Q(y^3, y) = c_{k0}y^{3k} + c_{k-1,1}y^{3k-2} + l.d.t.$$

does not contain the monomial y^{3k-1} .

Note that $\overline{X} = \{xt^2 = y^3\} = X \cup \{a\}$, where a = [0:1:0], so the germ (\overline{X}, a) is irreducible. Proposition 3.1 implies that $\eta|_X$ has an extension in $\mathcal{L}_{1/3}(\mathbb{C}^2)$. \Box

We conclude with some remarks regarding our last example. If X is an algebraic subvariety of \mathbb{C}^n and f is a holomorphic function on X, f is said to have polynomial growth if there is an integer N(f) and a constant A so that

$$|f(z)| \le A(1 + ||z||)^{N(f)}, \ \forall z \in X.$$

Then it is well known that there exists a polynomial P of degree at most $N(f) + \varepsilon(X)$ so that $P|_X = f$, where $\varepsilon(X) > 0$ is a constant depending only on X (see e.g. [Bj] and references therein). However, if $\overline{X} \subset \mathbb{P}^N$ is irreducible at each of its points at infinity then by Proposition 3.1 the psh function $\eta = N(f)^{-1} \log |f| \in \mathcal{L}(X)$ has a psh extension in the Lelong class $\mathcal{L}(\mathbb{C}^n)$.

On the other hand, Demailly [D1] has shown that in the case of the transcendental curve $X = \{e^x + e^y = 1\}$ any holomorphic function f on X, of polynomial growth, has a polynomial extension of the same degree to \mathbb{C}^n . Hence it is natural to ask if for this curve one has that $\mathcal{L}(X) = \mathcal{L}(\mathbb{C}^n)|_X$.

References

- [Bj] J. E. Björk, On extensions of holomorphic functions satisfying a polynomial growth condition on algebraic varieties in \mathbb{C}^n , Ann. Inst. Fourier **24** (1974), 157–165.
- [BK] Z. Błocki and S. Kołodziej, On regularization of plurisubharmonic functions on manifolds, Proc. Amer. Math. Soc 135 (2007), 2089–2093.
- [BL] T. Bloom and N. Levenberg, Distribution of nodes on algebraic curves in \mathbb{C}^N , Ann. Inst. Fourier (Grenoble) **53** (2003), 1365–1385.
- [Ch] E. M. Chirka, *Complex Analytic Sets*, Kluwer Academic Publishers, 1989.
- [Co] M. Coltoiu, Traces of Runge domains on analytic subsets, Math. Ann. 290 (1991), 545– 548.
- [D1] J. P. Demailly, Fonctions holomorphes à croissance polynomiale sur la surface d'équation $e^x + e^y = 1$, Bull. Sc. math. **103** (1979), 179–191.
- [D2] J. P. Demailly, Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines, Mém. Soc. Math. France (N.S.) No. 19 (1985), 1–125.
- [D3] J. P. Demailly, Regularization of closed positive currents and intersection theory, J. Algebraic Geom. 1 (1992), 361–409.
- [DZ] S. Dinew and Z. Zhang, Stability of bounded solutions for degenerate complex Monge-Ampère equation, Adv. Math. (2010), doi:10.1016/j.aim.2010.03.001.
- [EGZ1] P. Eyssidieux, V. Guedj and A. Zeriahi, Singular Kähler-Einstein metrics, J. Amer. Math. Soc. 22 (2009), 607–639.
- [EGZ2] P. Eyssidieux, V. Guedj and A. Zeriahi, Viscosity solutions to degenerate complex Monge-Ampère equations, preprint (2010).

- [FN] J. E. Fornæss and R. Narasimhan, The Levi problem on complex spaces with singularities, Math. Ann. 248 (1980), 47–72.
- [FS] J. E. Fornæss and B. Stensønes, Lectures on Counterexamples in Several Complex Variables, Princeton University Press, 1987.
- [GZ] V. Guedj and A. Zeriahi, Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal. 15 (2005), 607–639.
- [Ho] L. Hörmander, An Introduction to Complex Analysis in Several Variables, 3rd ed. (revised), North-Holland, 1990.
- [Sa] A. Sadullaev, Extension of plurisubharmonic functions from a submanifold, (Russian), Dokl. Akad. Nauk USSR 5 (1982), 3–4.
- [Sch] G. Schumacher, Asymptotics of Kähler-Einstein metrics on quasi-projective manifolds and an extension theorem on holomorphic maps, Math. Ann. 311 (1998), 631–645.
- [Si] Y. T. Siu, Every Stein subvariety admits a Stein neighborhood, Invent. Math. 38 (1976), 89–100.

D. COMAN: DCOMAN@SYR.EDU, DEPARTMENT OF MATHEMATICS, SYRACUSE UNIVERSITY, SYRACUSE, NY 13244-1150, USA

V. GUEDJ: GUEDJ@CMI.UNIV-MRS.FR, UNIVERSITÉ AIX-MARSEILLE 1, LATP, 13453 MARSEILLE CEDEX 13, FRANCE

A. ZERIAHI: ZERIAHI@PICARD.UPS-TLSE.FR, LABORATOIRE EMILE PICARD, UMR 5580, UNI-VERSITÉ PAUL SABATIER, 118 ROUTE DE NARBONNE, 31062 TOULOUSE CEDEX 04, FRANCE