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ABSTRACT

This paper extends the application of Constrained Ant Colony Optimization Algorithms (CACOAs) to

optimal operation of multi-reservoir systems. Three different formulations of the constrained Ant

Colony Optimization (ACO) are outlined here using Max-Min Ant System for the solution of multi-

reservoir operation problems. In the first two versions, called Partially Constrained ACO algorithms,

the constraints of the multi-reservoir operation problems are satisfied partially. In the third

formulation, all the constraints of the underlying problem are implicitly satisfied by the provision of

tabu lists to the ants which contain only feasible options. The ants are, therefore, forced to construct

feasible solutions and hence the method is referred to as a Fully Constrained ACO algorithm. The

proposed constrained ACO algorithms are formulated for both possible cases of taking storage/

release volumes as the decision variables of the problem. The proposed methods are used to

optimally solve the well-known problems of four- and ten-reservoir operations and the results are

presented and compared with those of the conventional unconstrained ACO algorithm and existing

methods in the literature. The results indicate the superiority of the proposed methods over

conventional ACOs and existing methods to optimally solve large scale multi-reservoir operation

problems.
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LIST OF NOTATIONS

F Benefit function

K Total number of reservoirs

T Total number of operation periods

bk(t) Benefit function of reservoir k at period t

Rk(t) Release from reservoir k at period t

Sk(t) Storage at period t in reservoir k

Ik(t) Inflows in period t to reservoir k

Smin
k Minimum storage of reservoir k

Smax
k Maximum storage of reservoir k

Rmin
k Minimum release from reservoir k

Rmax
k Maximum release from reservoir k

D Set of decision points

L Set of options

C Set of costs associated with options L

ηij Heuristic value corresponding to option j at

decision point i

f Benefit function

fp Penalized benefit function

CSVk(t) Measure of constraint violation at period t of

the reservoir k

αp Penalty parameter
�S
min
k (t), �S

max
k (t) New bounds calculated for the

storage volume of reservoir k at time

period t
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α The parameter that controls the relative

weight of the pheromone trail

β The parameter that controls the relative

weight of the heuristic value

Pbest A specified probability by which each com-

ponent of the current global-best solution

will be selected by ants in the next iteration

ρ Pheromone evaporation factor

INTRODUCTION

Reservoir operation is a complex problem that often

involves many decision variables and multiple objectives

as well as considerable risk and uncertainty (Oliveira &

Loucks ). Applying optimization techniques for reser-

voir operation is not a new idea. Several techniques for

optimal reservoir operation have been developed and

some of their limitations have been discussed in detail

(Yeh ). Various techniques have been applied in an

attempt to improve the efficiency of reservoir operation.

These techniques include Linear Programming (LP), Non-

linear Programming (NLP), Dynamic Programming (DP),

and more recently heuristic methods such as Genetic Algor-

ithms (GA), Ant Colony Optimization (ACO), Particle

Swarm Optimization (PSO), Shuffled Complex Evolution

(SCE), etc.

In reservoir operation, LP is well known as the most

favored optimization technique with many advantages. It

is easy to understand and does not require any initial sol-

ution. A number of examples of applying LP to reservoir

operation are provided by Yeh (). Some recent appli-

cations of LP for reservoir operation problems are

illustrated by Kuczera (), Srinivasan et al. (), Tu

et al. () and most recently by Yoo () who applied

LP for hydropower operation.

Most of the real problems, however, are not linear and,

therefore, need to be linearized so that LP methods can be

used. Application of NLP techniques to multi-reservoir oper-

ation is less common due to their limitation of slow rate of

convergence, requiring a large amount of computational sto-

rage and time compared to other methods (Yeh ). More

importantly, NLP methods are prone to getting stuck in

local optima when the problem is non-convex. However,

Peng & Buras () and Cai et al. () used NLP in the

optimization of multi-reservoir operation systems.

Multi-reservoir systems offer various problems for the

optimization methods to handle. One of the main challenges

in multi-reservoir operation is the nonlinearities and non-

convexities in the field of hydropower, so the linear and

NLP methods cannot be directly used. However, these pre-

sent no problem to the most commonly used method of DP

for reservoir operation. In DP methods, the sequential

decision problem is divided into a sequence of separate,

but interrelated, single-decision sub-problems. In this way,

large and complex problems can be theoretically solved by

combining the solutions of smaller problems (sub-problems)

to obtain the solution of the entire problem (Mays & Tung

). Applications of DP in the water resources area was

discussed by Yakowitz () and Yeh () while more

recent applications of DP and its variants in reservoir oper-

ations were presented by Perera & Conder (), Kumar &

Baliarsingh (), and Mousavi & Karamouz ().

Each of these techniques has its own merits and limit-

ations. To overcome those limitations, during the last two

decades, heuristic algorithms have been developed for sol-

ving reservoir operation problems because of their

flexibility and effectiveness for optimizing complex systems.

GA is the most commonly used heuristic algorithms in

water resources problems. Esat & Hall () applied a

GA to the four-reservoir problem and demonstrated the

advantages of GAs over standard DP techniques in terms

of computational requirements. Fahmy et al. () also

applied a GA to a reservoir system, and compared the per-

formance of the GA approach with that of DP. Oliveira &

Loucks () proposed an approach to determine reservoir

operating rules using GA. Two types of GAs, real-coded and

binary-coded, were applied to the optimization of a flood

control reservoir model by Chang & Chen (). Wardlaw

& Sharif () explored the potentials of alternative GA for-

mulations in application to real time reservoir operation.

Chen () successfully applied real-coded GA in combi-

nation with a simulation model to optimize 10-day

operation rule curves of major reservoir systems in

Taiwan. Later, a comparison between binary-coded and

real-coded GA was explored in optimization of the reservoir

operation rule curves (Chang et al. ). Chen & Chang
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() applied a real-coded multi-population GA to multi-

reservoir operation.

Recently, other heuristic algorithms have been applied

to reservoir operation. Being at its early stages of develop-

ment, a Honey Bees Mating Optimization (HBMO)

heuristic algorithm was applied to a single reservoir oper-

ation problem (Bozorg Haddad et al. ). Jalali (),

Jalali & Afshar () and Jalali et al. () used improved

and multi-colony ACO algorithms to solve the multi-reser-

voir operation problem. Kumar & Reddy () proposed

an Elitist-Mutated Particle Swarm Optimization (EMPSO)

algorithm for multipurpose reservoir systems and compared

its performance to standard PSO by solving the hypothetical

four-reservoir system and an existing reservoir system,

namely the Bhadra reservoir system, in Karnataka State,

India. Bozorg Haddad et al. () used a HBMO algorithm

for design and operation of hydropower multi-reservoirs.

More recently, Madadgar & Afshar () applied an

Improved Continuous Ant algorithm for optimization of a

single hydropower reservoir.

Heuristic search methods have been shown to be more

effective than alternative methods such as NLPs and in par-

ticular DPs in locating near optimal solutions. The efficiency

of these methods, however, may also deteriorate as the scale

of the problem increases. Straightforward application of

these methods to large scale problems has been shown to

lead to sub-optimal and in some cases to infeasible solutions

(Afshar ; Afshar & Moeini ). Afshar () pro-

posed a constrained version of the ACO algorithm to

increase the efficiency of the standard ACO algorithm for

its application to highly constrained optimization problems

and tested its performance on the sewer network design pro-

blem. The method was later used for the single reservoir

operation problem by Afshar & Moeini () emphasizing

the efficiency of the method for large scale problems.

This paper proposes a family of constrained ACO algor-

ithms for solution of multi-reservoir operation problems.

These methods are, in fact, a natural extension of the

methods proposed by Afshar & Moeini () for a single

reservoir. This extension leads to three constrained versions

of the ACO algorithms which are developed and used for

the optimization of multi-reservoir operation problems.

The proposed methods exploit the unique feature of ant

based algorithms, namely the incremental solution building

mechanism, to explicitly enforce the constraints of the reser-

voir operation problems. In the first version named Partially

Constrained Ant Colony Optimization Algorithm I

(PCACOA1), a tabu list is constructed for each ant at each

decision point of the problem to simultaneously satisfy

both release and storage volume constraints. This method

is shown to be successful in constraint satisfaction except

for very rare cases. In the second method named Partially

Constrained Ant Colony Optimization Algorithm II

(PCACOA2), the storage volume bounds of the upstream

reservoirs are modified prior to the main search such that

infeasible operation of these reservoirs is not constructed

by ants of PCACOA1. This is achieved by sweeping the

periods of the operation in a reverse order and modifying

the storage volume box constraints of the upstream reser-

voirs so that violations of corresponding release and

storage constraints are always avoided. And finally, in the

third algorithm referred to as Fully Constrained Ant

Colony Optimization Algorithm (FCACOA), the same pro-

cess of PCACOA2 is also applied to downstream

reservoirs each time a partial solution represented by the

upstream reservoirs operation policy is constructed by

PCACOA1 and PCACOA2. This method is shown to lead

to a search algorithm totally in the feasible region of the

search space. The proposed methods are outlined here

using Max-Min Ant System (MMAS) for the solution of

multi-reservoir operation problems with release/storage

volumes taken as the decision variables of the problem.

The proposed methods are used to optimally solve the

well-known four- and ten-reservoir operation problems and

the results are presented and compared with those of the

conventional unconstrained ACO algorithm and existing

methods. The results indicate the superiority of the proposed

methods for the optimal solution of large scale multi-reser-

voir operation problems to those of the conventional ACO

algorithm and other methods used for these problems.

MULTI-RESERVOIR OPERATION PROBLEM

The multi-reservoir operation problem is a complex problem

that often involves many decision variables, many con-

straints and multiple objectives of highly nonlinear and

non-convex nature. While nonlinear, non-convex and
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multi-objective features of the reservoir operation problems

can be properly handled by heuristic search methods, the

efficiency and effectiveness of these methods can be

adversely affected by the scale of these problems. Improving

the efficiency and performance of these methods to large

scale multi-reservoir operation problems is still an active

area of research. A multi-reservoir system contains both par-

allel and series connections with the condition of the

outflow of upstream reservoirs serving as the inflow of

downstream reservoirs which adds to the complexity of

the problem.

With a view to handling the scale of the multi-

reservoir operation problems, a single objective multi-

reservoir operation problem of linear type is considered

here so that the effectiveness of the proposed methods

can be tested by comparing the results with those

obtained using the LP method and other available results.

The objective of the problem to be considered is to maxi-

mize benefits from the system over the operation period

that can be written as:

F ¼
X

K

k¼1

X

T

t¼1

bk(t) × Rk(t) (1)

where, F is the benefit function; K is the total number of

reservoirs; T is the total number of operation periods; bk(t)

is the benefit function of reservoir k at period t; and Rk(t)

is the release from reservoir k at period t.

The fundamental continuity constraint and constraints

on reservoir storage and on release over each operating

period t are defined as:

Sk(tþ 1) ¼ Sk(t)þ Ik(t)� Rk(t) (2)

Smin
k � Sk(t) � Smax

k (3)

Rmin
k � Rk(t) � Rmax

k (4)

where, Sk(t) is the storage at time period t in reservoir k; Ik(t)

is the inflows in time period t to reservoir k; Rk(t) is the

release in time period t from reservoir k; Smin
k is the mini-

mum storage of reservoir k; Smax
k is the maximum storage

of reservoir k; Rmin
k is the minimum release from reservoir

k; and Rmax
k is the maximum release from reservoir k. The

above constraints apply in all periods t¼ 1,…., T.

FORMULATION OF THE MULTI-RESERVOIR

OPERATION USING ACOAS

Application of an ACO algorithm to any combinatorial

optimization problem is best described by projecting the pro-

blem on a graph (Dorigo & Gambardella ). Consider a

graph G¼ (D, L, C) in which D ¼ d1, d2, . . . . . . , dnf g is the

set of decision points at which some decisions are to be

made, L ¼ lij
� �

is the set of options j ( j¼ 1,2,……,Ji) at

each of the decision points i (i¼ 1,2,……,n) and finally

C¼ cij
� �

is the set of costs associated with options

L ¼ lij
� �

. A solution φ, termed a path in the ACO algorithm,

is formed by the selection of an option at each decision

point.

Formulation of the optimal operation of reservoirs as

an optimization problem requires the selection of

decision variables. Basically two different sets of decision

variables can be sought in reservoir operation problems

namely release or storage volumes. However, the problem

graph is very much dependent on the decision variables

selected for the problem. In this paper both release and

storage volumes are separately selected as decision vari-

ables of the problems and proper formulations are

defined.

Once the decision variables of the problem are

selected, the problem graph can be easily defined for the

application of standard ACO algorithms referred to here

as Unconstrained Ant Colony Optimization Algorithm

(UACOA). Assuming that the initial storage volume of all

reservoirs is known, each period of the operation for

each reservoir is considered as the decision point of the

problem leading to a total number of K*T decision

points. With the storage/release volumes taken as decision

variables of the operation problem, these decision points

will then correspond to end-of-the-period storage/within-

the-period release volumes, respectively. The options

available at each decision point are then represented by

the storage/release volumes defined in the range

Smin
k , Smax

k

� �

/ Rmin
k ;Rmax

k

� �

. These options L{lij} can then be
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represented by a set of look-up tables constructed for each

decision point in which lij represents the jth component of

the look-up table constructed for decision point i of the

graph. The graph representation of the problem for the

application of UACOA is shown in Figure 1, while Figure 2

shows the base graph of UACOA for an arbitrary ant. Here

the solid circles represent the available options, storage/

release volumes depending on the type of decision vari-

ables selected, at each decision point; dashed paths

represent potential solutions and the solid path represents

a trial solution on the graph constructed by an arbitrary

ant. A known mapping of the type i¼Map(k,t) is assumed

when using these graphs for the application of UACOA.

This mapping can be arbitrary in the sense that the

decision point i can be arbitrarily associated to the period

t of reservoir k. Furthermore, this mapping can be different

from one ant to the other and in particular can change

from iteration to iteration without affecting the application

of UACOA defined earlier. This is because the ants’

decision at an arbitrary decision point is made independent

from the decisions already made at previous decision

points. Furthermore, the base graph of the problem is

seen to be the same as the base graph of an arbitrary ant

in this formulation. This point is made here to emphasize

the fact that the search spaces of all ants are the same

and equal to the search space of the whole problem.

With the formulation just outlined, each ant is now

required to incrementally build a solution, operation

policy, by selecting an option at each decision point

before moving to the next decision point.

A further note should also be added here regarding the

heuristic information ηij which reflects the local benefit of

choosing option j at decision point i. When release volumes

are taken as decision variables of the problem, this benefit

Figure 1 | Base graph of UACOA with storage/release volume as decision variable.

Figure 2 | Base graph of UACOA for an arbitrary ant with storage/release volume as decision variable.
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can be defined as:

ηij ¼ bk(t)�Rk(t) (5)

where, ηij is the heuristic value corresponding to option j at

decision point i, bkðtÞ is the benefit function of reservoir k at

period t corresponding to the ith decision point defined by

the mapping outlined earlier; RkðtÞ is the release from reser-

voir k at period t represented by lij, jth option of the ith

decision point, chosen by ant. However, with the storage

volumes taken as decision variables of the problem, defi-

nition of heuristic information is not possible since it

requires the value of the release volume which is not

known. Therefore, the heuristic values are indiscriminately

set equal to one in this case for all the options at all decision

points of the problem.

This formulation, however, may lead to trial solutions

that violate some of the problem constraints. To be specific,

the resulting operation policies defined by the constructed

storage/release volumes may violate some or all of the con-

straints defined by Equations (4)/(3). To discourage the ants

from making decisions (i.e. select storage/releases volumes)

which may constitute an infeasible solution, a lower benefit

is associated with the solutions that violate the correspond-

ing constraints of the problem. This may be achieved via the

use of a penalty method in which the total benefit of the pro-

blem is considered as the difference between the problem’s

benefit and a penalty value as:

fp ¼ f � αp ×

X

K

k¼1

X

T

t¼1

CSVk(t) if fp � 0:0 (6)

fp ¼ 0:0 otherwise

with

CSVk(t) ¼ 1�
Rk(t)

Rmin
k

 !

þ
Rk(t)

Rmax
k

� 1

� �

þ 1�
Sk(t)

Smin
k

 !

þ
Sk(t)

Smax
k

� 1

� �

where, fp is the penalized benefit function; f is the benefit

function F defined in Equation (1); CSVk(t) is a normalized

measure of violation from constraints (3) and (4) at period t

of the reservoir k; and αp represents the penalty parameter

with a large enough value such that any infeasible solution

has a value smaller than any feasible solution. The proper

value of the penalty parameter is decided via a trial and

error process before the main calculation. The total cost is

assumed non-negative, as indicated by Equation (6), to

avoid negative pheromone laying by the ants. The negative

or zero value of each term in the parenthesis used for the

definition of the CSVk(t) means that the corresponding con-

straint is satisfied, therefore, only the positive values of the

term in the parenthesis are used for the calculation of

CSVk(t).

PROPOSED CONSTRAINED ACO ALGORITHMS FOR

MULTI-RESERVOIR OPERATION

ACO algorithms enjoy a unique feature, namely incremental

solution building capability, which is not observed in other

evolutionary search methods such as GA, currently used

for the optimization of engineering problems. This capability

is reflected in the process of solution building by ants in

which each ant is required to choose an option out of the

options available at a decision point of the problem. This

is very useful in solving optimization problems of sequential

nature such as reservoir operation problems considered

here. The constraints of these problems are of explicit

nature and, therefore, can be explicitly enforced by limiting

the ant’s available options to feasible ones via a tabu list.

Thereby, the ants can be forced to move in the feasible

search space and the use of penalty method as used in

Equation (6) for constraint satisfaction can be avoided.

The advantages of this process are twofold. The search

space size of the problem could be greatly reduced depend-

ing on the characteristics of the problem and its constraints.

This may in turn lead to better solutions and more impor-

tantly to improved convergence characteristics of the

algorithm. This idea has already been used in the context

of storm sewer network optimization by Afshar () and

single reservoir operation by Afshar & Moeini ()

which is now extended for multi-reservoir operation in this

work.

160 R. Moeini & M. H. Afshar | Constrained ACOA for the optimal operation of multi-reservoir systems Journal of Hydroinformatics | 15.1 | 2013

Downloaded from http://iwaponline.com/jh/article-pdf/15/1/155/386891/155.pdf
by guest
on 21 August 2022



In the proposed Constrained Ant Colony Optimization

Algorithms (CACOAs), an attempt is made to satisfy the

constraints of the problem as much as possible. The con-

straints of the multi-reservoir operation problems as

defined in Equations (3) and (4) for the sample problem,

however, are more complex than the sewer network and

single reservoir operation problems. This is particularly

true for the storage/release volume constraints of the down-

stream reservoirs which are affected not only by their

operation but also by the operation of the upstream reser-

voirs. The attempt made in this paper to overcome this

complexity has led to development of three constrained

ACO algorithms, each of which is responsible for handling

some of the problems encountered in the satisfaction of pro-

blem constraints.

In the first version, only local operation of each reser-

voir is designed such that the corresponding constraints

are satisfied. However, the method fails in some cases and

hence is referred to as PCACOA1. In the second version,

the whole operation of each reservoir over the operation

period is designed separately such that the corresponding

constraints are satisfied. This method works perfectly for

the upstream reservoirs but could fail in some rare cases

for the downstream reservoirs and is therefore named

PCACOA2. In the third and final version, the shortcoming

of PCACOA2 is removed by considering the effect of the

upstream reservoirs on the downstream reservoirs’ oper-

ation policy for constraint satisfaction. This method leads

to a search algorithm totally in the feasible region of the

search space and, hence, called FCACOA.

PARTIALLY CONSTRAINED ANT COLONY

OPTIMIZATION ALGORITHM I (PCACOA1)

Consider an ant at an arbitrary decision point i (correspond-

ing to operation period t of the kth reservoir) with a known

value for the corresponding decision variable, i.e. storage/

release volume. The continuity equation can now be used

to calculate a new set of bounds for the decision variable,

storage/release volume, of the next (iþ 1)th decision point

corresponding to the period tþ 1 of reservoir k, such that

the remaining constraints (4)/(3) are fully satisfied by the

resulting release/storage volume. These bounds are then

used to construct a tabu list for the ant at decision point

iþ 1 containing only feasible options of the look-up table

Li ¼ lij
� �

; j¼ 1,2,…,Ji constructed before.

To clarify this, assume a known value of Sk(t) for storage

volume of reservoir k at the beginning of the period t. With

the release taken as the decision variable, the continuity

Equation (2) can be used to substitute Sk(tþ 1) into storage

constraint (3) written at tþ 1 to yield the following con-

straints for the release of the reservoir k at period t,

Sk(t)þ Ik(t)� Smax
k � Rk(t) � SK(t)þ Ik(t)� Smin

k (7)

Combining Equation (7) with the original box con-

straints for the release volume, Equation (4), leads to the

following constraints to be met by the release of the reser-

voir k at period t so that the resulting storage volume

Sk(tþ 1) is feasible.

Max (Rmin
k , Sk(t)þ Ik(t)� Smax

k ) � Rk(t)

� Min (Rmax
k , Sk(t)þ Ik(t)� Smin

k ) (8)

An analogous procedure can be used to arrive at the fol-

lowing constraints for the storage volume at the end of the

period when storage volume is selected as the decision vari-

able.

Max (Smin
k , Sk(t)þ Ik(t)� Rmax

k ) � Sk(tþ 1)

� Min (Smax
k , Sk(t)þ Ik(t)� Rmin

k ) (9)

A tabu list can now be constructed for the ant currently

at decision point i corresponding to the period t of reser-

voir k, which contains only those elements of the

corresponding look-up table Li¼ lij
� �

; j¼ 1,2,…,Ji satisfy-

ing constraint (8) or (9) depending on the decision

variables selected. This procedure can be repeated in turn

for the next decision point until a complete solution is con-

structed. Note that the solutions so created will

automatically satisfy constraints (3) and (4) except for

some rare cases to be addressed later.

The graph representation of the problem for the appli-

cation of PCACOA1 with explicit enforcement of the

constraints (3) and (4) is shown in Figure 3 for a typical
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reservoir. The graph representing the total search space of

the problem is seen to be generally the same as the graph

of the problem for the application of UACOA defined

before. This, however, is not true for the graph of

PCACOA1 for an arbitrary ant, shown in Figure 4,

which is totally different from the graph of UACOA for

an arbitrary ant (Figure 2). Here the circles at each

decision point represent the available options at each

decision point, the triangles represent the new bounds of

the decision variable calculated using Equation (8) or

(9), the solid circles denote feasible options at each

decision point for the ant under consideration, dashed

paths are the potential feasible solutions and finally

the solid path represents a trial feasible solution on the

graph. Note that the feasible options represented by the

tabu list at an arbitrary decision point are now generally

different for each ant, as implied in Figure 4, depending

on the partial path covered by the ant to reach the current

decision point. A mapping of the type i¼ (k–1)*Tþ t is

used here to associate the decision point i to the period

t of the kth reservoir. This point will be addressed again

later in the paper.

It can be clearly seen from these figures that the result-

ing search space, which is feasible in most cases, is much

smaller than the original search space. It is, therefore,

expected that the resulting algorithm will perform better

than the original unconstrained algorithm. However, a situ-

ation might arise in which PCACOA1 fails to produce a

feasible solution depending on the partial solution created

by the ant and more importantly the magnitude of the

water inflow Ik(t) at period t to reservoir k. This happens

when the new range defined by Equation (8) or (9) for the

corresponding decision variable is empty. This problem is

resolved here by offering the ant a single option, upper or

lower bound of the decision variable, to choose which will

constitute an infeasible solution.

Figure 3 | Base graph of PCACOA1 for reservoir k with storage/release volume as decision variable.

Figure 4 | Base graph of an arbitrary ant in PCACOA1 for reservoir k with storage/release volume as decision variable.
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PARTIALLY CONSTRAINED ANT COLONY

OPTIMIZATION ALGORITHM II (PCACOA2)

The above problem can be resolved for the upstream

reservoirs by a simple but effective modification to

PCACOA1 leading to an algorithm which will never pro-

duce an infeasible operation policy for the upstream

reservoirs referred to as PCACOA2. For this, the periods

of operation of upstream reservoirs are swept in reverse

order and a set of new bounds is calculated for the storage

volume at the beginning of the period such that the

PCACOA1 is not given any chance of producing infeas-

ible solutions for the upstream reservoirs. To clarify this,

consider the storage volume constraint for reservoir k at

a period tþ 1:

Smin
k � Sk(tþ 1) � Smax

k (10)

Substituting Sk(tþ 1) from Equation (2) into Equation (10)

leads to the following constraints for the storage volume

Sk(t)at the beginning of the period:

Rk(t)� Ik(t)þ Smin
k � Sk(t) � Rk(t)� Ik(t)þ Smax

k (11)

For this constraint to be valid for any value of release

from reservoir k in the range [Rmin
k , Rmax

k ], the following

equation should hold.

Rmin
k � Ik(t)þ Smin

k � Sk(t) � Rmax
k � Ik(t)þ Smax

k (12)

Combining Equation (12) with the original constraints of

Equation (3) leads to the following constraints for the stor-

age volume at the beginning of the period.

�S
min
k (t) � Sk(t) � �S

max
k (t) (13)

with

�S
min
k (t) ¼ Max (Smin

k , Rmin
k � Ik(t)þ Smin

k )

�S
max
k (t) ¼ Min (Smax

k , Rmax
k � Ik(t)þ Smax

k )

where �S
min
k (t) and �S

max
k (t) are the new bounds calculated for

the storage volume of upstream reservoirs that are used in

Equation (3) instead of Smin
k and Smax

k . Note that these

bounds are calculated once in the beginning of the compu-

tation and are then used in search process carried out by

PCACOA1 defined earlier. These bounds are generally

different from the original bounds and may also differ

from one period to another as indicated by the notation

used. This procedure when used with PCACOA1 leads to

PCACOA2 which will not produce any infeasible operation

for upstream reservoirs during the search process. Note that

this procedure is also valid when the release volumes are

selected as the decision variables of the problem.

Figure 5 shows the base graph of the PCACOA2 for the

upstream reservoir k for the case where storage volumes are

taken as decision variables. Here the solid squares represent

the bounds computed for storage volumes at each decision

point using Equation (13), the circles at each decision

Figure 5 | Base graph of PCACOA2 for upstream reservoir k with storage volume as decision variable.
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point represent the available options of the storage volumes,

and the solid circles denote the option which will not consti-

tute an infeasible solution while the hollow circles are

infeasible options at each decision point. Figure 6 shows

the base graph of the PCACOA2 for an arbitrary ant on

the upstream reservoir k. Here the triangles represent the

bounds calculated using Equation (9) during solution con-

struction, solid circles represent the feasible options,

storage volumes, at each decision point, dashed paths are

the potential feasible solutions and finally the solid paths

represent a trial, always feasible, solution on the graph.

Note that the graphs of the problem for the application of

PCACOA2 for the case where release volumes are selected

as decision variables are not shown here.

FULLY CONSTRAINED ANT COLONY OPTIMIZATION

ALGORITHM (FCACOA)

The proposed PCACOA2, though more efficient than

PCACOA1 in constraint satisfaction, might fail to create

feasible operation for the downstream reservoirs as implied

before. This is due to the fact that PCACOA2 might face a

situation in which the range calculated by Equation (8)/(9)

for the release/storage volume of the downstream reservoirs

is empty leading to infeasible operations of the downstream

reservoirs. The procedure defined via Equation (13) for sto-

rage bound modification cannot be directly applied to

downstream reservoirs since the value of inflow Ik(t) to

these reservoirs is not known before the operation of all

upstream reservoirs is known. A remedy to this problem

can be found by using Equation (13) to modify the storage

bounds of each downstream reservoir once a partial solution

represented by the full operation of all corresponding

upstream reservoirs is constructed. For such a partial sol-

ution, the inflow to the reservoir under consideration can

be determined and used in Equation (13) to calculate the

modified storage bounds of the downstream reservoirs in

turn. This procedure when used with PCACOA2 will lead

to FCACOA which only creates feasible solutions for any

multi-reservoir system.

A final note has to be made here regarding the sequence

of the decision points used to define the multi-reservoir

operation graph. This sequence should be known a priori

for each ant irrespective of the formulation used. In

UACOA, this sequence can be arbitrarily associated with

the operation period t of the reservoir k since the local oper-

ation policies are constructed independently. For the

constrained algorithms, however, the sequence of the

decision points covered by each ant should be arranged

such that:

1. The value of the decision variable (storage/release

volume depending on the decision variables selected) at

an arbitrary period t is known before operation policy

of period (tþ 1) is determined. This is a property required

for the application of PCACOA1 defined by Equation (8)/

(9).

2. The full operation of all reservoirs upstream to an arbi-

trary reservoir k should be known before attempting to

construct the operation policy of the reservoir under con-

sideration. This is a property required for the application

of FCACOA defined by Equation (13).

Figure 6 | Base graph of an arbitrary ant in PCACOA2 for upstream reservoir k with storage volume as decision variable.
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This is achieved here by defining the set of decision

points as D¼ [d1, d2, . , dk, . , . , dK], where dk represents

the set of decision points corresponding to the operation

periods of reservoir k defined as dk¼ [d1, d2, ., dt, ., ., dT]k

with dt,k denoting the decision point corresponding to oper-

ation period t of the kth reservoir. With this projection, the

ants are now required to cover the decision points in turn

from the first point d1,1 to the last one dT*K.

NUMERICAL EXPERIMENTS

In this section the well-known four- and ten-reservoir oper-

ation problems are considered as the test examples to

verify the versatility and efficiency of the proposed methods.

The hypothetical four-reservoir system first proposed by

Larson () is shown in Figure 7. This problem has been

used as a benchmark example to test many combinatorial

optimization algorithms such as DP and heuristic search

methods due to the availability of its global solution. The

four-reservoir problem was first formulated and solved

with LP and Dynamic Programming and Successive

Approximation (DPSA) by Larson (). Heidari et al.

() applied Discrete Differential Dynamic Programming

(DDDP), and Kumar & Baliarsinch () applied Folded

Dynamic Programming (FDP) to evaluate the performance

of their respective proposed techniques. Esat & Hall ()

and Wardlaw & Sharif () applied GA with real coding

for the optimal solution of this problem. Recently, Kumar

& Reddy () used this problem to test a modified PSO

algorithm suggested for multipurpose operation of

reservoirs.

For the four-reservoir problem, there are inflows to the

first and second reservoirs only, and these are two and

three units, respectively, in all time periods. The initial

storages in all reservoirs are five units. The benefit functions

bk(t)of reservoir k at period t tabulated by Larson () and

by Heidari et al. () are shown in Table 1. The following

values are used for the bounds of the storages and releases:

Smin
1 , Smin

2 , Smin
3 ¼ 0:0; Smax

1 , Smax
2 , Smax

3 ¼ 10; Smax
4 ¼ 15;

Rmin
1 , Rmin

2 , Rmin
3 , Rmin

4 ¼ 0:0; Rmax
1 ¼ 3; Rmax

2 , Rmax
3 ¼ 4;

Rmax
4 ¼ 7.

The original four-reservoir problem was devised for 12

operation periods (T¼ 12) with a time interval of 2 h. How-

ever, the problem is solved here for different operation

periods ranging from 12 to 96, so that the performance of

the proposed methods can be tested for large scale reservoir

operation problems by comparing the results to those

obtained by Murray & Yakowitz () and Wardlaw &

Sharif ().

A set of preliminary runs is first conducted to find the

proper values of MMAS parameters as shown in Table 2

for the four-reservoir problem. In Table 2, α is the parameter

that controls the relative weight of the pheromone trail; β is

the parameter that controls the relative weight of the heuris-

tic value; Pbest is a specified probability by which each

component of the current global-best solution will be

selected by ants in the next iteration; and ρ is the coefficient

representing the pheromone evaporation. To consider the

scale of the problems, a colony size of 200 with a maximum

number of 3,000 iterations amounting to a maximum

number of 600,000 function evaluations is used for oper-

ation of the four-reservoir problem over 12, 24, 36, and 48

time periods. For larger scale problems of four-reservoir

operation over 60, 72, 84, and 96 operation time periods,

a colony size of 200 with a maximum number of 4,000,

5,000, 6,000, and 7,000 iterations amounting to a maximum

number of 800,000, 1,000,000, 1,200,000, 1,400,000 func-

tion evaluations is used, respectively. It should be notedFigure 7 | Four-reservoir problem.
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that this problem is solved on a 2.8 MHZ Core 2 due Pen-

tium 4 PC.

Table 3 shows the results of 10 runs carried out for the

four-reservoir operation problem with releases taken as

decision variables using parameters of Table 2 over 12, 24,

36, 48, 60, 72, 84 and 96 operation time periods using

UACOA and proposed constrained algorithms. It is clearly

seen that all the results, including minimum, maximum

and average objective function values, obtained with

FCACOA over all periods are better than those produced

by UACOA, PCACOA1 and PCACOA2. The superiority of

the results obtained by the fully constrained version is

more evident for the longer periods illustrating the efficiency

of the FCACOA for large scale problems. It is also interest-

ing to note that the scattering of the solutions obtained

decreases as one moves from PCACOA1 to PCACOA2

and from PCACOA2 to FCACOA.

Table 4 shows the results obtained for the four-reservoir

operation problem with storage volumes taken as decision

variables. It is seen here that the unconstrained algorithm

could create final feasible solutions only for the shortest

operation of the four-reservoir problem over 12 time

periods, while the solutions produced by the FCACOA are

all feasible. It is again seen that FCACOA performs better

than the partially constrained algorithms. It is more interest-

ing to note that the number of final feasible solutions created

by PCACOA1 and PCACOA2 decreases with increasing

number of operation periods with the number of feasible sol-

utions of PCACOA2 always greater than that of PCACOA1.

Comparison of the results of Tables 3 and 4 indicates that

the performance of all methods with release volumes

taken as decision variables is better than those when storage

volumes are taken as decision variables which could be

attributed to the following reasons. First, the search space

size of the problem is greater when storage volumes are

taken as decision variables of the problem. Secondly, and

more importantly, definition of heuristic information is not

possible when storage volumes are selected as decision vari-

ables. This emphasizes the importance of the heuristic

information on the performance of the ACO algorithms

for reservoir operation problems.

This problem has also been solved by other researchers.

Table 5 compares the best results of the four-reservoir

problem produced by the proposed FCACOA with some

other available results. It is clearly seen that the proposed

FCACOA method shows superior performance to those of

Table 2 | Values of MMAS parameters for four-reservoir problem

Decision variable α β ρ pbest

Release 1 0.3 0.9 0.2

Storage 1 0.0 0.9 0.2

Table 1 | Benefit functions of each reservoir at each period for four- and ten-reservoir problems

Benefit functions

Period

Problem Reservoir 1 2 3 4 5 6 7 8 9 10 11 12

Four 1 1.4 1.8 2.2 1.8 2 2.2 2.5 1.8 1.2 1 1 1.1

2 1.8 2.2 1.8 2 2.2 2.5 1.8 1.2 1 1 1.1 1.4

3 1.1 1.4 1.8 2.2 1.8 2 2.2 2.5 1.8 1.2 1 1

4 2.5 2.7 3.1 3.6 4.1 3.8 4 4.2 4.4 3.6 2.9 2.6

Ten 1 1.4 1.8 2.2 1.8 2 2.2 2.5 1.8 1.2 1 1 1.1

2 1.8 2.2 1.8 2 2.2 2.5 1.8 1.2 1 1 1.1 1.4

3 1.1 1.4 1.8 2.2 1.8 2 2.2 2.5 1.8 1.2 1 1

4 1.4 1.8 2.2 1.8 2 2.2 2.5 1.8 1.2 1 1 1.1

5 1.14 1.25 1.34 1.45 1.56 1.67 1.5 1.4 1.3 1.2 1.1 1

6 1.8 2.2 1.8 2 2.2 2.5 1.8 1.2 1 1 1.1 1.4

7 2.5 2.7 3.1 3.6 4.1 3.8 4 4.2 4.4 3.6 2.9 2.6

8 1.14 1.25 1.34 1.45 1.56 1.67 1.5 1.4 1.3 1.2 1.1 1

9 1.1 1.4 1.8 2.2 1.8 2 2.2 2.5 1.8 1.2 1 1

10 2.1 3.5 2.8 3.7 3.6 4 3.9 2.9 3.2 2.8 3 2.7
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GA of Wardlaw & Sharif () and the Improved Ant

Colony System of Jalali () for all the operation periods

considered. It is interesting to note that the proposed

FCACOA is able to locate the optimal solution for two

cases, of 12 and 24 operation periods, while other methods

were able to do so only for the shortest, 12 operation period,

case. The fact that the proposed FCACOA could not com-

pete with DDDP for the larger operation periods can be

described by the fact that DDDP solutions are globally opti-

mum since the considered problem is of discrete nature.

And finally Table 6 compares the computational effort

required by the proposed FCACOA and those of GA of

Wardlaw & Sharif () represented by the number of func-

tion evaluations required to reach the same local solution

for the four-reservoir operation problem. Comparison of

the result shows that the proposed FCACOA is more effi-

cient than GA for all operation periods considered. This

problem has also been solved by Kumar & Reddy ()

using the EMPSO algorithm for the shortest case of 12 oper-

ation periods requiring 325,400 function evaluations to get

the optimal solution of 401.3 which is obtained in just

64,000 function evaluations using the proposed FCACOA.

Comparison of the final release and storage volumes

produced by LP (Larson ) and the FCACOA for the

Table 3 | Maximum, minimum and average objective function values over 10 runs for four-reservoir problem using UACOA, PCACOA1, PCACOA2 and FCACOA with release as decision

variable

Objective function values

Model Periods Maximum Minimum Average Scaled standard deviation

No. of runs with final

feasible solution

CPU time for each

run (seconds)

UACOA 12 401.2 400.9 401.05 0.0003 10 59

24 809.7 723.4 798.75 0.0336 10 118

36 1,214.2 1,208.4 1,212.12 0.0015 10 177

48 1,617.9 1,611.02 1,614.9 0.0013 10 236

60 2,022.4 2,014.7 2,018.74 0.0012 10 394

72 2,427.8 2,406.1 2,418.78 0.0027 10 590

84 2,833.4 2,811.1 2,825.18 0.0022 10 826

96 3,235.5 3,193.6 3,218.02 0.0041 10 1,100

PCACOA1 12 401.3 401.1 401.23 0.00018 10 62

24 810.3 809.3 809.94 0.0005 10 124

36 1,219.2 1,217.5 1,218.11 0.0005 10 186

48 1,626.6 1,624.5 1,625.58 0.0006 10 248

60 2,035.2 2,030.6 2,033.97 0.0009 10 413

72 2,444.1 2,440.2 2,441.78 0.0004 10 620

84 2,853.4 2,846.5 2,850.43 0.0007 10 868

96 3,262.0 3,254.29 3,258.29 0.0008 10 1,157

PCACOA2 12 401.3 401.1 401.23 0.00016 10 61

24 810.5 809.5 809.96 0.0004 10 122

36 1,219.2 1,217.1 1,218.4 0.0005 10 183

48 1,627.0 1,624.5 1,625.8 0.0005 10 244

60 2,035.6 2,033.7 2,034.7 0.0004 10 407

72 2,444.6 2,440.2 2,442.58 0.0004 10 610

84 2,853.4 2,848.2 2,850.88 0.0004 10 854

96 3,262.0 3,256.3 3,258.34 0.0004 10 1,139

FCACOA 12 401.3 401.2 401.25 0.00013 10 62

24 810.6 80.9.8 810.23 0.0002 10 124

36 1,219.4 1,217.9 1,218.73 0.0004 10 186

48 1,627.3 1,625.2 1,626.47 0.0004 10 248

60 2,036.9 2,033.7 2,035.5 0.0004 10 413

72 2,446.7 2,440.6 2,443.29 0.0003 10 620

84 2,854.1 2,850.1 2,852.16 0.0004 10 868

96 3,262.4 3,256.3 3,260.05 0.0004 10 1,157
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four-reservoir problem over 12 operation periods is pre-

sented in Figure 8. This problem is known to have more

than one global optimum solution; therefore, it is interesting

to note that the optimal operation created by the proposed

FCACOA differs from that obtained by LP.

The hypothetical ten-reservoir system considered as the

second test problem is shown in Figure 9. The ten-reservoir

problem was first formulated and solved with constrained

Differential Dynamic Programming (DDP) by Murray &

Yakowitz (). Wardlaw & Sharif () applied GA

with real coding for the optimal solution of this problem.

The objective function of Equation (1) is to be maximized

over 12 operation periods. There are inflows to the upstream

Table 4 | Maximum, minimum and average objective function values over 10 runs for four-reservoir problem using UACOA, PCACOA1, PCACOA2 and FCACOA with storage as decision

variable

Model

Time

periods

Objective function values

Scaled standard

deviation

No. of runs with final feasible

solution

CPU time for each run

(seconds)Maximum Minimum Average

UACOA 12 391.6 363.5 383.84 0.0267 10 104

24 776.9 in in – 5 208

36 1,162.1 in in – 4 312

48 in in in – 0 416

60 in in in – 0 693

72 in in in – 0 1,040

84 in in in – 0 1,456

96 in in in – 0 1,941

PCACOA1 12 395.0 385.0 390.89 0.0094 10 65

24 794.5 in in – 9 130

36 1,198.4 in in – 7 195

48 1,587.4 in in – 8 260

60 1,984.4 in in – 7 433

72 2,380.6 in in – 7 650

84 2,774.5 in in – 6 910

96 3,170.9 in in – 5 1,213

PCACOA2 12 395.8 392.3 393.52 0.0027 10 65

24 794.9 790.1 792.18 0.0016 10 130

36 1,218.89 1,217.1 1,218.13 0.0005 10 195

48 1,588.3 1,560.7 1,577.73 0.0057 10 260

60 1,985.4 1,957.6 1,975.66 0.0040 10 433

72 2,382.1 in in – 7 650

84 2,778.8 2,765.5 2,772.0 0.0014 10 910

96 3,173.9 in in – 8 1,213

FCACOA 12 400.3 392.5 396.42 0.0007 10 58

24 800.0 790.5 795.7 0.0004 10 116

36 1,219.4 1,217.9 1,218.73 0.0004 10 174

48 1,590.0 1,577.9 1,584.55 0.0024 10 232

60 1,987.7 1,975.2 1,980.7 0.0022 10 387

72 2,382.4 2,369.8 2,377.4 0.0018 10 580

84 2,783.4 2,270.7 2,776.01 0.0013 10 812

96 3,183.5 3,165.5 3,171.01 0.0012 10 1,083

Table 5 | Comparison the results obtained with different methods for four-reservoir oper-

ation problem

Operation

periods

DDDP

(Wardlaw &

Sharif 1999)

GA (Wardlaw

& Sharif 1999)

Improved

ACO (Jalali

2005)

Present

work

(FCACOA)

12 401.3 401.3 401.3 401.3

24 810.6 808.9 810.2 810.6

36 1,220.1 1,218.6 1,217.1 1,219.4

48 1,629.6 1,626.5 1,617.6 1,627.3

60 2,039.1 2,036.9 – 2,036.9

72 2,448.6 2,446.0 – 2,446.7

84 2,858.1 2,847.5 – 2,854.1

96 3,267.6 3,259.8 – 3,262.4
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reservoirs only (reservoir 1, 2, 3, 5, 6 and 8) in all time

periods. The initial storage and target storage at the end of

the operation period are considered for all reservoirs. The

benefit functions bk(t) of reservoir k at period t are shown

in Table 1. Other details of the problem are tabulated by

Murray & Yakowitz ().

A set of preliminary runs is first conducted to find the

proper values of MMAS parameters as shown in Table 7

for the ten-reservoir operation problem. For the ten-reservoir

problem, a colony size of 500 with a maximum number of

3,000 iterations amounting to a maximum number of

1,500,000 function evaluations is used. It should be noted

that this problem is also solved on a 2.8 MHZ Core 2 due

Pentium 4 PC.

Table 6 | Comparison of the number of function evaluations required by GA and proposed

FCACOA to reach local solution for four-reservoir operation problem

Operation

periods

Local

solution

Number of function evaluations to obtain

local solution

Real coded GA (Wardlaw

& Sharif 1999)

Present Work

(FCACOA)

12 401.3 100,000 64,000

24 808.9 180,000 92,000

36 1,218.6 380,000 300,000

48 1,626.5 420,000 340,000

60 2,036.9 800,000 800,000

72 2,446.0 820,000 720,000

84 2,847.5 880,000 660,000

96 3,259.8 1,100,000 1,040,000

Figure 8 | Comparison between the best result of the proposed FCACOA with releases as decision variables and result of LP model over 12 operation periods. (a) Reservoir releases.

(b) Reservoir storages.
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Table 8 shows the results of 10 runs carried out for the

ten-reservoir problem with storage/release volumes taken

as decision variables using the parameters of Table 7 over

12 operation periods using UACOA and proposed con-

strained algorithms. It is clearly seen that all the results,

including minimum, maximum and average objective func-

tion values, obtained with FCACOA are better than those

produced by UACOA, PCACOA1 and PCACOA2 for

either of the decision variables. Once again, the results of

Table 8 indicate that the performance of all methods with

release volumes taken as decision variables is better than

those when storage volumes are taken as decision variables.

Table 9 compares the best results of the ten-reservoir

problem produced by proposed FCACOA with some other

available results. The objective function value of the global

optimum solution for this problem is equal to 1,194.44

obtained using LP (Jalali et al. ). The objective function

value of 1,190.652 was obtained using constrained DDP by

Murray & Yakowitz () for this problem. Wardlaw &

Sharif () used a real coding GA for this problem and

required 1,250,000 function evaluations to get an objective

function value of 1,190.25. This problem has also been

solved by Jalali () using the Improved Ant Colony

System and the Improved Ant Colony System with discrete

refinement (DR) mechanism leading to the objective func-

tion value of 1,153.64 and 1,174.69, respectively, requiring

6,000,000 function evaluations for both proposed algor-

ithms. Jalali & Afshar () solved this problem using

ACO with pheromone re-initiation (PRI), partial path repla-

cement (PPR), and DR mechanism, getting the best

objective function value of 1,178.8. The best result of

1,190.26 was obtained here using FCACOA with release

volumes taken as decision variables. It is clearly seen that

the proposed FCACOA method shows superior perform-

ance to those of Improved Ant Colony System of Jalali

() and methods of Jalali & Afshar () and marginally

improved performance to those of GA of Wardlaw & Sharif

().

A note should be made regarding the apparently differ-

ent level of performance of the proposed methods and in

particular the FCACOA for the four- and ten-reservoir pro-

blems in comparison to GA of Wardlaw & Sharif ().

Table 7 | Values of MMAS parameters for ten-reservoir problem

Decision variable α β ρ pbest

Release 1 0.0 0.85 0.15

Storage 1 0.0 0.88 0.15

Figure 9 | Ten-reservoir problem.
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While the results produced by the proposed FCACOA are

better than all available results, except for DP based

methods, including those of Wardlaw & Sharif () for

both test cases, the improvement made in the results for

the ten-reservoir problem seems to be marginal (as seen

from Table 9). This is due to the fact that ACOA is essen-

tially of a discrete nature requiring discretization of the

search space when applied to continuous problems leading

to poor performance compared to discrete problems while

the GA of Wardlaw & Sharif () is a real-coded GA suit-

able for continuous problems. Superiority of the proposed

FCACOA to GA of Wardlaw & Sharif () is more evident

from the results produced for the discrete problem of the

four-reservoir system as indicated in Table 5.

Table 9 | Comparison of the results obtained with different methods for ten-reservoir operation problem

Operation

periods

LP (Jalali et al.

2007)

Constrained DDP (Murray &

Yakowitz 1979)

GA (Wardlaw &

Sharif 1999)

Improved ACO

(Jalali 2005)

Improved ACO with DR

(Jalali 2005)

Present work

(FCACOA)

12 1,194.44 1,190.652 1,190.25 1,153.64 1,174.69 1,190.26

Table 8 | Maximum, minimum and average objective function values over 10 runs for ten-reservoir problem using UACOA, PCACOA1, PCACOA2 and FCACOA with storage/release as

decision variable

Model

Decision

variable

Objective function values

Scaled standard

deviation

No. of runs with final feasible

solution

CPU time for each run

(seconds)Maximum Minimum Average

UACOA Release 1,184.19 1,173.07 1,180.63 0.0034 10 570

Storage 1,040.50 in in – 1 1,160

PCACOA1 Release 1,186.75 1,175.62 1,181.14 0.0025 10 540

Storage 1,170.94 1,153.85 1,161.90 0.0052 10 660

PCACOA2 Release 1,188.24 1,177.66 1,183.88 0.0031 10 510

Storage 1,173.44 1,144.97 1,161.30 0.0069 10 610

FCACOA Release 1,190.26 1,178.87 1,184.71 0.0028 10 510

Storage 1,174.09 1,166.47 1,168.83 0.0020 10 600

Figure 10 | Average objective function value versus iterations for four-reservoir problem over 96 operation periods using UACOA, PCACOA1, PCACOA 2 and FCACOA with release as

decision variable.
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Finally, the claim that the search space created by

FCACOA is totally feasible is supported by the two conver-

gence curves shown in Figures 10 and 11 for average

objective function value obtained over 96 operation periods

for the four-reservoir operation problem and over 12 oper-

ation periods for the ten-reservoir operation problem,

respectively, with release taken as decision variable. It is

seen that the initial colony of FCACOA has an average

objective function value way over that of PCACOA1,

PCACOA2 and UACOA, due to the fact that all the sol-

utions created by FCACOA are feasible and, therefore, are

not penalized.

CONCLUDING REMARKS

Incremental solution building capability of the ACO algor-

ithm was exploited in this paper to develop three

constrained versions of the ACO algorithm for the efficient

solution of multi-reservoir operation problems. In the first

version, the ants were forced to locally move in the feasible

region of the search space by providing each ant with a tabu

list consisting of those options which constitute a local feas-

ible solution. The tabu list was constructed using the

decision made at previous decision points such that the con-

tinuity equation and the box constraints of release and

storage volumes were simultaneously satisfied. In the

second algorithm, storage values of the upstream reservoirs

constituting infeasible operations were recognized and

excluded from the search space before the main search

started. These two algorithms, however, were shown to fail

in some rare cases. A third algorithm was then proposed

and shown to be capable of only searching the feasible

region of the search space. Proposed methods were applied

to the problems of four- and ten-reservoir operation problem

and the results were presented and compared with those of

the original unconstrained algorithm and existing results in

the literature. Results indicated that the proposed con-

strained algorithms were more effective and efficient than

the conventional unconstrained ACO algorithm in solving

multi-reservoir operation problems. It was also shown that

the fully constrained algorithm consistently gave better qual-

ity solutions than existing heuristic search methods,

including GA, with less computational effort.
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