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Abstract Microsatellites and gene-derived markers

are still underrepresented in the core molecular

linkage map of common bean compared to other

types of markers. In order to increase the density of

the core map, a set of new markers were developed

and mapped onto the RIL population derived from

the ‘BAT93’ 9 ‘Jalo EEP558’ cross. The EST-SSR

markers were first characterized using a set of 24

bean inbred lines. On average, the polymorphism

information content was 0.40 and the mean number

of alleles per locus was 2.7. In addition, AFLP and

RGA markers based on the NBS-profiling method

were developed and a subset of the mapped RGA was

sequenced. With the integration of 282 new markers

into the common bean core map, we were able to

place markers with putative known function in some

existing gaps including regions with QTL for resis-

tance to anthracnose and rust. The distribution of the

markers over 11 linkage groups is discussed and a

newer version of the common bean core linkage map

is proposed.

Keywords Phaseolus vulgaris � Core linkage map �
EST-SSR � AFLP � NBS-profiling method �
Resistance gene analogs

Introduction

Common bean (Phaseolus vulgaris L.) is the most

important legume for direct human consumption in

the developing world (Broughton et al. 2003).

Production is especially important in Eastern and

Southern Africa and Latin America where, in partic-

ular, rice and beans are an inseparable pair of staple

foods for millions of people, representing a major

source of dietary protein. Therefore, an increased

effort has been devoted to improving bean varieties

and expanding the area under bean cultivation.

However, the productivity of most bean varieties

grown in developing countries is still low.

Molecular markers have been used to assist

common bean breeding programs in various ways

(Jarne and Lagoda 1996), including studies on the
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origin and diversity of current cultivars (Gepts 1998),

the domestication of P. vulgaris (Koinange et al.

1996), and the genetic control of resistance to

important diseases (Miklas et al. 2003; Miklas et al.

2006a; Nodari et al. 1993b; Yu et al. 1998). The first

molecular linkage maps of common bean were

developed by means of restriction fragment length

polymorphism (RFLP) markers (Adam-Blondon et al.

1994; Nodari et al. 1993a; Vallejos et al. 1992).

Subsequently, common markers were used to inte-

grate these maps by establishing the correspondence

of their linkage groups (Freyre et al. 1998). For

instance, a population of RILs derived from a cross

between ‘BAT93’ and ‘Jalo EEP558’ was used as a

core mapping population to construct an integrated

linkage map. Although RFLP markers have been

important to establish a genome-wide framework for

anchoring and cross-referencing plant linkage maps,

their widespread use in common bean was restricted

by the lack of probes and the low-throughput nature

of RFLP markers. Different types of markers, mainly

random amplified polymorphic DNA (RAPD) were

then used to increase the density of the common bean

molecular linkage map (Freyre et al. 1998). More

recently, single sequence repeats (SSR), also called

microsatellites, have been developed and used to

increase the density of existing maps, especially the

core ‘BAT93’ 9 ‘Jalo EEP558’ linkage map (Blair

et al. 2003; Grisi et al. 2007; Yu et al. 2000).

Currently, high-throughput markers, such as AFLP,

are preferred for map saturation purposes. Putative

functional markers are still underrepresented in the

common bean molecular linkage map compared to

other types of markers (López et al. 2003; Miklas et al.

2006b; Mutlu et al. 2006; Rivkin et al. 1999). Among

these are resistance gene analogs (RGA), which are

associated with a number of known R-genes (Brug-

mans et al. 2008; Ferrier-Cana et al. 2003; Kanazin

et al. 1996; Mutlu et al. 2006) and quantitative

resistance loci (Flandez-Galvez et al. 2003; Mutlu

et al. 2006; Timmerman-Vaughan et al. 2002). In

addition, microsatellites represent a limited propor-

tion of the markers on the bean core map (Blair et al.

2003; Grisi et al. 2007; Yu et al. 2000), in spite of their

many desirable attributes, including their presence in

both non-genic and genic regions of plant genomes

(reviewed by Li et al. 2004; Oliveira et al. 2006). A

large number of unmapped microsatellite markers

have been reported in the literature (Benchimol et al.

2007; Buso et al. 2006; Caixeta et al. 2005; Campos

et al. 2007; Cardoso et al. 2008; Gaitán-Solı́s et al.

2002; Guerra-Sanz 2004; Hanai et al. 2007; Métais

et al. 2002; Murray et al. 2002; Yaish and Pérez de la

Vega 2003). In addition, the density of the common

bean core map is still low for purposes of marker-

assisted selection and map-based cloning.

The objectives of the present work were to test new

SSR markers developed from common bean

expressed sequence tags (EST) in a set of P. vulgaris

genotypes, assess their capacity to render SSR poly-

morphisms and to map them and other markers such

as RGA and AFLP onto the common bean core map.

Materials and methods

Plant material and DNA extraction

A set of 23 common bean inbred lines and one

accession of P. acutifolius were used to evaluate

allelic variation at EST-SSR loci. Among P. vulgaris

accessions, 17 genotypes belonged to the Mesoamer-

ican gene pool (‘Apetito Blanco’, ‘Baetão’, ‘Barbu-

nya’, ‘BAT93’, ‘Brasil2’, ‘Carioca Comum’, ‘Flor de

Mayo’, ‘Garbancillo’, ‘Great Northern’, ‘IAC-UNA’,

‘Jamapa’, ‘Mulatinho’, ‘Porrillo’, ‘Puebla152’, ‘Rio

Tibagi’, ‘Sanilac’ and ‘Tu’), and six to the Andean

gene pool (‘Antioquia 8’, ‘CAL 143’, ‘Jabola’, ‘Jalo

EEP558’, ‘Pompadour’ and ‘Red Kidney’). For map

construction the inter-gene pool ‘BAT93’ 9 ‘Jalo

EEP558’’ population (Freyre et al. 1998; Nodari et al.

1993a) consisting of 74 F8 RILs was used.

Total genomic DNA was extracted from young leaf

tissue using the CTAB extraction method as described

by Doyle and Doyle (1987). DNA concentrations were

estimated by electrophoresis on ethidium bromide-

stained agarose gels using appropriate molecular

weight standards. From this quantification, aliquots at

10 and 50 ng/ll were prepared for EST-SSR amplifi-

cations and enzymatic digestions, respectively.

Development and amplification of EST-SSR

markers

As reported previously (Hanai et al. 2007), a total of

3,126 bean EST sequences were obtained from the

bean EST project homepage (http://lgm.esalq.usp.br/

BEST/). EST-containing SSR exhibiting at least five

26 Mol Breeding (2010) 25:25–45
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repeat units of di-, tri-, and tetranucleotide motifs

were analyzed and 156 primer pairs were designed.

PCR reactions were performed in a final volume of

16 ll in 96-well plates using a Gen Amp� PCR

System 9700 thermocycler (Applied Biosystems).

Approximately 20 ng of template DNA were mixed

in a solution containing 0.2 lM of both forward and

reverse primers, 0.2 mM of each dNTP,

1.5 mM MgCl2, 10 mM Tris–HCl (pH 8.3),

50 mM KCl and 0.4 units Taq DNA polymerase

(Promega). Four PCR program profiles were used to

amplify EST-SSR loci. All four profiles started with a

preliminary denaturation step at 94�C for 2 min fol-

lowed by two stages. In both stages, denaturing and

elongation conditions were held constant at 94�C for

30 s and 72�C for 60 s, respectively. The duration of

primer annealing was 45 s, but the temperature varied

in stage 1, decreasing 1�C per cycle during 12 cycles

(65–53�C), 0.5�C per cycle during 10 cycles (55–

50�C) or 1�C per cycle during 10 cycles (55–45�C) in

programs 1, 2 and 3, respectively. In program 4, the

initial annealing temperature was 45�C and increased

1�C per cycle during 10 cycles (45–55�C). Stage 2

comprised 25 cycles of amplification. In all programs,

the annealing temperature of stage 2 was the one

reached at the end of the first PCR stage. Final

elongation was performed at 72�C for 7 min.

Development and sequencing of RGA markers

RGA markers were amplified based on the NBS-

profiling methodology (van der Linden et al. 2004).

This methodology is based on the digestion of DNA,

ligation with adapters, and a PCR reaction where one

primer targets the adapter while the other, which is

degenerate, targets the conserved nucleotide binding

site (NBS) domain of plant disease resistance genes.

This amplification results in several fragments per

reaction due to the abundance of resistance gene-like

sequences in plant genomes.

About 200 ng of genomic DNA from the parental

line ‘BAT93’ and ‘Jalo EEP558’ were digested with

RsaI (New England BioLabs). Digestions were per-

formed in a final volume of 20 ll using 6 U of the

enzyme according to the manufacturer’s recommen-

dations, during 4 h at 37�C. Reactions were terminated

by heat inactivation (20 min at 65�C). An adapter

previously prepared from an equimolar mixture of LA

(long arm) oligonucleotide (50-ACTCGATTCTCAA

CCCGAAAGTATAGATCCCA-30) and SA (short

arm) oligonucleotide (50-TGGGATCTATACTT*-30)
was ligated to the restriction fragment ends. The 30 end

of the SA oligonucleotide was blocked for Taq DNA

polymerase extension by the addition of an amino

group (*). Ligation was performed by adding 20 ll of a

mixture containing 1.25 lM adapter, 19 ligation

buffer (New England BioLabs), 80 units T4 DNA

ligase (400 units/ll; New England BioLabs) to 20 ll of

digested DNA. The reaction was incubated at 16�C

overnight and terminated by heat inactivation (65�C

for 10 min). As template DNA 3 ll of ligation

products were used for the amplification of selected

fragments anchored to the NBS-domain. For this, an

AP (adapter primer) complementary to the adaptor (50-
ACTCGATTCTCAACCCGAAAG-30) and one of

four NBS-primer were used in distinct reactions

(Table 1). The amplification was performed in a final

volume of 20 ll containing 0.25 lM of both primers,

0.2 mM of each dNTP, 1.5 mM MgCl2, 10 mM Tris–

HCl (pH 8.3), 50 mM KCl and 1.0 unit Taq DNA

polymerase (Promega). The amplification was carried

out in a Gen Amp� PCR System 9700 thermocycler

(Applied Biosystems). A two-stage PCR was used after

an initial denaturing step at 94�C for 5 min. The first

Table 1 Designation and sequence of primers used to generate RGA markers based on the NBS-profiling method

Primer designationa Sequence 50–30 Protein domain/motif

AP ACTCGATTCTCAACCCGAAAG Adapterb

NBSa-F GGAATGGGKGGACTYGGYAARAC NBS/kinase

Kdc-F ATGGGAAGGAAGTATTCCAA NBS/kinase

Kdc-R ARGTTCCACAGGACATCACC NBS/kinase

RGP-F GGNATGGGYGGBRTHGGYAARAC NBS/hydrophobic

a F for forward and R for reverse
b Primer specific to the adapter sequence used in combination with RGA specific primers

Mol Breeding (2010) 25:25–45 27
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stage consisted of 8 cycles at 94�C for 45 s, at 58�C (-

1�C per cycle) for 1 min, and at 72�C for 1 min,

whereas the second stage consisted of 25 cycles at 94�C

for 45 s, 50�C for 1 min and 72�C for 1 min. A final

extension of 7 min at 72�C was conducted. The

amplification of fragments anchored to NBS-domain

was assured by designing an adapter that does not have

an AP-primer annealing site in the SA oligonucleotide.

This annealing site is constructed after elongation of

the NBS-primer, when the end of LA oligonucleotide is

used as template for AP-primer annealing (for details

see van der Linden et al. 2004).

RGA markers of interest were excised from

polyacrylamide gels and reamplified following the

same PCR conditions initially used. Fragments were

resolved on agarose gels, purified (PCR purification

kit, Qiagen), and cloned into pGEM�-T Easy vector

(Promega) for sequencing. Inserts were sequenced in

the forward and reverse directions. The sequencing

reaction was performed as described by Sanger et al.

(1977) using DYEnamicTM ET dye Terminator Cycle

Sequencing Kit (Amersham Pharmacia Biotech, Inc.)

on MegaBACE 1000 (Amersham Biosciences).

Sequences were assembled using the Phred/Phrap/

Consed package using a phred score C20 as the

threshold for base quality. Nucleotide sequences were

compared to sequences deposited in the Genbank

database (http://ncbi.nlm.nih.gov/BLAST) using the

BLAST tool (Altschul et al. 1990).

Generation of AFLP markers

AFLP markers were amplified based on the protocol

described by Vos et al. (1995) with modifications.

Restriction and ligation enzymes required for AFLP

analysis were obtained from the New England Biolabs

Company. Briefly, 200 ng of genomic DNA from

each of the parents and the 74 F8 RILs were double

digested with EcoRI and MseI or PstI and MseI

enzymes (5 U of each) in a 25 ll reaction mixture

(10 mM Tris–acetate, pH 7.5; 10 mM Mg-acetate,

50 mM K-acetate) during 4 h at 37�C. All resulting

fragments were ligated to adapter sequences by

adding an equal volume of a ligation solution i.e.

30 mM of Tris–HCl (pH 7.5), 10 mM of MgCl2,

10 mM of DTT, 1.0 mM of ATP, 0.25 lM of EcoRI

or PstI adapter, 2.5 lM of MseI adapter, and 80 units

of T4 DNA ligase (400 units/ll). These reactions were

incubated at 16�C overnight and terminated by heat

inactivation (65�C for 10 min). The adapter-ligated

DNA (3 ll) was used for the pre-selective amplifica-

tion using AFLP primers based on the sequence of the

EcoRI or PstI and MseI adapters, with one selective

nucleotide at the 30 end. The pre-selective reaction

was amplified using the following conditions: 94�C

for 2 min; 26 cycles of 94�C for 60 s, 56�C for 60 s,

72�C for 60 s; and a final elongation at 72�C for

5 min. Five microliters of a 10-fold diluted pre-

selected PCR product were used as DNA template for

the selective amplification using AFLP primers with

three additional selective nucleotides at the 30 end.

The following cycling parameters were used for

selective amplification: 94�C for 2 min; 12 cycles of

94�C for 30 s, 65�C for 30 s, 72�C for 60 s; 23 cycles

of 94�C for 30 s, 65�C for 30 s, 72�C for 60 s; and a

final elongation at 72�C for 5 min.

Genotyping

All markers were resolved in 6% w/v denaturing

polyacrylamide gels (19:1; acrylamide:bis-acrylam-

ide) using the electrophoresis apparatus Sequi-Gen�

GT (Bio-Rad). Samples (3 ll) of amplified products

were denatured with 19 loading buffer (0.2% each

bromophenol blue and xylene cyanol, 10 mM EDTA,

pH 8.0, and 95% formamide) at 95�C for 5 min before

they were loaded onto the gels. The EST-SSR markers

were electrophoresed for 2 h 30 min at 70 W, and

AFLP and RGA markers for 4 h 30 min at 80 W. The

loci were visualized by silver staining according to

Creste et al. (2001). AFLP loci were coded using the

name of the primer pair followed by the fragment size

(bp). RGA loci were coded using the initials of the

enzyme and NBS primer names followed by the

fragment size (bp). The codes for EST-SSR markers

are shown in Table 2.

Map construction

The segregation of each AFLP and RGA locus was

scored by the presence or absence of the fragment.

EST-SSR as well as rare codominant AFLP loci were

scored by identifying the parental fragments in the

segregating population. Goodness-of-fit tests for 1:1

segregation ratio were performed for all makers

segregating in the 74 F8 RILs.

For the construction of the map, we adopted the

following approach using the software MAPMAKER

28 Mol Breeding (2010) 25:25–45
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v. 3.0 (Lander et al. 1987). Segregation data here

obtained (EST-SSR, RGA and AFLP markers) were

merged with available data of markers placed on the

framework of the core map (Freyre et al. 1998).

Initially, three RFLP markers equally distant were

anchored to their respective linkage group using the

‘anchor’ command. The ‘assign’ command

(LOD [ 3) was used to assign all other markers to

the linkage groups. In each linkage group, the order

of 10 highly informative markers was defined using

the ‘order’ command. Then, the other markers were

added to the map using the ‘build’ command

(LOD [ 2.0). Loci that could not be ordered with

the default log-likelihood threshold value were

referred to as accessory markers and placed in the

most likely interval. The Kosambi mapping function

was used for the calculation of map distances

(Kosambi 1944). Map drawings were generated using

MapChart (Voorrips 2002). The nomenclature and

orientation of linkage groups followed the recent

changes adopted by the Genetics Committee of the

Bean Improvement Committee (Pedrosa-Harand

et al. 2008).

Results and discussion

Allelic variation at EST-SSR loci

Out of 156 primer pairs designed initially, 139

amplified 140 loci of which 40 were analyzed

previously (Hanai et al. 2007). The remaining 100

loci were evaluated in the present study using a set of

bean genotypes (Table 2). About 13 amplicons were

larger than expected, probably due to the presence of

introns between primer sites. Nevertheless, only 11

EST-SSR loci presented a non-optimal amplification

pattern and were not analyzed. A total of 89 pairs of

primers amplified fragments that were easy to score,

54 of which revealed polymorphisms among the 24

bean genotypes. The number of alleles per polymor-

phic locus varied from 2 to 13 with an average of 2.7.

The polymorphic information content (PIC) of the 54

loci ranged between 0.08 and 0.89, with a mean PIC

of 0.40.

Our data agree with previous findings that reported

an average of 2.9 (Yu et al. 1999) and 3.1 alleles per

locus (Guerra-Sanz 2004) as both studies analyzed

genic SSR in bean accessions. Generally, SSRs from

anonymous sequences are regarded as more informa-

tive than SSRs of genic origin. For example, average

values of six and seven alleles per locus were

described by Gaitán-Solı́s et al. (2002) and Buso

et al. (2006), respectively. The fact that expressed

sequences are associated with biological processes

and therefore are more conserved than anonymous

ones could explain these differences; however, when

the same set of bean genotypes were analyzed using

SSR loci developed from genic and genomic sources,

the results showed similar average values for PIC and

number of alleles per locus between genic and

genomic SSRs (Hanai et al. 2007).

A considerable number of polymorphic SSR loci is

generally required for variety identification or even

for pedigree analysis when polymorphisms are used

for tracing parentage (Guerra-Sanz 2004). The locus

PvM115 containing a CT motif repeated 25 times

showed both higher PIC (0.89) and number of alleles

(13) in the 24 genotypes analyzed (Fig. 1). In our

previous study, 12 alleles were detected at the PvM21

locus (Hanai et al. 2007). Thus, these two EST-SSR

loci are very informative and may be useful in both

types of analyses.

Fig. 1 Electrophoretic pattern at PvM115 locus (EST-SSR) in

24 Phaseolus genotypes detected in 6% silver-stained poly-

acrylamide gel. 10-bp DNA ladder (Invitrogen) are in first and

last lane

36 Mol Breeding (2010) 25:25–45
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An updated common bean core map

We screened ‘BAT93’ and ‘Jalo EEP558’ for poly-

morphisms using 156 EST-SSR primer pairs of the

PvM series, 16 combinations of restriction enzymes

(RsaI, HindIII, AluI and DraI) and NBS primers

(Table 1) through the NBS-profiling methodology

and 28 combinations of AFLP selective primers. A

total of 140 EST-SSR primer pairs amplified scorable

loci, of which 50 were polymorphic. Regarding the

NBS-profiling method, the restriction enzyme RsaI

was chosen because it generated better amplification

profiles and more polymorphic RGA loci (data not

shown). The four NBS primers in combination with

RsaI produced 194 loci, of which 32 were polymor-

phic (Fig. 2). In addition, the AFLP selective primer

combinations (12 from EcoRI/MseI and 16 from PstI/

MseI digestions) amplified 1,252 loci, 29% of them

being polymorphic. From these, 15 combinations

producing 203 polymorphic loci were selected for

genotyping the mapping population (Table 3).

The merging of the data of the 285 loci developed

in this study (50 EST-SSR, 32 RGA and 203 AFLP)

with the data of 143 markers previously mapped into

the core common bean linkage map (Freyre et al.

1998) resulted in a map comprised of 413 DNA

markers (Table 4) distributed in 11 linkage groups

(LG). About 15 markers remained unlinked. The

length of the new linkage map was estimated at

1,259 cM, corresponding to an average of one marker

per 3.0 cM. The number of markers per LG ranged

from 32 (10) to 50 (8) while the LG lengths varied

from 75 (5) to 147 cM (2).

The levels of efficiency of both QTL mapping and

selection based on DNA markers is enhanced when

regularly spaced markers are available throughout the

linkage groups (Lander and Botstein 1989). If the

number of markers allocated to map positions is high,

existing gaps are more likely to be saturated. With the

integration of 282 new markers (50 EST-SSR, 32

RGA and 200 AFLP) into the common bean core

map, we were able to place new markers in some

Fig. 2 Amplification

pattern of RGA markers in

6% silver-stained

polyacrylamide gel. The

DNA was digested with

RsaI and amplified using

the primers AP and NBSa-

F. The parental lines are

represented in duplicate

(‘BAT 93’, lanes 1 and 2,

and ‘Jalo EEP558’, lanes 3

and 4); lanes 6 through 35

correspond to F8 RILs.

Arrows indicate

polymorphic loci. Lane 5

shows the 25-pb DNA

ladder (Invitrogen)
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existing gaps. In LG 3, for instance, five AFLP, one

RGA, and one EST-SSR markers were positioned

between markers Bng12 and D1151 and in LG 6 three

AFLP and one EST-SSR markers were positioned

between markers ROF7a and D1086. Similarly,

additional markers were placed in two linkage groups

within regions where QTL for resistance to

anthracnose were mapped before (Miklas et al.

2006b): the QTL interval (40–75 cM) in LG 1 was

saturated with seven AFLP and two EST-SSR

markers whereas the QTL interval in LG 2 (65–

95 cM) was saturated with 14 new markers, including

4 RGA (Fig. 3).

Slight discrepancies were observed between the

present map and the previous one (Freyre et al. 1998).

Linkage groups 2, 6 and 11 became shorter while LG

1, 3, 8, 9 and 10 became longer. These discrepancies

are probably due to the size of the mapping popu-

lation and the kind of markers used. In order to

develop a core linkage map and align the existing

RFLP maps, Freyre et al. (1998) used a number of

markers with more missing data and a smaller

population. For instance, the LG 2 of the Freyre’s

map had 175 cM while the corresponding groups in

the Florida and Davis’ maps had 128 and 107 cM,

respectively (Nodari et al. 1993a; Vallejos et al.

1992). In addition, the present map is about 30 cM

longer than the one reported by Freyre et al. (1998),

because new markers were positioned at the end of

the groups, e.g., LG 10 had eight new loci mapped as

terminal markers, expanding its size to more than

36 cM (Fig. 3).

Segregation features

Most of the markers (82.5%) showed a 1:1 segrega-

tion ratio of the parental alleles (P \ 0.05), as

expected in a RIL population. Among the newly

Table 3 Number of polymorphic loci per combination of

AFLP primers

Primer

combination

Selective nucleotides Number of

polymorphic loci

P31M64 P ? AAA, M ? GCT 18

P32M63 P ? AAC, M ? GCA 19

P37M64 P ? ACG, M ? GCT 5

P39M65 P ? AGA, M ? GGA 8

P39M63 P ? AGA, M ? GCA 11

P38M65 P ? ACT, M ? GGA 4

P32M64 P ? AAC, M ? GCT 6

E31M48 E ? AAA, M ? CAC 20

E39M49 E ? AGA, M ? CAG 10

E40M56 E ? AGC, M ? CGC 23

E37M60 E ? ACG, M ? CTC 23

E31M60 E ? AAA, M ? CTC 18

E40M49 E ? AGC, M ? CAG 8

E31M49 E ? AAA, M ? CAG 18

E39M48 E ? AGA, M ? CAC 12

Total 203

E EcoRI complementary primer, P PstI complementary primer,

M MseI complementary primer

Table 4 Distribution of

different types of marker

over the linkage groups

(LG) of the novel common

bean core map, and their

lengths in centimorgans

(cM)

a Markers previously

assigned to the framework

of the common bean

integrated map (Freyre et al.

1998). EST-SSR expressed

sequence tag derived single

sequence repeats, RGA
resistance gene analog

markers based on NBS-

profiling method

LG No. of markers

previously mappeda
No. of novel markers Total Length (cM)

EST-SSR RGA AFLP

1 14 6 3 21 44 129.0

2 15 6 4 14 39 146.7

3 12 7 2 21 42 143.0

4 8 1 3 23 35 99.6

5 15 5 1 18 39 75.2

6 15 2 0 16 33 97.1

7 14 2 4 14 34 105.4

8 11 7 4 28 50 146.1

9 7 7 1 11 26 123.1

10 9 4 5 14 32 108.4

11 11 3 5 20 39 85.2

Total 131 50 32 200 413 1258.8
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positioned markers, 13 EST-SSR (26%), 7 RGA

(22%) and 28 AFLP (14%) showed segregation

distortion. Gametes in direct competition, meiotic

drive, and genes controlling pollen lethality are

factors that affect allele segregation during meiosis

and can produce distorted ratios (Moyle and Graham
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Fig. 3 An updated common bean molecular linkage map

based on the ‘BAT93’ 9 ‘Jalo EEP558’ RIL population. The

revised orientation and nomenclature of linkage groups follows

that of the Bean Improvement Cooperative (http://www.css.

msu.edu/bic/Genetics.cfm). About 261 markers were ordered

with LOD [ 2.0 and their distances (cM) from top to bottom

are indicated to the left of linkage groups (LG). About 152

markers were assigned to linkage groups but not ordered in

multipoint analyses (LOD [ 2.0) and were placed in the most

likely interval (gray boxes) without changing the map dis-

tances. Loci with distorted segregation ratios are indicated by

asterisks (*P \ 0.05; **P \ 0.01; ***P \ 0.001 for markers

skewed toward ‘BAT93’) or degree symbols (�P \ 0.05;

��P \ 0.01; ���P \ 0.001 for markers skewed toward ‘Jalo

EEE558’)
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2006). Among the 28 AFLP loci with distorted

segregation, similar numbers were found skewed

towards ‘BAT93’ alleles (15) and ‘Jalo EEP558’

alleles (13). In contrast, segregation distortion affect-

ing EST-SSR and RGA loci favored ‘BAT93’ alleles.

Nine EST-SSR and five RGA loci showed an excess

of ‘BAT93’ alleles, while four EST-SSR and two

RGA loci showed an excess of ‘Jalo EEP558’ alleles.

This could be explained by the higher adaptability of

lines carrying ‘BAT93’ alleles. Since we used SSR

markers that are within genes it is possible that their

products were affected by natural selection leading to

the observed bias in the segregation ratios. Following

allelic frequencies of SSR loci in 24 generations,

Rodrigues and dos Santos (2006) reported that all loci

were affected by natural selection, which favored one

of the parental common bean accessions (‘Carioca

MG’) at 29 out of 30 loci.

Interestingly, markers showing distorted segrega-

tion were mainly located in six linkage groups. An

excess of ‘Jalo EEP558’ alleles were positioned in

two regions located on LG 1 and 6, while an excess of

‘BAT93’ alleles were mapped in four regions located

in LG 2, 7, 8 and 9. The clustering of markers with

segregation distortion possibly reflects the location of

genes that were favored by either meiotic selection or

inadvertent selection in BJ population.

Marker distribution

Table 4 shows the distribution of marker types in the

common bean linkage groups together with group

lengths (in cM). Non-anonymous EST-SSR and RGA

markers were mapped to all linkage groups, exclud-

ing LG 6. About 50 EST-SSR markers were ordered

with LOD [ 2.0 into 40 distinct positions of the 11

linkage groups of the BJ map. Although EST-SSR

were positioned on all LGs, their distribution was not

uniform and varied from one in LG 4 to seven

markers in LG 3, LG 8 and LG 9 (Table 4).

Interestingly, LG 4 is the group in which most of

the microsatellites studied by Yu and coauthors were

mapped (Yu et al. 2000). This illustrates the

complementariness of both studies regarding the

saturation of the core map with SSR markers.

In general, we did not observe a direct relation

between number of markers and length of the LGs.

The shortest linkage group (75 cM) had as many

markers (39) as the largest one (123 cM), which

contained 26 markers (Table 4). This could be

explained by the clustering pattern in some regions

of the bean genome. Using absolute co-segregation of

three or more markers as a criterion for defining a

cluster we inferred clustering in seven LGs: 1, 2, 3, 4,

6, 8 and 11, with large clusters ([8 markers) in

9
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groups 4, 8 and 11 (Fig. 3). AFLP markers formed

the majority of the clusters. The uneven distribution

of AFLP markers derived from double digestion with

EcoRI and MseI was previously reported in other

legume species such as soybean (Young et al. 1999)

and adzuki bean (Vigna angularis; Han et al. 2005)

but also in the yellow passion fruit (Lopes et al.

2006). The preferential localization of AFLP loci in

DNA regions of recombination suppression may be

associated with the restriction enzymes used, which

may favor the finding of these markers in centromeric

regions, for example (Troggio et al. 2007), as they

may require methylation to maintain their specialized

functions. Here, we used the combinations PstI with

MseI and EcoRI with MseI, as suggested by Young

et al. (1999). These authors proposed that PstI, which

is blocked by methylation would be more efficient

than EcoRI in producing AFLP markers placed at

random on linkage maps. In fact, out of 51 PstI/MseI-

derived markers, only five were found completely

linked, two being located in the cluster of LG 4 and

three in the cluster of LG 8.

Mapping markers with putative known function

Several EST-SSR showing similarities with known

and unknown proteins were mapped in several

linkage groups. These include markers with highly

significant e-values (\e-30) such as PvM61 (LG 9)

from a sequence similar to members of the stress-

related NAC transcription factor family (Fang et al.

2008); PvM18 (LG 5) from a sequence similar to the

leucine-rich repeat (LRR) domain of plant disease

resistance genes (Ryan et al. 2007); and PvM87 (LG

3) from an EST similar to subtilisin-like proteases, a

class of enzymes involved in recognition of patho-

gens and activation of defense responses (van der

Hoorn and Jones 2004). A complete list of the

putative function of ESTs from which SSR markers

were developed in this work is presented in Table 5.

Mapping of RGA markers

About 32 RGA loci generated with the NBS-profiling

method using four degenerated primers that target the

NBS domain were mapped at 26 positions on 10

linkage groups (Fig. 3). The remaining six mapped at

exactly the same loci (RKF275 and RNF230 on LG 1;

RNF90, RNF115 and RNF180 on LG 2; RKF500 and

RKF510 on LG 7; RKF318 and RKF320 on LG 8;

and RNF330 and RNF475 on LG 11). This was

expected, as many disease resistance genes occur in

clusters as complex loci in many plant species,

including common bean. The anthracnose resistance

locus Co-4 is such an example as it contains five

copies of the COK-4 gene (Melotto et al. 2004).

Vallejos et al. (2006) showed that multiple copies of a

gene member of the TIR–NBS–LRR family were

present within the I locus, which confers resistance to

Bean common mosaic virus.

At least five RGA markers mapped to regions

containing resistance genes for anthracnose and rust

diseases. In LG 1 the marker RNF120 co-located with

Co-1, Co-x, Co-w and Ur-9 genes; in LG 7 the marker

RKR385 was mapped near to Co-6 gene; and in LG

11 three markers (RNF330, RRF410 and RNF475)

were positioned in the region containing the Co-2

gene against anthracnose and Ur-3, Ur-11 and Ur-

Dorado genes against rust (Miklas et al. 2006a). The

RGA markers were also positioned in the vicinity of

QTLs located on the core map (Miklas et al. 2006a).

For instance, markers RKF275 and RNF230 (LG 1)

were mapped near to QTLs for resistance to common

bacterial blight and white mold. In LG 2, the marker

RRF230 was positioned in a region containing QTLs

for resistance to common bacterial blight and

anthracnose as well as RNF115, RNF180 and

RNF90 co-located with a QTL for resistance to white

mold. The RGA RNF240 mapped to a region that a

QTL for resistance to Fusarium root rot was located

in LG 3. The marker RKR230 (LG 5) was mapped

together a QTL for resistance to white mold, and

markers RKF500 and RKF510 (LG 7) co-positioned

with a QTL conditioning common bacterial blight.

The marker RRF550 (LG 10) was mapped near a

QTL for resistance to angular leaf spot, and the

markers RNF330, RRF410 and RNF475 (LG 11)

were mapped near a QTL region for resistance to

anthracnose (Miklas et al. 2006a).

About 16 RGA fragments were sequenced, and

five sequences showed high similarity with plant

resistance proteins (Table 5). The BLASTx analyses

showed that RNF356 and RRF380 sequences are

similar to resistance proteins from Glycine max.

Similarly, sequences of RNF475 and RRF410 were

highly similar to resistance proteins from P. vulgaris

as well as the RNF330 sequence has similarity with a

resistance protein from Medicago truncatula. Several
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tagging approaches in candidate genes have been

used for analyzing resistance genes in crop species,

including common bean (López et al. 2003; Miklas

et al. 2006b; Rivkin et al. 1999). Here we demon-

strate the feasibility of NBS-profiling methodology

for generating RGA loci as well as a complementary

tool for tagging RGA that were not yet mapped in the

common bean genome.
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López CE, Acosta IF, Jara C, Pedraza F, Gaitan-Solis E,

Gallego G, Beebe S, Tohme J (2003) Identifying resis-

tance gene analogs associated with resistances to different

pathogens in common bean. Phytopathology 93:88–95

Melotto M, Coelho M, Pedrosa-Harand A, Kelly J, Camargo

LEA (2004) The anthracnose resistance locus Co-4 of

common bean is located on chromosome 3 and contains

putative disease resistance-related genes. Theor Appl

Genet 109:690–699
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