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Abstract— A possible route toward achieving high-power
microwave (HPM) devices is through the use of novel slow-wave
structures, represented by multiple coupled transmission lines
(MTLs), and whose behavior when coupled to electron beams
has not been sufficiently explored. We present the extension
of the 1-D linearized Pierce theory to MTLs coupled to a
single electron beam. We develop multiple formalisms to cal-
culate the k–ω dispersion relation of the system and find that
the existence of a growing wave solution is always guaran-
teed if the electron propagation constant is larger than or
equal to the largest propagation constant of the MTL system.
We verify our findings with illustrative examples that bring to
light unique properties of the system in which growing waves
were found to exist within finite bands of the electron propagation
constant and also present possible means to improve the gain.
By treating the beam–MTL interaction as distributed dependent
current generators in the MTL, we derive relations characterizing
the power flux and energy exchange between the beam and
the MTLs. For the growing wave, we show that the beam
always behaves as an energy source causing power flux along
the transmission lines. The theory developed in this paper is the
basis for the possible use of degenerate band edges in periodic
MTL systems for HPM amplifiers.

Index Terms— Coupled transmission lines, high-power
microwaves (HPMs), multiple transmission lines, Pierce model,
traveling-wave tubes (TWTs).

I. INTRODUCTION

E
VER since their introduction in the 1940s due to

the pioneering work of Kompfner, Pierce, and other

co-workers, traveling-wave tubes (TWTs) have found immense

applications as microwave and millimeter-wave amplifiers in

areas, such as RADAR, wireless communications, satellite

communications, and electronic counter measure systems,

among others. A review of the historical developments and

progress achieved in the area of microwave vacuum electronic

devices like the TWT is presented in [1]. A simplified and

analytical theory of operation of the TWT was described by

Pierce as a wave interaction phenomenon [2]–[6]. The 1-D

Pierce theory represented the slow-wave structure as an ideal
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1-D transmission line (TL) and modeled the electron beam

as an 1-D fluid. The amplification produced by the TWT

was observed as the result of interaction between the RF

signal on the TL with the traveling charge density waves

on the electron beam. While the 1-D TL was described by

the Telegrapher’s equations, the electron beam was described

by the equation of continuity and Newton’s second law, with

both equations expressed in Eulerian coordinates [2], [4], [6].

These inherently nonlinear relations were then linearized under

the assumptions of small-signal amplitudes [2], [4]. Due to the

linearization, the 1-D Pierce theory fails to account for the

saturation of the TWT and does not model the inherent

nonlinearities in the TWT. However, despite the apparent

oversimplification, the 1-D Pierce model has been used to

analytically predict the performance of the TWT in the small-

signal regime with reasonable accuracy and has led to the

accumulation of substantial physical insights into the operation

of TWT-like devices.

In general, a slow-wave structure supports many modes

at a given frequency, and therefore the sum of the fields

due to these modes would interact with the electron beam.

If, however, only one of the modes was to interact with the

beam due to the synchronization of their phase velocities,

then it would be justified to use the simplified single-TL

model as used in Pierce model to analyze the interaction

between the beam and the RF fields. However, the exact

form of the slow-wave structure does not play a role in the

Pierce model due to the very general nature of analysis [6].

Some commonly used slow-wave structures include the helix

[6] and its variants, such as the ring-bar and the ring-loop

structures [6], and the ladder circuit [7]–[11]. Despite being a

popular slow-wave structure due to the inherent simplicity, an

important fundamental drawback of the helix is its limited

power-handling capacity [6]. Recently, there has been an

increased demand for high-power microwave (HPM) devices

for both civilian and military applications [12] with the

aim of achieving gigawatt peak power levels and very short

pulse duration (order of tens of nanoseconds) microwave and

millimeter-wave radiation. In light of this demand, it might

be beneficial to explore unconventional slow-wave structures

with the aim of increasing the peak power levels and the

operating efficiency of the TWT. A cursory analysis reveals

that the single-TL model does just well enough to reasonably

represent the above slow-wave structures at the interaction

frequencies thereby justifying its use in the 1-D Pierce model.
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However, the representation of a slow-wave structure as a

single TL is one of Pierce theory’s major limitations, which

can be overcome by the use of multiconductor TLs (MTLs),

with each individual TL in the MTL representing a waveguide

mode, including mutual coupling among TLs. Typically, slow-

wave structures are implemented as periodic circuits, and

therefore the operating frequency is chosen to be close to the

band edge of the dispersion diagram of the structure.

Previously, MTLs have been applied to TWTs both theoret-

ically and experimentally from a few different perspectives.

For example, a distinct TL (helix) was used to efficiently

couple the RF signal in and out of the TWT helix at

any point without making drastic modifications to the first

TWT helix [13], [14]. While the coupled helices were well

described using MTLs [13], [14], it should be noted that in

[13] and [14] (and references therein), the electron beam was

typically assumed to be uncoupled with the external coupling

helix (or TL). In addition, Rowe [15] has analyzed multiple

interacting electron beam systems theoretically in terms of

a coupled MTL system. Furthermore, it was attempted to

improve the interaction impedance and gain of a standard

helix TWT by the use of multiple helices [16], paralleled

TWT circuits and electron beams [17], and multiple ladder

circuits [11]. However, the theory developed in [11], [16],

and [17] is not general and does not delve into conditions

for growing waves and energy conservation.

In the realm of periodic structures, recently, it has been

proposed in [18]–[21] that a dramatic increase in field intensity

and a vanishing group velocity associated with a degenerate

band-edge (DBE) resonance could be achieved by the use of

specially arranged periodic arrays of anisotropic layers with

misalignment of in-plane anisotropy between the anisotropic

layers in a unit cell. Previously, the DBE mode has been

observed in periodic stacks of misaligned anisotropic layers

[18]–[20], periodically loaded metallic waveguides [22], and

coupled waveguiding systems [23], [24]. We anticipate that

slow-wave structures exhibiting the DBE mode, modeled by

MTLs, if suitably coupled to the electron beam, could be

used to design TWTs with unprecedented peak power levels.

As an example, we envision the use of DBE structures made

up of cascaded hollow metallic waveguide components for

applications in HPM devices.

In this paper, we develop a general theory for the interaction

of an MTL system with a single electron beam and obtain

analytical results for the dispersion diagram of the combined

beam–MTL system and derive conditions to obtain growing

waves on the coupled MTL–beam system. We also analyze the

power flow and energy conservation in the system and derive

conditions for power transfer from the beam to the MTL.

Section II-F presents illustrative examples for an electron beam

coupled to an MTL comprising of multiple identical coupled

TLs similar to the examples presented in [11], [16], and [17]

and shows an increase in gain similar to the conclusions

of [11], [16], and [17]. The theoretical formulation in this

paper can be used to analyze MTL systems interacting with

a single electron beam, multiple interacting modes in a single

waveguide interacting with a single electron beam, and it

could be extended to the case of multiple interacting electron

beams treated as an MTL system. Finally, but importantly,

the presented formulation is the first step toward the analysis

MTLs exhibiting a DBE, coupled to an electron beam, which

may enable new ways to obtain large gains, and it will be the

subject of future investigations.

In particular, here we present an analytical theory analyzing

the interaction of an electron beam coupled to a lossless

MTL system by extending the Pierce model to the case of

MTL and retaining its simplicity. We assume a small-signal

approximation and neglect the effect of the space charge

forces (those arising from a gradient of the charge density

wave) on the longitudinal electric field, as was done in [4]

and [6]. Since MTLs can be used to model coupled systems

with exotic dispersion characteristics, like for example, DBE

modes, the extension of the Pierce model to an MTL system

could model the interaction of electron beams with DBE

modes in coupled waveguiding systems with applications to

HPM devices, to be summarized in future publications. In

addition, the Pierce theory with MTLs could be applied to

the study of an electron beam interacting with multiple modes

in a single real waveguide or to possible novel designs having

more than one waveguide interacting with the electron beam.

This paper is organized as follows. In Section II, we develop

the theoretical framework for the electron beam and the

MTLs and present multiple formalisms to calculate the

k–ω dispersion relation including a matrix formulation and a

formulation in terms of admittances more akin to the original

Pierce derivation. In addition, we discuss the solutions to the

dispersion relation with emphasis on identifying the conditions

for achieving growing waves and study some illustrative

examples. In Section III, we discuss the energy conservation

relations for the system and analyze the direction of power

flow for plausible solutions of the system.

II. FORMULATIONS TO DERIVE k–ω

DISPERSION RELATION

The system of N-TLs coupled among each other by induc-

tive and/or capacitive means and to an electron beam along the

+z-direction is shown in Fig. 1. The terms sn and an describe

how the beam couples to the N-TLs and will be discussed

later on in this paper.

A. Electron Beam Dynamics

We follow the linearized equations that describe the space-

charge wave on the electron beam presented in [4]. We assume

a narrow cylindrical beam of electrons with constant axial elec-

tric field across the beam’s cross section, and purely longitudi-

nal electron motion and the absence of any transverse electric

fields. Let the total electron-wave velocity along +z-direction

be u0 + v (m/s), where u0 is the dc or average value and

v is the ac velocity modulation on the beam. We assume a

line charge density with units [C/m] given by ρ0 + ρb, where

ρ0 is the dc or average value (assumed to be negative) and

ρb is the ac line charge density modulation on the beam.

The total current with units of amperes flowing along the

+z-direction is I0+ Ib, where I0 is the dc or average value, and
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Fig. 1. Schematic diagram describing the N -TLs coupled among each other
and to the electron beam.

is negative since I0 = ρ0u0, whereas Ib is the ac modulation

on the beam.

We denote the charge-to-mass ratio of the electron as

η = e/m, where e is the charge of the electron and is

a negative number. The electronic propagation constant is

defined as β0 = ω/u0, where ω is the radian frequency of

operation in radian/second. The linearized equations of motion

describing the electron beam are written as [4]

∂t Vb + u0∂zVb = u0 Ez (1)

Ib = ρbu0 + ρ0v. (2)

Here, we define an equivalent kinetic beam voltage

Vb = u0v/η, with units of volts. We assume that the axial

electric field Ez in (1) is the sum of the axial electric fields

Ez,n of all the N-TL modes

Ez = Ez,1 + Ez,2 + · · · + Ez,N . (3)

It must be noted that the effects of the space charge fields

of the electron beam modeled as plasma frequency reduction

factor [6] have been neglected in this paper, as was done in [4]

and [6]. In addition to (1) and (2), the beam is further described

by the 1-D continuity equation ∂t (ρ0 + ρb) = −∂z(I0 + Ib)

that implies ∂tρb = −∂z Ib .

B. Formulation of MTL With Current Generators

In the Pierce model, the beam with current I0 + Ib was

assumed to pass very close to the circuit, therefore inducing a

current in the TL over the incremental distance �z [25], [26]

and reflected in the TL equations as an equivalent parallel

current generator per unit length, with unit (A/m) given by

iS = −∂z Ib. For N-TLs, we assume that the beam induces a

current in every TL such that we consider equivalent parallel

current generators on every TL iS,n = −∂zsn Ib or, iS =
−∂zsIb , and is schematically shown in Fig. 2.

Here, s = [s1, s2, . . . , sN ]T is a column vector of dimen-

sionless numbers called current interaction factors. Physically,

the components of s scale the amount of charge induced

on the waveguide walls by an electron beam, and hence

denote the strength of each shunt current generator induced by

the electron beam. In [4] and [5], the current interaction factor

was a scalar number with unit value. Here, we include s to

Fig. 2. Schematic diagram showing the current generators per unit length
iS,n , one each per TL, representing the beam–TL interaction. The TL is
schematically shown in terms of its per-unit-length inductances and capac-
itances along with the coupling inductances and capacitances.

allow for different excitation of distinct TLs. We assume that

the charge induced on the waveguide walls by the beam is

instantaneous, and hence all elements of s are assumed to be

real numbers. The theoretical formulations for MTLs are well

known and the approach presented in [27]–[29] is followed.

For the MTL system with parallel current generators, we write

the coupled equations as ∂zV = −L∂t I and ∂zI = −C∂t V+iS .

The TLs are defined by their real distributed (per-unit-length)

inductances (Llm) and capacitances (Clm ), respectively. If

l = m, then Lll and Cll represent the self-inductance and

self-capacitance of the line l, and if l �= m, then Llm and Clm

represent the mutual or coupling inductances and capacitances

between lines l and m. We note that the matrices L and C are

real symmetric and positive definite [27]–[29]. In addition,

V = [V1, V2, . . . , VN ]T and I = [I1, I2, . . . , IN ]T are the

voltages and currents on the TLs. We recall that an MTL

system accurately represents wave propagation in a multimode

real waveguide.

Considering the voltages and currents on the MTLs to vary

with time and distance as e jωt e− j kz , where k is the com-

plex propagation constant, we rewrite the coupled equations

describing MTL in frequency domain as

∂zV = − jωLI, (4)

∂zI = − jωCV + iS . (5)

Equations (4) and (5) are combined into a single second-

order differential equation in V given by
(

∂2
z + ω2L C

)

V =
− jωLiS . Assuming wave solutions, the second-order differ-

ential equation is written as

YV = iS (6)

where the circuit admittance per unit length [�/m] Y is defined

as

Y = 1

jω
L−1

(

k21 − ω2L C
)

(7)

and 1 stands for an identity matrix of size N × N . For a

single TL, Pierce [4], [5] assumed that the axial electric field
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was related to the TL voltage as Ez = −∂z V . For MTLs, we

assume that the axial electric field of the nth TL is related to

only the voltage on the nth TL as Ez,n = −an∂zVn such that

the total axial electric field is

Ez = −
N

∑

n=1

an∂z Vn = −∂z

(

aT V
)

(8)

where aT = [a1, a2, . . . , aN ] is a vector of dimensionless

real numbers called field interaction factors. Physically, the

components of a describe how much each individual TL

affects the electron beam dynamics. In [4] and [5], with a

single TL, the field interaction factor was a scalar number

with unit value.

C. Derivation of k–ω Dispersion Relation Using

Impedance Formulation

We derive a k–ω dispersion relation using an equivalent

impedance formulation on the lines of the derivation of the

fourth-order equation using impedance concepts in [4] and

[5]. It is well known that dependent sources have been used

to describe gain in transistors and linear amplifiers, and

therefore we find this point of view advantageous even here.

The electron beam interaction with the TL system could be

completely modeled as an active TL with a voltage-dependent

current source, as shown schematically in Fig. 2, given by

iS = jksIb = −YbV (9)

where the electronic beam admittance per unit length [�/m]

Yb is defined as

Yb = Yb saT, Yb = − j
ηρ0β0k2

u0 (β0 − k)2
(10)

where β0 = ω/u0. (Note that Yb = k2Ye, where Ye is the

impedance defined in [4] and [5]). We recognize (6) and

(9) as the equivalents to the circuit and electronic equations,

respectively, in the Pierce theory with for a single TL [1]–[6],

[31]. In other words, because of the beam–MTL interaction,

the generators can be seen as active admittances, as shown in

Fig. 2. The beam admittance per unit length Yb is derived from

the second-order differential equation obtained by combining

(1) and (2) and also using (8) for solutions varying with time

and distance as e jωt e− j kz . Equating (6) and (9), the resonance

condition for MTLs interacting with an electron beam is
(

Y + Yb

)

V = 0 (11)

from which we obtain the k–ω dispersion relation by imposing

Det
(

Y + Yb

)

= 0 as

Det

(

(

k21 − ω2L C
)

+
ηρ0β

2
0 k2

(k − β0)
2

LsaT

)

= 0. (12)

In fact, (12) can be reduced to a polynomial equation of

order (2N + 2). This is shown by the use of the fact

that for any invertible (N × N ) matrix X, any (N × 1)

vector A, and any (1 × N) vector B, one has Det[X + AB] =
Det

[

X
] [

1 + BX−1A
]

[30], leading to

D(k, ω) P(k, ω) = 0 (13)

Fig. 3. Schematic diagram showing the transverse resonance condition from
a circuit point of view.

where D(k, ω) = Det(k21 − ω2L C ) and P(k, ω) = 1 +
k2β2

0ηρ0 (k − β0)
−2 aT

(

k21 − ω2L C
)−1

Ls are polynomials

in k of degree 2N and 2N+2, respectively. The solutions

of D(k, ω) = 0 must be disregarded because they imply

that X
¯

is non invertible. The impedance formulation using

dependent current sources can be further explored based on

the schematic diagram in Fig. 3, in which the transverse

resonance condition is understood from a circuit point of

view. We assume that the beam and MTL circuit quantities

are interlinked by a transformer as follows. We note that the

relation between primary and secondary currents and voltages

is iS,n = sn ( jk Ib) and − jk Ib = Yb

∑N
n=1 anVn in Fig. 3,

when sn = an , i.e., when s = a, which is what has been

traditionally assumed for a single TL interacting with an

electron beam [3]–[6]. The circuit also illustrates how each

equivalent dependent current generator iS,n depends on the

interaction of the beam with the other TLs via the beam

impedance per unit length Yb. It also offers other avenues to

find and interpret the resonance condition and power relations

in this MTL system. It will be clear that when the beam

transfers power to the MTL system, the real part of Yb is

negative, and it is seen to be the only circuit element able to

provide power. By inspecting (10), one can observe that power

transfer occurs only if k is complex.

D. Derivation of k–ω Dispersion Relation Using a

Transfer Matrix Formulation

The first-order differential equations describing the beam

and MTLs can be combined into a useful transfer matrix for-

mulation. Assuming wave solutions, (1) is written in frequency

domain as ∂z Vb = − jβ0Vb + Ez , and using (8) and (4), we

obtain

∂z Vb = − jβ0Vb + jωaT LI. (14)

Similarly, (2) is written in frequency domain as ∂z Ib =
− jβ0 Ib + jωη

(

ρ0/u2
0

)

Vb and when combined with (5) gives

∂zI = − jωCV + jβ0sIb − jωη
ρ0

u2
0

sVb. (15)
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Collecting the frequency-domain forms of (1) and (2) along

with (14) and (15), the coupled beam–MTL system could be

represented by the set of (2N+2) first-order equations written

in condensed matrix form

∂zψ(z) = − jM ψ(z) (16)

where we define the state vector ψ(z) =
[

V I Vb Ib

]T
. The

matrix M of size (2N + 2) × (2N + 2) is

M =

⎡

⎢

⎢

⎢

⎣

0 ωL 0 0

ωC 0 ωη ρ0

u2
0

s −β0s

0 −ω
(

aT L
)

β0 0

0 0 −ωη
ρ0

u2
0

β0

⎤

⎥

⎥

⎥

⎦

. (17)

We recognize (16) to be the well-known Cauchy problem and

assuming known initial conditions ψ(z0) = ψ0, the solution

of (16) is written as ψ(z1) = T(z1, z0) ψ(z0), where we

define T(z, z0) as the transfer matrix that uniquely relates the

state vector ψ(z) between two known points z0 and z1 along

the z-axis. The transfer matrix formulation is also useful to

analyze periodic systems, such as coupled TLs, exhibiting a

DBE condition and will be elaborated in future publications.

The propagation constants of the coupled system could

be obtained directly by calculating the eigenvalues of the

matrix M, or the k-ω dispersion relation of the coupled system

could be obtained directly by evaluating the characteristic

equation Det
(

M − k1
)

= 0 of the matrix M. For N-TLs, the

number of roots of the characteristic equation and hence the

number of propagation constants of the system is (2N + 2).

Following the derivation in Appendix A, Det
(

M − k1
)

= 0

can be reduced to the form given in (13), which leads to a

polynomial equation of degree 2N+2 in k, and thus yielding

2N + 2 roots. We note that both this formulation and the

one in Section II-C yield the same k–ω dispersion relation.

A form of (13) with L, C matrices in diagonal form is

presented in Appendix B.

E. Solutions of the k–ω Dispersion Relation

Since the dispersion relation in (13) is a product of two

functions, for any fixed ω, the solutions of (13) contain the

solutions obtained from the conditions D(k, ω) = 0 and

P(k, ω) = 0. The condition D(k, ω) = 0, yields the 2N

natural propagation constants
{

βc,1, βc,2, . . . , βc,N

}

of the

MTL uncoupled to the electron beam. However, it is evident

from (13) that the solutions of D(k, ω) = 0 cannot be solutions

of P(k, ω) = 0 and must be disregarded. Following the brief

proof presented in Appendix B, for the N-line system coupled

to electron beam, the existence of a complex conjugate root,

and hence the existence of increasing and decreasing waves,

is always guaranteed if

β0 ≥ max
{

βc,1, βc,2, . . . , βc,N

}

. (18)

A more general mathematical proof of (18) can be found

in [32] stating that there are at most two complex roots,

and that these are always found if (18) is satisfied. Due to

(18), we can obtain 2N purely real propagation constants

k = (β1, β2, β3, . . . , β2N ) and complex conjugate solutions

Fig. 4. Illustrative schematics showing the two coupled slow-wave structures
interacting with a single electron beam. The structures are (a) multiple helices
placed next to each other, (b) multiple coaxial helices, and (c) multiple ladder
circuits. Also shown next to each schematic view is the cross-sectional view
of the structure for better understanding.

k = β ± jα. We numerically explore (18) for some illustrative

examples in Section II-F. From Figs. 5–8, a complex k solution

is always found for β0 satisfying (18). Furthermore, in the

range min{βc,n} < β0 < max{βc,n}, complex conjugate roots

are seen to exist only when β0 is in the vicinity of βc,n . We find

then a resonant-like behavior in Im(k) when β0 → βc,n

in which Im(k) is seen to peak when β0 ≈ βc,n and then

decays for β0 larger than βc,n , eventually approaching zero.

In general, complex roots could also be found when β0 <

min{βc,n} under certain conditions, as shown in [32], where a

graphical analysis to determine the roots is also provided.

F. Illustrative Examples Showing Condition for

Growing Waves

Inequality (18) establishing the condition for growing waves

is numerically investigated for N = 2 TL-beam systems for

various parameters. The parameters used in the numerical

studies are detailed in Appendix C. The propagation con-

stants were obtained by evaluating the eigenvalues of (17).

An idealized physical picture of the N = 2 TL-beam system

can be viewed as the interaction between two coupled slow-

wave structures modeled as an MTL and a single electron

beam shown in Fig. 4, which details three different possible

physically realizable interaction configurations and geome-

tries. Fig. 4(a) shows two electromagnetically coupled helices,

each interacting with a single electron beam and placed close

to each other (in a side-by-side configuration) with the beam

propagating close to the surface of the helices and also in the

gap between the helices. Fig. 4(b) shows another configuration

using two electromagnetically coupled helices with both the

helices and the beam to be coaxial with each other [13], [14].

The configuration in Fig. 4(c) is similar to that of Fig. 4(a) in

that the two electromagnetically coupled ladder circuits [11],

each interacting with a single electron beam, are placed

close to each other (in a side-by-side configuration) with
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Fig. 5. Plots of (a) real values (β) of the six k solutions are plotted of which
four correspond to two forward (β > 0) and two backward (β < 0) waves with
purely real constant values equal to +β1,+β2 and −β1,−β2, respectively,
while remaining two correspond to real part of the complex growing wave
solutions and (b) imaginary parts of the six solutions for k for a two-TL
system coupled to the electron beam versus β0.

the beam grazing the surfaces of both the ladder circuits

while propagating in the gap between both the ladders. The

cross-sectional views corresponding to each of the structural

arrangements in Fig. 4(a)–(c) are shown next to each of the

respective 3-D views. We assume that the electromagnetic

interaction between the coupled slow-wave structures can be

varied either by structural modifications or by increasing the

spatial separation between them. We also assume that the

values of s and a, which signify the interaction of the structure

with the beam, can be varied by moving the spatial position

of the beam with respect to the structures. For simplicity,

we choose to analyze the configuration of Fig. 4(a) in the

subsequent numerical examples within the constraints of the

TL approximation. In particular, we model the electromagnetic

interactions between the two coupled helices as coupling

inductance and capacitance.

As an illustrative example, we first consider two TLs

with different values of equivalent line inductances and

capacitances interacting equally with the electron beam with

s = a = 1, where 1 defines a column vector of ones. The

real (β) and imaginary parts (α) of the six solutions for

the propagation constant k of the mode supported by the

two-TL system are plotted in Fig. 5 versus β0 obtained by

keeping ω constant and varying the dc electron velocity u0.

In Fig. 5, the six k solutions are plotted: two are complex

valued and four are real. In particular, of the four real valued

solution, two are forward (β > 0) and two are backward

(β < 0) waves, denoted as +β1,+β2 and −β1,−β2, respec-

Fig. 6. Plots of (a) imaginary parts of k for a two-TL system coupled to the
electron beam versus β0 with the different configurations of coupling shown
in (b)–(d). Inset in (a) shows a zoomed-in region at β0 → βc,1.

Fig. 7. Plots of (a) imaginary parts of k for a two-TL system coupled to
the electron beam versus β0 with the different configurations of coupling
shown in (b)–(d). The two TLs have different characteristic impedances. The
configurations in (b)–(d) are identical to those in Fig. 6(b)–(d).

tively. The remaining two complex solutions have identical

real values of k in Fig. 5(a), seen to linearly increase with β0,

and correspond to the complex conjugate roots β ± jα, whose

imaginary parts are plotted in Fig. 5(b). Inequality (18) is

confirmed in Fig. 5(b), which shows that the Im(k) is nonzero

for β0 ≥ max
{

βc,1, βc,2

}

, where we assume βc,2 > βc,1.

In addition, we observe that Im(k) is nonzero in the vicinity

of β0 = βc,1. However, it is seen that the Im(k) vanishes for

a large range of β0 when βc,1 < β0 < βc,2.
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It is seen that the plot of Im(k) versus β0 is a continuous

curve and different than zero when β0 ≥ βc,2, whereas in

the range βc,1 ≤ β0 < βc,2, it is seen that Im(k) is nonzero

only within certain discrete bands that occur when β0 → βc,n .

Further numerical investigation with N ≥ 3 confirmed

this trend, and in general, it is found that Im(k) has

a continuous spectrum different than zero when β0 ≥
max(βc,1, βc,2, . . . , βc,N ) and in the range of min{βc,n} <

β0 < max{βc,n}, where 1 ≤ n ≤ N , it is seen that Im(k)

is nonzero only within certain discrete bands that occur when

β0 → βc,n .

While the spectrum of Im(k) plotted in Fig. 5(b) was com-

puted for equal interaction of the two TLs with different values

of equivalent line inductances and capacitances with a single

electron beam, in Fig. 6, we plot the spectrum of the same

two TLs but interacting unequally with the electron beam, i.e.,

different values of s and a, given in Appendix C. In particular,

the physical picture of the interaction corresponds to the

various positions of the beam with respect to the two TLs,

as shown in Fig. 6(b)–(d), which details the way the beam

interacts with each of the TLs. When the beam is closer to only

one of the TLs like in Fig. 6(c) and (d), we assume that the TL

closest to the beam interacts strongly with the beam and hence

has a larger values of sn and an , while the other TL located far-

ther away from the beam interacts weakly with the beam and

has lower values of sn and an . The influence of varying s and

a of the MTL system is seen in the plots of Im(k) in Fig. 6(a)

for each of the physical situation shown in Fig. 6(b)–(d).

In particular, for the physical situation in Fig. 6(b), both the

TLs interact equally, i.e., same values of sn and an , with the

electron beam and the results are same as those plotted in

Fig. 5(b). Note that the values of Im(k) when β0 → βc,1 are

much smaller than the values of Im(k) when β0 ≥ βc,2. This is

in contrast with the plot of Im(k) corresponding to the physical

situation shown in Fig. 6(d), in which TL1 is closer to the

beam than TL2 and hence s1 = a1 > s2 = a2 diminishing the

values of Im(k) when β0 ≥ βc,2. The inset of Fig. 6(a) shows

a zoomed-in plot of Im(k) close to the discrete band occurring

when β0 → βc,1. The influence of s and a can be further seen

in the plot of Im(k) corresponding to the physical situation

shown in Fig. 6(c), in which TL2 is closer to the beam than

TL1 and hence s1 = a1 < s2 = a2. For this case, the values

of Im(k) when β0 → βc,1 are negligible when compared with

the values of Im(k) for β0 ≥ βc,2 as clearly shown in the inset

of Fig. 6(a). From the numerical values used to compute the

results plotted in Fig. 6, which are detailed in Appendix C, we

note that the electromagnetic coupling between the two TLs

is chosen to be small but the results plotted in Fig. 6(a) are

also valid for stronger coupling.

For the case of zero electromagnetic coupling between

the two TLs, the characteristic impedance (and hence the

interaction impedance [5]) of TL2 is about 4.5 times larger

than that of TL1. In addition to the different values of s and

a, the effect of different values of the characteristic impedance

of the TLs on Im(k) was further investigated and the result

of one such investigation is plotted in Fig. 7 while main-

taining the same physical configurations as in Fig. 6(b)–(d).

The electromagnetic coupling between the two TLs is chosen

Fig. 8. Plot of ratio of Im(k) of two-TL system to Im(k) of one-TL system
[Im (k)2−TL /Im (k)1−T L ] versus the variations in the normalized coupling
inductance and capacitance between the two TLs. The two TLs are coupled
to an electron beam with (a) equal and (b) unequal beam–TL interaction.

to be small and such that for the case of vanishing coupling,

the characteristic impedance of TL2 is just
√

2 times larger

than that of TL1. Again, the plot in Fig. 7(a) shows the same

trends for Im(k) as that plotted in Fig. 6(a) for the three

distinct physical interaction configurations in Fig. 7(b)–(d),

which are identical to those in Fig. 6(b)–(d). However, we note

that the change in ratio of characteristic impedance affects

the values of Im(k) (in both the regions when β0 → βc,1

and when β0 ≥ βc,2) for the different s and a values

corresponding to the various physical configurations shown

in Fig. 7(b)–(d).

The results plotted in Figs. 6 and 7 clearly show that the

choice of beam–TL coupling and characteristic impedance of

the TL significantly affect Im(k) of the combined system.

Careful consideration needs to be given to various structural

and beam coupling parameters during the design of any

MTL–beam system.

The dependence on structural and coupling parameters is

further investigated in Fig. 8(a) and (b), which show the effect

on Im(k) of the variation of the coupling inductances and

capacitances of a two-TL system with identical lines, coupled

among themselves and to a single electron beam. Here, we

plot the ratio of Im(k) of the two-TL system to the Im(k) of

an one-TL system [Im (k)2−TL /Im (k)1−T L ] as a function of

the variation in the normalized coupling inductance (L12/L11)

and normalized coupling capacitance (C12/C11) of the two-TL

system with identical lines. Here, L12 and C12 are the coupling

inductance and capacitance, between the two TLs. In addition,

L11 and C11 denote the self-inductance and capacitance, of

both the identical TLs (i.e., L11 = L22 and C11 = C22).
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A wide range of values of coupling inductance and capacitance

were considered so as to include cases of both weak and

strong coupling. In Fig. 8, we vary L12 and C12 from zero

(i.e., no coupling between TLs) to half the value of L11 and

C11, respectively (strong coupling between TLs). The Im(k)

of the one-TL system was calculated by considering L11 and

C11 as the self-inductance and (-)capacitance, respectively.

The plot in Fig. 8(a) corresponds to physical picture of

TL–beam interaction shown in Fig. 6(b) [or Fig. 7(b)] indicat-

ing equal beam–TL interaction, whereas the plot in Fig. 8(b)

corresponds to physical picture of interaction shown in

Fig. 6(d) [or Fig. 7(d)] indicating unequal beam–TL interac-

tion. The numerical values of s and a used in the computations

are detailed in Appendix C.

The results in Fig. 8 clearly identify ranges of normalized

coupling inductance and capacitance in which the Im(k)

of the two-TL system can be either larger or smaller

than the Im(k) of the one-TL system, and for different

beam–TL interactions. Once again, this suggests that for suit-

able structural and beam–TL coupling parameters, a two-TL

system (coupled to an electron beam) could have larger values

of Im(k) than an one-TL system coupled to an electron beam.

For all calculations related to the two-TL system, we have

assumed β0 = max
{

βc,1, βc,2

}

to always ensure the existence

of growing waves in the TL–beam system. In addition, note

that when L12 = 0 H/m and C12 = 0 F/m [corresponding to

the origin in Fig. 8(a) and (b)], we know that β0 = βc,1 =
βc,2 = βc, where we denote as βc the propagation constant

of the one-TL system; in this case, we obtain Im (k)2−TL =
1.26 Im (k)1−T L in Fig. 8(a) and Im (k)2−TL = Im (k)1−T L

in Fig. 8(b). This shows that two identical TLs uncoupled to

each other can have Im (k) larger than Im (k)1−T L with same

line parameters for certain beam–TL coupling conditions.

However, we do note that the two uncoupled TLs are still

coupled to each other through the electron beam, as discussed

in Section II-C and Fig. 3. Furthermore, a proper choice

of TL coupling parameters can further increase the value of

Im (k) compared with Im (k)1−T L . While the importance of

interaction impedance and the values of s and a are clearly

highlighted in the results plotted in Figs. 6–8, it is clear from

Fig. 8(a) and (b) that Im (k)2−TL > Im (k)1−T L for only

certain parameter ranges. We envision that by introducing

periodic MTL systems operating near the Brillouin zone

edge, the stored electromagnetic energy density in the MTL

could be much higher than the corresponding density in the

one-TL system.

III. POWER FLOW ANALYSIS

Since the beam was included in the active MTL model

as voltage-dependent current sources, the power transfer

from the beam to the TLs would be equivalent to the power

supplied by the dependent current sources to the MTL, which

is analyzed next.

A. Energy Conservation

To show the energy conservation in the active TL system,

we define for the N-line system, the flux of complex power

along the nth TL as S f,n = (1/2)Vn I ∗
n , and denote the time-

average power flux as P f,n = Re(S f,n). Therefore, the total

complex power flux in the N-TLs at any z is

S f =
N

∑

n=1

S f,n = 1

2
VT I∗. (19)

Consider the variation of complex power along the MTL,

∂z S f = (1/2)
(

∂zVT
)

I∗+(1/2)VT (∂zI∗). Using the transpose

and complex conjugates of (4) and (5), we obtain ∂z S f +
(1/2) jω

(

IT LI∗ − VT CV∗) = SS , which is interpreted as

an 1-D Poynting theorem with the term SS = (1/2)VT i∗S
representing the total complex power delivered per unit length

by all the dependent current sources. The term ∂z S f is seen

as the power flux in the TL along the +z-direction, whereas

the term jω(1/2)
(

IT LI∗ − VT CV∗) is purely imaginary, with

(1/2)IT LI∗ and (1/2)VT CV∗ the stored magnetic and electric

energy line densities, respectively.

B. Evaluation of Time-Average Power Delivered by

Dependent Current Sources

For the N-line system, the time-average power delivered by

each dependent current source iS,n is PS,n = (1/2)Re(Vni∗
S,n),

and therefore the total time-average power delivered by the N

dependent current generators is PS =
∑N

n=1 PS,n = Re (SS).

Using (6), we express PS in terms of the circuit admittance Y

as

PS = 1
2

Re
(

VT Y∗V∗) = 1
2

Re

(

− (k∗)2

jω
VT L−1V∗

)

(20)

where we dropped the term jωVT CV∗ as it is always purely

imaginary for any real ω, and hence does not contribute to

the time-average power delivered to the TLs. Since L and

therefore L−1 is a real symmetric positive-definite matrix, the

quadratic form F(z) = V
T

L−1 V∗ =
∑N

n=1 λ−1
L ,n|tT

I,nV|2 > 0,

where tI,n are the eigenvectors of L−1 associated with the

eigenvalue λ−1
L ,n , and λL ,n are the eigenvalues of the matrix L.

It is convenient to express the voltages in terms of their initial

condition as Vn = Vn0e jωt e− jβze±αz such that |tT
I,nV|2 =

|tT
I,nV0|2e±2αz for two conjugate roots k = β ± jα, and define

F0 =
∑N

n=1 λ−1
L ,n|tT

I,nV0|2 > 0. Then, the time-average power

delivered by the dependent current sources in terms of the

circuit admittance Y is

PS = ±αβ

ω
e±2αz F0 (21)

where we have used the relation Re[ j (k∗)2] = ±2αβ.

The power delivered to the TL is different from zero

for complex k = β ± jα. Using (11), the time-average

power delivered by the dependent current sources can

also be written in terms of the beam admittance Yb as

PS = −(1/2)Re(VT Y∗
bV∗) = −(1/2)Re[Y ∗

b (V∗T
saT V)∗].

We identify V∗T
saT V as the quadratic form and observe that

saT has only one nonzero eigenvalue λ1 =
∑N

n=1 (snan) and

has N − 1 vanishing eigenvalues. The eigenvalue λ1 is real

since we assumed that both s and a are composed of real
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numbers. Therefore, the time-average delivered power in terms

of the beam admittance Yb is

PS = −
1

2

ηβ0ρ0

u0
λ1

∣

∣q′T
1 V

∣

∣

2
Re

[

j (k∗)2

(β0 − k∗)2

]

(22)

where q′
1 is the eigenvector of saT associated with the

eigenvalue λ1. This also shows that time average power is

delivered by the electron beam when k is complex, as it will

be shown later in more details.

C. Summary on Power Transfers for Real and

Complex Conjugates k

The power transferred from the beam to the N−coupled

TL system is given by (21), which, however, depends on

the complex value of the propagation constant k. From

Section II-E, if (18) is satisfied, we find that k has 2N real

roots, k = (β1, β2, β3, . . . , β2N ), and two conjugate roots

k = β ± jα. We want to clarify the value and direction of

power transferred under these conditions.

Let us consider first the case of the mth real root k = βm .

Since VT L−1V∗ in (20) is purely real and positive, we find

PS to be purely imaginary. Therefore, we have no power

transferred between the electron beam and the MTL, i.e.,

PS = 0. Next, we investigate the value and direction of time-

averaged power transferred for the complex root k = β ± jα.

In this case, we consider the time-average power delivered

to the MTL by all the sources per unit length given in (21).

Therefore, from (21), if we assume β > 0, the real power is

always transferred from the electron beam to the MTLs in the

case of α > 0, and vice versa, the power is transferred from

the MTL to the beam when α < 0.

D. Power Flux Along the MTL

For the MTL system, the total complex power flux in the

N-TL system at any z is given by (19) and the time-averaged

flux is given by P f = Re
(

S f

)

. Using (4)–(6) in (19), we

obtain

P f = 1
2

Re
(

k∗
ω

VT L−1V∗) = 1
2
Re

(

k
ω

)

e±2αz F0 (23)

which shows that there is always a positive flux of power in

the MTL along the +z-direction for Re (k) > 0. If we take

the ratio of PS/P f for the complex conjugate wavenumber

k = β ± jα, we obtain

PS

P f

= ±2α. (24)

This means that the ratio of power transferred from the

electron beam to the entire MTL system, over the power

carried in the MTL system, depends only on the value of ±α.

E. Analysis of Complex Power Transfer

From (7) and (10), it is observed that the circuit and

beam admittances depend on the complex propagation constant

k = β ± jα, and therefore are decomposed into real and

imaginary components. Accordingly, for k = β + jα, Y =
Yr + jYi and Yb = Yb,r + jYb,i . When higher powers

of α were neglected assuming |α| << |β|, the real and

imaginary parts can be simplified as Yr = (2βα/ω)L−1, Yi
∼=

−(L−1/ω)[β21 − ω2L C], and Yb,r
∼= 2β0βα(β0 − β)G0saT ,

Yb,i
∼= −(β2(β0 − β)2 − 3α2β2

0 + 2α2ββ0)G0saT with G0 =
(β0ηρ0/u0)/[(β0 − β)2 + α2]2 > 0.

The resonance condition (11) implies that Y, Yb and the

complex power are related by the quadratic form VT Y∗V∗ +
VT Y∗

bV∗ = 0. This identity must be simultaneously verified

for real and imaginary power terms, leading to VT Y∗
r V∗ +

VT Y∗
b,r V∗ = 0 and VT Y∗

i V∗ + VT Y∗
b,i V

∗ = 0.

First, considering the real power terms, we can expand

VT Y∗
r V∗ + VT Y∗

b,r V∗ = 0 as

1

ω
F + β0 (β0 − β) G0λ1

∣

∣q′T
1 V

∣

∣

2 = 0. (25)

The first term in (25) is the contribution from Yr and is

positive, while the second term is from Yb,r , which may

assume both signs depending on (β0 − β). Therefore, (25)

could be satisfied for some ω only if β > β0 and λ1 > 0 (note

that λ1 > 0 is also true if s = a), because under this condition,

the terms in (25) always have opposite signs. In summary, if

β > β0 and α > 0, then 2β0βα (β0 − β) < 0, and thereby the

real power PS = (−1/2)Re(VT Y∗
b,r V∗) associated to Yb,r is

always positive causing power flow from the beam to the MTL

when (11) holds true. Vice versa if β < β0 and α > 0, (25)

and so as (11) cannot be satisfied and there are no complex k

solutions, implying no power transfer.

Considering the reactive power terms, we can expand

VT Y∗
i V∗ + VT Y∗

b,i V
∗ = 0 as

1

ωL ′
nn

N
∑

n=1

(

β2 − ω2 L ′
nnC ′

nn

)∣

∣tT
I,nV

∣

∣

2

+
(

β2
(

β0−β
)2−3α2β2

0 +2α2ββ0

)

λ1 G0

∣

∣q′T
1 V

∣

∣

2 = 0 (26)

where tT
I,n are the eigenvectors of Yi (that are also eigen-

vectors of L−1) and L ′−1
nn

(

β2 − ω2 L ′
nnC ′

nn

)

are the eigen-

values of the real symmetric matrix −ωYi . Once again,

we observe that (26) is a sum of two contributions, the

first from Yi and the second from Yb,i , and we look for

other conditions to find solutions assuming that β > β0

(since there are none for β < β0). It can be shown

that the sign of the second term is always negative for

(β − β0)
2 < α2, which holds true in practical cases. Indeed,

for example, in the one-TL case, one finds that 0 < β −
β0 = β0Cg/2 ≪ β0 and α =

√
3β0Cg/2 > (β − β0)

[3]–[6]. Therefore, we find that the second term in (26)

is always negative for 0 < β − β0 < α. This

means that if the resonance condition (11) is to be

satisfied by a complex k, then the first term in (26)

should have
∑N

n=1

(

β2 − ω2 L ′
nnC ′

nn

)

> 0. Recognizing

that β2
c,n = ω2 L ′

nnC ′
nn [see discussion of (28) in

Appendix B for definitions of notation], this means that β ≥
max

{

βc,1, βc,2, . . . , βc,N

}

, and 0 < β − β0 < α ensure

that the resonance condition (26) can be always satisfied

for any ω. If instead β < min
{

βc,1, βc,2, . . . , βc,N

}

, then
∑N

n=1

(

β2 − ω2 L ′
nnC ′

nn

)

< 0 and the resonance condition

(26), and hence (11), will not be satisfied. Therefore, we note
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that a complex k solution is found when 0 < β −β0 < α, and

that the imaginary power ImSS = (1/2)(VT Y∗
b,i V

∗) delivered

by the beam (and delivered to the MTL) is positive.

To conclude, when β > β0 and α > 0, note that Yb in Fig. 3

is capacitive since Im (Yb) > 0, and it has Re (Yb) < 0, hence

it delivers positive time-average power to the whole circuit.

IV. CONCLUSION

We have presented an approach to extend the 1-D linearized

Pierce model to multiple TLs coupled to a single electron

beam. We have developed two formalisms to evaluate the

k–ω dispersion relation including a matrix formulation and a

formalism developed in terms of admittances. Both formalisms

predict that the N-TL system coupled to electron beam has

2N+2 solutions. Using the derived formalisms, we have

predicted conditions that would always guarantee that the

system supports growing waves. We have shown that if the

electron propagation constant β0 is greater than or equal to

the largest of the circuit propagation constants βc,n , then the

system always supports a pair of increasing and decreasing

waves in addition to N of forward and N backward waves.

The condition is equivalent to stating that the electron velocity

should be smaller than the smallest phase velocity among the

N-TLs. In addition, we have shown that there exist other finite

ranges of smaller electron propagation constant β0 that also

allow for a growing wave solution. These properties have also

been verified numerically for some illustrative examples. On

the TL side, the beam–line interaction was modeled as a dis-

tributed voltage-dependant shunt current source. It was found

that for the growing wave solution, the beam always supplies

power to the TLs. We anticipate that the theoretical framework

developed in this paper could be used to design HPM devices

incorporating multiple TLs with possible exploitation of DBEs

in the Brillouin diagram when using periodicity along z.

APPENDIX A

REDUCTION OF DETERMINANT

The dispersion equation in (13) is derived from

Det
[

M − k1
]

= 0 by the use of determinant relation for parti-

tioned matrices, Det
[ A B

C D

]

= Det
(

D
)

Det
(

A − B D−1C
)

[30],

where, in general, the matrices A, B, C, and D have sizes

M × M, M × L, L × M, and L × L, respectively, and D is

an invertible matrix. In this particular case, the matrices are

A =
[

−k1 ωL

ωC −k1

]

B =
[

0 0

ωη ρ0

u2
0

s −β0s

]

C =
[

0 −ω
(

aT L
)

0 0

]

,

and

D =
[

β0 − k 0

−ωη ρ0

u2
0

β0 − k

]

.

Therefore, Det
[

M − k1
]

= 0 can be expanded into the form

(β0 − k)2 Det

[

−k1 ωL

ωC −k1 − kω2ηρ0

u2
0(k−β0)2 saT L

]

= 0. (27)

In (27), we identify that each submatrix is of the same order

N × N . Therefore, using Schur’s formulas [30] and after some

algebraic manipulation, (27) is reduced to the final form of the

dispersion equation in (13).

APPENDIX B

GROWING WAVE CONDITION

The matrices L, C in (12) can be brought to a diagonal

form L′, C′ using the modal decoupling technique subject to

the conditions described in [27]–[29]. We transform (12) to

the form (while following the notation in [27]–[29])

Det
(

k21 − βc
′2

)

×
[

1+
ηρ0β

2
0 k2

(k − β0)2

(

(TT
V a)T

[(

k21−βc
′2)−1

L′](TT
V s

)

)

]

= 0

(28)

where we define βc
′2 = ω2T−1

V L C TV and denote βc,n

as the positive square root of the nth diagonal element

of βc
′2. We note that Det(k21 − βc

′2) =
∏N

n=1 (k2−β2
c,n) and

(k21 − βc
′2)−1 =

∑N
n=1 (k2 − β2

c,n)−1. When coupled to the

electron beam, we assume k = β0 + δ with δ ≪ β0 and

therefore (k2 − β2
c,n) ≈ 2β0[δ + β2

d,n/(2β0)], where we define

β2
d,n = β2

0 −β2
c,n and assume |β2

d,n| < β0 for n = 1, 2, . . . , N .

We assume s = a and denote s̃2
n = (tT

V ,ns)2 > 0. We note

that ηρ0 = I0u0/(2V0), where V0 is the dc beam voltage and

u2
0 = 2ηV0 [3] such that (28) can be simplified to the form

δ2
∏N

n=1

(

δ + β2
d,n (2β0)

)

+
N

∑

m=1

⎡

⎢

⎢

⎣

s̃2
m

(

ωL ′
mm/(4V0/I0)

)

N
∏

n=1
n �=m

(

δ + β2
d,n/(2β0)

)

⎤

⎥

⎥

⎦

= 0

and is a sum of two terms. The first term is a polynomial in δ of

degree N+2 with N+1 terms and the second term is a sum of

N polynomials in δ, with each polynomial of degree N − 1

and having N − 1 terms with each polynomial containing

the terms ωL ′
mmδn/(4V0/I0), which are ignored as they are

very small since typically 4V0/I0 is a very large number. On

expanding and collecting common terms and substituting M =
N + 2, (28) can be written as a polynomial of degree (N + 2)

P (δ)=+δM + cM−1δ
M−1+· · · + c3δ

3+c2δ
2+c0 = 0. (29)

The coefficients cM−1, cM−2, . . . , c0 are formed from various

combinations of β2
d,n/(2β0) like, for example,

c0 =
N

∑

m=1

⎡

⎢

⎢

⎣

s̃2
m

(

ωL ′
mm/(4V0/I0)

)

N
∏

n=1
n �=m

[

β2
d,n/(2β0)

]

⎤

⎥

⎥

⎦

c2 =
N

∏

n=1

[

β2
d,n/ (2β0)

]

and cM−1 =
N

∑

n=1

[

β2
d,n/ (2β0)

]

.

We find the following on the application of Descartes’ rule of

signs [33] to (29) and more information can be found in [34].
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If β0 ≥ max
{

βc,1, . . . , βc,N

}

, it that implies all βd,n > 0

and hence all coefficients cM−1, cM−2, . . . , c0 are purely real

and positive. Hence, (29) has no positive roots, up to N

negative roots (or decreased by multiple of two) and at least

(2, 4, . . . , N, N + 2) complex conjugate pairs of roots for any

ωL ′
mm/(4V0/I0) > 0.

If β0 < min
{

βc,1, . . . , βc,N

}

, it implies that all βd,n < 0

and hence all coefficients cM−1, cM−2, . . . , c0 are real and

negative. Hence, (29) has N+1 positive roots (or decreased

by multiple of two), one negative root and at least

(2, 4, . . . , N, N + 1) complex conjugate pairs of roots for only

certain values of ωL ′
mm/(4V0/I0) > 0. A rigorous proof in

[32] states that (28) has at most two complex roots, and that

these are always found if (18) is satisfied. The proof provided

here using Descartes’s rules only sets an upper bound to the

number of real roots.

APPENDIX C

DATA FOR NUMERICAL EXAMPLES

The following are the parameters used to generate the plots

in Figs. 5–8. The equivalent line inductances and capacitances

for the helix were adapted from [15, Ch. 3]. However, these

values are frequency dependent, and for simplicity, we assume

certain indicative but physically realizable values of line

inductances and capacitances. For the two-TL system whose

real and imaginary parts of k are plotted in Fig. 5(a) and (b),

we use L11 = 1, L22 = 20, L12 = 0.1 (all values in µH/m),

C11 = 200, C22 = 200, C12 = 10 (all values in pF/m), and

assume s = a = 1. Here, the nth TL has line inductance

Lnn and line capacitance Cnn and the values of (L11, C11)

and (L22, C22) are chosen such that they correspond to the

inductance and capacitance values at the same frequency of

two helices with different helix angles. The plots in Fig. 6

were generated using the same L and C matrix values used

to generate the plots in Fig. 5. For the physical picture in

Fig. 6(b), s = a = 1, for the physical picture in Fig. 6(c),

s1 = a1 = 1 and s2 = a2 = 0.1, and for the physical picture

in Fig. 6(d), s1 = a1 = 0.1 and s2 = a2 = 1. The plots in

Fig. 7 were generated using L11 = 10, L22 = 20, L12 = 0.1

(all values in µH/m) and C11 = 200, C22 = 200, C12 = 10

(all values in pF/m). For the physical picture in Fig. 7(b), s

= a = 1, for the physical picture in Fig. 7(c), s1 = a1 = 1

and s2 = a2 = 0.1, and for the physical picture in Fig. 7(d),

s1 = a1 = 0.1 and s2 = a2 = 1. The parameters of the two-TL

system with identical lines used to generate Fig. 8 are self-

inductances and self-capacitances, which are given by L11 =
L22 = 10 nH/m and C11 = C22 = 10 pF/m, respectively.

The parameters of the one-TL system used for comparison

in Fig. 6 are self-inductance and self-capacitance of the TL

are L = 1 µH/m and C = 200 pF/m, respectively. For the

physical picture in Fig. 8(a), s = a = 1, and for the physical

picture in Fig. 8(b), s1 = a1 = 1 and s2 = a2 = 0.1 (also

equivalent to s1 = a1 = 0.1 and s2 = a2 = 1 since both TLs

are identical). In all the numerical calculations, the frequency

of operation was assumed to be 1 GHz and the magnitude of

line charge density is kept constant at ρ0 = 0.377 nC/m.
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