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Abstract—The sparse grid quadrature filter is a point-based
Gaussian filter in which expectations of nonlinear functions of
Gaussian random vectors are computed using the sparse grid
quadrature. The sparse grid quadrature can be considered a
generalization of the Unscented Transform in that the Unscented
Transform is equivalent to the level-2 sparse grid quadrature. A
novel extension of the sparse grid quadrature filter is presented
that directly transforms the points in time update and mea-
surement update to eliminate repeated covariance decomposition
based point generation and to relax the Gaussian assumption
inherent in the sparse grid quadrature filter as well as the sigma-
point filters. A tracking example is presented to demonstrate the
performance of the novel filter.

I. INTRODUCTION

Gaussian filters [1], [2] are approximate Bayesian filters
derived under the assumption that all probability density func-
tions (pdfs) in the system are Gaussian. Because a Gaussian
pdf is fully characterized by the mean and covariance, the re-
cursion of the posterior pdf is replaced with the recursion of the
mean and covariance, where the multi-dimensional Gaussian
weighted integrals are computed using quadrature or cubature
methods [3]. Most Gaussian filters share the same structure
and differ only in how the Gaussian weighted integrals are
numerically computed. The quadrature-based Gaussian filters,
including the sigma-point filters, are also called point-based
Gaussian filters.

Many quadrature or cubature rules can be used to ap-
proximate the Gaussian weighted integrals, including but not
limited to the unscented transformation [4], [5], [3], the Gauss-
Hermite quadrature[1], the spherical-radial cubature [6], [7],
[8], and the sparse-grid quadrature[9], [10]. The corresponding
quadrature- or point-based Gaussian filters are the unscented
Kalman filters[4], [5], the Gauss-Hermite quadrature filter[1],
the cubature Kalman filters[6], [8], and the sparse-grid quadra-
ture filters[9], [10], respectively. The cubature Kalman filter
of [6] is a special case of the unscented Kalman filter of [4],
which in turn is a special case of the sparse grid quadrature
filters [9], [10] or the arbitrary-degree cubature Kalman filters
[8].

Roughly speaking, the computational complexity of the
point-based Gaussian filter is proportional to the number of
points used to compute the Gaussian weighted integrals. The
computational complexity of the Gauss-Hermite quadrature
filter increases exponentially with the dimension of the system
[1]. The sparse grid quadrature filters [9], [10] as well as the
high-degree cubature Kalman filters of [8] are closely related
to the Gauss-Hermite quadrature filter, but has polynomial
computational complexity (linear complexity included). The

sparse grid quadrature filters and cubature Kalman filters with
linear computational complexity are equivalent to many sigma-
point filters.

For linear Gaussian systems, where the posterior pdf is
exactly Gaussian, all the quadrature-based Gaussian filters
are equivalent to the optimal linear Kalman filter and are
thus equally accurate. When applied to nonlinear systems,
the accuracy of the point-based Gaussian filters is to a large
extent determined by the quadrature or cubature accuracy. The
Gauss-Hermite quadrature filter can compute the Gaussian
weighted integrals to highest accuracy (at highest computa-
tional cost) and is the most accurate Gaussian filter. The sparse
grid quadrature filter has best balance between accuracy and
computational complexity.

The accuracy of the Gaussian filters depends on the validity
of the Gaussian assumption as well. In the presence of strong
nonlinearity, the true pdf of the state may be noticeably non-
Gaussian. In these cases, the partial information about the un-
derlying non-Gaussian distribution contained in the quadrature
points should be retained and exploited [11]. A scheme that
directly updates the points in the measurement update was
proposed in [11]. This paper presents a full extension of the
sparse grid quadrature filter, where the Gaussian assumption
and the re-regeneration of the quadrature points according
to the Gaussian assumption are removed. In both the time
update and measurement update of this extended sparse grid
quadrature filter, the quadrature points are directly updated to
match the mean and covariance, which are computed sepa-
rately using the formulae of the sparse grid quadrature filter.
Like the quadrature-based Gaussian filters, the extended sparse
grid quadrature filter reduces to the optimal linear Kalman filter
when the system is linear Gaussian.

The remainder of the paper is organized as follows. Section
II reviews the quadrature-based Gaussian filters including
the sparse grid quadrature filter. The extended sparse grid
quadrature filter is presented in Section III. An illustrative
example of radar tracking of a vertically falling object is given
in Section IV, followed by the Conclusions.

II. QUADRATURE-BASED GAUSSIAN FILTERING

A. Gaussian Filtering

The Gaussian filter simplifies the recursion of the pos-
terior pdf by approximating the state pdfs 𝑝(x𝑘∣z1:𝑘) and
𝑝(x𝑘+1∣z1:𝑘), where z1:𝑘 = {z0, z1, . . . , z𝑘}, the state tran-
sition density 𝑓𝑘−1(x𝑘∣x𝑘−1), and the likelihood function
𝑔𝑘(z𝑘∣x𝑘) by Gaussian pdfs. It is well known that a Gaussian



pdf is parameterized by the mean m and covariance 𝑃 [1]

𝒩 (x;m, 𝑃 ) =
exp

[
− 1

2 (x−m)
𝑇
𝑃−1 (x−m)

]
[det(2𝜋𝑃 )]1/2

(1)

where det denotes the matrix determinant and the superscript
𝑇 denotes the matrix or vector transpose. In Gaussian filters,
the recursion of the state pdf is completely replaced by the
recursion of the mean and covariance of the (Gaussian) pdf.

The Gaussian filter is usually applied to the following
discrete-time system:

x𝑘 = f𝑘−1 (x𝑘−1) +w𝑘 (2a)
z𝑘 = g𝑘 (x𝑘) + 𝝂𝑘 (2b)

where the dimensions of x𝑘 and z𝑘 are 𝑛 and 𝑚, respectively,
the additive process noise w𝑘 ∼ 𝒩 (w;0, 𝑄𝑘), which means
that w𝑘 is sampled from the Gaussian probability density
with mean zero and covariance 𝑄𝑘, and the additive Gaussian
measurement noise 𝝂𝑘 ∼ 𝒩 (𝝂;0, 𝑅𝑘), which means that 𝝂𝑘

is sampled from the Gaussian probability density with mean
zero and covariance 𝑅𝑘.

A cycle of the Gaussian filter consists of a time update step
and a measurement update step. For the time interval [𝑘−1, 𝑘],
assume

𝑝(x𝑘−1∣z1:𝑘−1) ≈ 𝒩 (x𝑘−1; x̂
+
𝑘−1, 𝑃

+
𝑘−1) (3a)

𝑝(x𝑘∣z1:𝑘−1) ≈ 𝒩 (x𝑘; x̂
−
𝑘 , 𝑃

−
𝑘 ) (3b)

𝑝(x𝑘∣z1:𝑘) ≈ 𝒩 (x𝑘; x̂
+
𝑘 , 𝑃

+
𝑘 ) (3c)

The time update step computes x̂−
𝑘 and 𝑃−

𝑘 from x̂+
𝑘−1 and

𝑃+
𝑘−1. The measurement update step computes x̂+

𝑘 and 𝑃+
𝑘

from x̂−
𝑘 and 𝑃−

𝑘 .

The time update is given by [1]

x̂−
𝑘 =

∫
ℝ𝑛

f𝑘−1(𝝃)𝒩 (𝝃; x̂+
𝑘−1, 𝑃

+
𝑘−1) 𝑑𝝃 (4a)

𝑃−
𝑘 =

∫
ℝ𝑛

𝝃𝝃𝑇𝒩 (𝝃; x̂+
𝑘−1, 𝑃

+
𝑘−1) 𝑑𝝃 +𝑄𝑘 (4b)

with 𝝃 = f𝑘−1(𝝃)− x̂−
𝑘 .

The measurement update is based on linear minimum
mean square error estimation, which updates the mean and
covariance based on correlation matrices. It is given by [1]

x̂+
𝑘 = x̂−

𝑘 +𝐾𝑘

(
z𝑘 − ẑ−𝑘

)
(5a)

𝑃+
𝑘 = 𝑃−

𝑘 −𝐾𝑘(𝑃
𝑥𝑧
𝑘 )𝑇 (5b)

with

ẑ−𝑘 =

∫
ℝ𝑛

g𝑘(𝝃)𝒩 (𝝃; x̂−
𝑘 , 𝑃

−
𝑘 )𝑑𝝃 (6a)

𝑃 𝑥𝑧
𝑘 =

∫
ℝ𝑛

(𝝃 − x̂−
𝑘 )(g𝑘(𝝃)− ẑ−𝑘 )

𝑇𝒩 (𝝃; x̂−
𝑘 , 𝑃

−
𝑘 )𝑑𝝃 (6b)

𝑃 𝑧𝑧
𝑘 =

∫
ℝ𝑛

(z𝑘 − g𝑘(𝝃)) (z𝑘 − g𝑘(𝝃))
𝑇 𝒩 (𝝃; x̂−

𝑘 , 𝑃
−
𝑘 )𝑑𝝃

(6c)

𝐾𝑘 = 𝑃 𝑥𝑧
𝑘 (𝑃 𝑧𝑧

𝑘 +𝑅𝑘)
−1 (6d)

where the superscript −1 denotes the matrix inverse.

The Gaussian filters can also be developed for systems with
non-additive process noise and/or measurement noise [5].

B. Gaussian Quadratures

All 𝑛-dimensional integrals in the time update and mea-
surement update of the Gaussian filter in Eqs. (4) and (6) are
of the form ∫

ℝ𝑛

퓖(𝝃)𝒩 (𝝃;m, 𝑃 ) 𝑑𝝃

where 퓖(⋅) is a general nonlinear function. The quadrature-
based Gaussian filters approximate the Gaussian weighted
integrals using numerical integration methods. The integral can
be rewritten as∫
ℝ𝑛

퓖(𝝃)𝒩 (𝝃;m, 𝑃 ) 𝑑𝝃 =

∫
ℝ𝑛

퓖(𝑆𝝃 +m)𝒩 (𝝃;0, 𝐼𝑛×𝑛) 𝑑𝝃

(7)
where the matrix 𝑆 satisfies

𝑃 = 𝑆𝑆𝑇 (8)

Note that 𝑆 is not unique. If the quadrature approximation for
𝒩 (𝝃;0, 𝐼𝑛×𝑛) is given by∫

ℝ𝑛

퓖(𝝃)𝒩 (𝝃;0, 𝐼𝑛×𝑛) 𝑑𝝃 ≈
𝑁∑
𝑖=1

𝑤(𝑖)퓖(𝝌(𝑖)) (9)

where 𝝌(𝑖) and 𝑤(𝑖), 𝑖 = 1, . . . , 𝑁 , are the quadrature points
and their associated weights for 𝒩 (x;0, 𝐼𝑛×𝑛), we can use the
same quadrature points 𝝌(𝑖) and weights 𝑤(𝑖) to approximate∫
ℝ𝑛 퓖(𝝃)𝒩 (𝝃;m, 𝑃 ) 𝑑𝝃, given by

∫
ℝ𝑛

퓖(𝝃)𝒩 (𝝃;m, 𝑃 ) 𝑑𝝃 ≈
𝑁∑
𝑖=1

𝑤(𝑖)퓖(𝑆𝝌(𝑖) +m) (10)

The above equation indicates that the quadrature points and
weights for 𝒩 (𝝃;m, 𝑃 ) are given by 𝑆𝝌(𝑖) + m and 𝑤(𝑖),
respectively. The quadrature points for the Gaussian random
vector are usually symmetric.

The main requirement for the quadrature points 𝝌(𝑖) and
weights 𝑤(𝑖) is that they match some of the moments of
a Gaussian random vector x exactly, which is equivalent to
computing the integrals of the monomial x𝑑 exactly. Here x𝑑

is defined as

x𝑑 =

𝑛∏
𝑗=1

𝑥
𝛼𝑗

𝑗 (11)

with
∑𝑛

𝑗=1 𝛼𝑗 = 𝑑, and 𝑑 is the total degree of the monomial
x𝑑. The integral of the monomial with degree 𝑑 is given by∫
ℝ𝑛 𝝃𝑑𝒩 (𝝃;m, 𝑃 ) 𝑑𝝃.

Note that given the moment matching requirement, there
exist an infinite number of point sets that satisfy it.

C. Sparse Grid Quadrature

The sparse grid quadrature [9], [10] is an accurate and
efficient method for computing the expectations of nonlinear
functions with respect to a known pdf. In the Gaussian filter,
the pdf is assumed to be Gaussian.

The sparse grid points 퓧 (𝑙) for 𝒩 (x;m, 𝑃 ) are related to
the sparse grid points 𝝌(𝑙) for 𝒩 (x;0, 𝐼) by

퓧 (𝑙) =
√
𝑃𝝌(𝑙) +m (12)



where
√
𝑃
√
𝑃

𝑇
= 𝑃 . The matrix

√
𝑃 is not unique.

The 𝑛-dimensional sparse grid quadrature is built from
univariate or one-dimensional quadratures.

A general univariate quadrature rule ℐ(𝑔) is given by

ℐ(𝑔) =
𝑀∑
𝑖=1

𝜛(𝑖)𝑔(𝑥(𝑖)) ≈
∫
𝑔(𝑥)𝑤(𝑥)𝑑𝑥 (13)

where 𝑤(𝑥) is a weighting function, 𝑥(𝑖) and 𝜛(𝑖) are selected
to achieve specified accuracy, and 𝜛(𝑖) > 0,

∑𝑚
𝑖=1𝜛

(𝑖) = 1.
The expectation with respect to the standard Gaussian den-
sity 𝒩 (𝑥; 0, 1) is related to Gauss-Hermite quadrature, with
𝑤(𝑥) = exp(−𝑥2), 𝑥 ∈ (−∞,∞), in (13), by

1√
2𝜋

∫ ∞

−∞
𝑔(𝑥) exp(−𝑥

2

2
) 𝑑𝑥 =

1√
𝜋

∫ ∞

−∞
𝑔(
√
2𝑥) exp(−𝑥2) 𝑑𝑥

(14)
The left-hand side of the equation is the expectation with
respect to the standard Gaussian density and the right-hand side
of the equation is the integration to be approximated by Gauss-
Hermite quadrature. A similar relationship exists between the
expectation with respect to 𝒩 (x;0, 𝐼) and the 𝑛-dimensional
Gauss-Hermite quadrature.

A univariate quadrature ℐ is said to have accuracy level 𝑚
if it is exact for all polynomials 𝑔(𝑥) up to degree 2𝑚− 1. A
level-𝑚 univariate quadrature will be denoted by ℐ𝑚.

An 𝑛-dimensional sparse grid quadrature for x =
[𝑥1, . . . , 𝑥𝑛] has accuracy level 𝐿 if it is exact for all poly-
nomials 𝑥𝑗11 𝑥

𝑗2
2 ⋅ ⋅ ⋅𝑥𝑗𝑛𝑛 with

∑𝑛
𝑘=1 𝑗𝑘 ≤ 2𝐿−1. Such a sparse

grid quadrature is denoted by ℐ𝑆
𝑛,𝐿.

An 𝑛-dimensional Gauss-Hermite quadrature with accuracy
level 𝐿 is generated from univariate Gauss-Hermite quadra-
tures ℐ𝑙 with accuracy level 𝑙, 1 ≤ 𝑙 ≤ 𝐿.

The Smolyak quadrature rule is used to construct the 𝑛-
dimensional sparse grid quadrature:

ℐ𝑆
𝑛,𝐿 =

∑
Ξ∈Υ𝑛,𝐿

(Δ𝑗1 ⊗Δ𝑗2 ⊗ ⋅ ⋅ ⋅ ⊗Δ𝑗𝑛) (15)

with ⊗ the tensor product, Δ𝑗𝑘 = ℐ𝑗𝑘 − ℐ𝑗𝑘−1
, ℐ0 = 0, Ξ =

(𝑗1, ⋅ ⋅ ⋅ , 𝑗𝑛), and

Υ𝑛,𝐿 =

{
Ξ = (𝑗1, ⋅ ⋅ ⋅ , 𝑗𝑛) : 𝑗𝑘 ≥ 1,

𝑛∑
𝑘=1

(𝑗𝑘 − 1) ≤ (𝐿− 1)

}
(16)

By introducing an auxiliary nonnegative integer 𝑞 and defining

N𝑛
𝑞 =

{{Ξ ⊂ N𝑛 :
∑𝑛

𝑘=1 𝑗𝑘 = 𝑛+ 𝑞} 𝑞 ≥ 0

∅ 𝑞 < 0
, (17)

Equation (15) can be rewritten as

ℐ𝑆
𝑛,𝐿 =

𝐿−1∑
𝑞=𝐿−𝑛

(−1)𝐿−1−𝑞

(
𝑛− 1

𝐿− 1− 𝑞
) ∑

Ξ∈N𝑛
𝑞

(ℐ𝑗1⊗ℐ𝑗2⊗⋅ ⋅ ⋅ ℐ𝑗𝑛)

(18)

The sparse grid points and weights for an 𝑛-dimensional
sparse grid quadrature with an accuracy level of 𝐿 can be
generated based on the above equation using sophisticated but
standard algorithms. By the definition of accuracy level, the

level-𝐿 sparse grid points and weights are capable of capturing
the up to (2𝐿−1)-th moments of 𝒩 (x;0, 𝐼) or 𝒩 (x;m, 𝑃 ).

D. Quadrature-Based Gaussian Filtering

The quadrature-based Gaussian filters differ only in the
quadrature used. When the sparse grid quadrature is used, the
Gaussian filter is the sparse grid quadrature filter. A cycle of
the quadrature-based Gaussian filter is given as follows:

1) Time Update
a) Given x̂+

𝑘−1 and 𝑃+
𝑘−1, generate the quadra-

ture points X(𝑖) and weights 𝑤(𝑖) for
𝒩 (x𝑘−1; x̂

+
𝑘−1, 𝑃

+
𝑘−1)

b) Compute x̂−
𝑘 and 𝑃−

𝑘

x̂−
𝑘 =

𝑁∑
𝑖=1

𝑤(𝑖)f𝑘−1(X
(𝑖)) (19a)

𝑃−
𝑘 =

𝑁∑
𝑖=1

𝑤(𝑖)X̃(𝑖)(X̃(𝑖))𝑇 +𝑄𝑘 (19b)

where X̃(𝑖) = f𝑘−1(X
(𝑖))− x̂−

𝑘

c) Re-generate the quadrature points X(𝑖) and
weights 𝑤(𝑖) for 𝒩 (x𝑘; x̂

−
𝑘 , 𝑃

−
𝑘 ) so that the

quadrature points account for the effect of the
process noise

2) Measurement Update
a) Compute ẑ−𝑘 , 𝑃 𝑥𝑧

𝑘 , and 𝑃 𝑧𝑧
𝑘

Z(𝑖) = g𝑘(X
(𝑖)) (20a)

ẑ−𝑘 =
𝑁∑
𝑖=1

𝑤(𝑖)Z(𝑖) (20b)

𝑃 𝑥𝑧
𝑘 =

𝑁∑
𝑖=1

𝑤(𝑖)(X(𝑖) − x̂−
𝑘 )(Z

(𝑖) − ẑ−𝑘 )
𝑇

(20c)

𝑃 𝑧𝑧
𝑘 =

𝑁∑
𝑖=1

𝑤(𝑖)(Z(𝑖) − ẑ−𝑘 )(Z
(𝑖) − ẑ−𝑘 )

𝑇 +𝑅𝑘

(20d)

b) Compute the Kalman gain 𝐾𝑘

𝐾𝑘 = 𝑃 𝑥𝑧
𝑘 (𝑃 𝑧𝑧

𝑘 +𝑅𝑘)
−1 (21)

c) Compute x̂+
𝑘 and 𝑃+

𝑘

x̂+
𝑘 = x̂−

𝑘 +𝐾𝑘

(
z𝑘 − ẑ−𝑘

)
(22a)

𝑃+
𝑘 = 𝑃−

𝑘 −𝐾𝑘(𝑃
𝑥𝑧
𝑘 )𝑇 (22b)

The Gaussian filters recursively compute x̂−
𝑘 , 𝑃−

𝑘 , x̂+
𝑘 , and

𝑃+
𝑘 . The quadrature points in the filters have a secondary role

and are re-generated from x̂−
𝑘 and 𝑃−

𝑘 and from x̂+
𝑘 and 𝑃+

𝑘
in every filter cycle.

III. EXTENDED SPARSE GRID QUADRATURE FILTER

The basic idea of the extended sparse grid quadrature filter
is to update the quadrature points directly under the constraint
that the mean and covariance of the updated quadrature points



match x̂−
𝑘 and 𝑃−

𝑘 in time update and x̂+
𝑘 and 𝑃+

𝑘 in mea-
surement update.

1) Initialization: Generate the quadrature points X
(𝑖)+
0

and weights 𝑤(𝑖) for 𝒩 (x0; x̂
+
0 , 𝑃

+
0 )

2) Time Update
a) Propagate the quadrature points

X
(𝑖)−
𝑘 = f𝑘−1(X

(𝑖)+
𝑘−1) (23)

b) Compute x̂−
𝑘 and 𝑃−

𝑘

x̂−
𝑘 =

𝑁∑
𝑖=1

𝑤(𝑖)X
(𝑖)−
𝑘 (24a)

𝑃−
𝑘 =

𝑁∑
𝑖=1

𝑤(𝑖)
(
X

(𝑖)−
𝑘 − x̂−

𝑘

)(
X

(𝑖)−
𝑘 − x̂−

𝑘

)𝑇

+𝑄𝑘

(24b)

c) If 𝑄𝑘 = 0, X(𝑖)−
𝑘 need no transformation; if

𝑄𝑘 ∕= 0, transform X
(𝑖)−
𝑘 such that its mean

and covariance are x̂−
𝑘 and 𝑃−

𝑘 , respectively
3) Measurement Update

a) Compute the quantities

Z
(𝑖)−
𝑘 = g𝑘

(
X

(𝑖)−
𝑘

)
(25a)

ẑ−𝑘 =
𝑁∑
𝑖=1

𝑤(𝑖)Z
(𝑖)−
𝑘 (25b)

𝑃 𝑥𝑧
𝑘 =

𝑁∑
𝑖=1

𝑤(𝑖)(X
(𝑖)−
𝑘 − x̂−

𝑘 )(Z
(𝑖)−
𝑘 − ẑ−𝑘 )

𝑇

(25c)

𝑃 𝑧𝑧
𝑘 =

𝑁∑
𝑖=1

𝑤(𝑖)(Z
(𝑖)−
𝑘 − ẑ−𝑘 )(Z

(𝑖)−
𝑘 − ẑ−𝑘 )

𝑇 +𝑅𝑘

(25d)

b) Compute the Kalman gain 𝐾𝑘

𝐾𝑘 = 𝑃 𝑥𝑧
𝑘 (𝑃 𝑧𝑧

𝑘 +𝑅𝑘)
−1 (26)

c) Compute x̂+
𝑘 and 𝑃+

𝑘

x̂+
𝑘 = x̂−

𝑘 +𝐾𝑘

(
z𝑘 − ẑ−𝑘

)
(27a)

𝑃+
𝑘 = 𝑃−

𝑘 −𝐾𝑘(𝑃
𝑥𝑧
𝑘 )𝑇 (27b)

d) Transform X
(𝑖)−
𝑘 to X

(𝑖)+
𝑘 whose mean and

covariance are x̂+
𝑘 and 𝑃+

𝑘 , respectively

Note that the quadrature points are generated only once in the
initialization. In the time update and measurement update, they
are transformed but are not re-generated based on square root
decomposition.

The existence of feasible linear transformations satisfy-
ing the mean and covariance constraints was established by
construction in [11]. The mean is matched by a shift vector;
the covariance is matched by a linear transformation matrix.

Define the error matrices before and after transformation and
the weights by

�̃�− =
[
X(1)− − x̂− ⋅ ⋅ ⋅ X(𝑁)− − x̂−] (28a)

�̃�+ =
[
X(1)+ − x̂+ ⋅ ⋅ ⋅ X(𝑁)+ − x̂+

]
(28b)

w =
[
𝑤(1) . . . 𝑤(𝑁)

]𝑇
(28c)

𝑊 = diag(w) (28d)

The linear transformation is given by

�̃�+ = 𝐴�̃�−or �̃�+ = �̃�−𝐵 (29)

with 𝐴 and 𝐵 matrices of appropriate dimensions. Note that
for sparse grid quadrature filters, 𝐵 is a larger matrix than 𝐴
because the number of quadrature points is greater than the
dimension of the state. The pre-multiplication transformation
�̃�+ = 𝐴�̃�− is use in this work.

The linear transformation from �̃�− to �̃�+ should be such
that if

�̃�−w = 0 (30a)

�̃�−𝑊 (�̃�−)𝑇 = 𝑃− (30b)

then �̃�+ satisfies the mean and covariance constraints, given
by

�̃�+w = 0 (31a)

�̃�+𝑊 (�̃�+)𝑇 = 𝑃+ (31b)

For �̃�+ = 𝐴�̃�−, the mean constraint is always satisfied
because

�̃�+w = 𝐴�̃�−w = 𝐴 0 = 0 (32)

The updated covariance matrix 𝑃+ can be written as

𝑃+ = (�̃�+)𝑊 (�̃�+)𝑇

= (𝐴�̃�−)𝑊 (𝐴�̃�−)𝑇

= 𝐴(�̃�−)𝑊 (�̃�−)𝑇𝐴𝑇 = 𝐴𝑃−𝐴𝑇

(33)

If 𝑃+ and 𝑃− are positive definite, they can both be expressed
in terms of their square root factors, given by

𝑃+ = 𝐿+(𝐿+)𝑇 (34a)

𝑃− = 𝐿−(𝐿−)𝑇 (34b)

It follows that

𝑃+ = 𝐿+(𝐿+)𝑇 = 𝐴𝐿−(𝐿−)𝑇𝐴𝑇 (35)

Hence, the transformation matrix 𝐴 must satisfy

𝐿+ = 𝐴𝐿−𝑄 (36)

where 𝑄 is an arbitrary orthonormal matrix satisfying 𝑄𝑄𝑇 =
𝐼 , with 𝐼 the identity matrix. Solving the equation gives

𝐴 = 𝐿+𝑄𝑇 (𝐿−)−1 (37)

Setting 𝑄 to the identity matrix results in the simplest solution
𝐴 = 𝐿+(𝐿−)−1. Because 𝐴 is nonunique, �̃�+ is nonunique,
either.

The optimal transformation is defined as the matrix that
minimizes the difference between �̃�+ and �̃�−. Note that this
is not necessarily optimal in the Bayesian sense. The idea



is that the transformation should alter the distribution of the
quadrature points as little as possible while matching the mean
and covariance. Suppose the underlying pdf is asymmetric, the
�̃�+ obtained this way is more likely to capture the higher
moments of the pdf.

The optimal transformation is defined as the solution to the
following minimization problem:

min
∥∥∥�̃�+ − �̃�−

∥∥∥2
𝐹

subject to: 𝑃+ = 𝐴𝑃−𝐴𝑇
(38)

where ∥⋅∥𝐹 denotes the matrix Frobenius norm. The objective
function may use weighed norms.

Generalization of the filter to non-additive noise cases is
straightforward. The non-additive noise affects the way the
means and covariances are computed, but the same algorithm
is then used to transform the quadrature points.

IV. EXAMPLE

The nonlinear filtering example of a vertically falling body
is used in the test. It is a modified version of an example
in [12]. The altitude, velocity, and ballistic coefficient of the
falling body is estimated from the radar range measurements.
The geometry is shown in Fig. 1, where the variables 𝑥1(𝑡)

x2(t)

Radar 

M

Z

x1(t)
r(t)

Fig. 1. Geometry of the Vertically Falling Body Example

and 𝑥2(𝑡) denote the altitude and the downward velocity,
respectively, 𝑟(𝑡) is the range, 𝑀 is the horizontal distance,
and 𝑍 is the radar altitude. The dynamic model is assumed to
be

�̇�1(𝑡) = −𝑥2(𝑡) (39a)

�̇�2(𝑡) = −𝑒−𝛼𝑥1(𝑡)𝑥22(𝑡)𝑥3(𝑡) + 𝑤(𝑡) (39b)
�̇�3(𝑡) = 0 (39c)

where 𝑤(𝑡) is a zero-mean white noise process with power
spectral density 𝑞, 𝑥3(𝑡) is the ballistic coefficient and 𝛼 is
assumed to be a known constant. From the relative geometry
of the radar and the falling body, the discrete-time range
measurement at time 𝑘 is given by

𝑦𝑘 =

√
𝑀2 + (𝑥1𝑘 − 𝑍)2 + 𝑣𝑘 (40)

where the 𝑣𝑘 is the zero-mean measurement noise with vari-
ance 𝑅. The values of the parameters are: 𝛼 = 5 × 10−5,

𝑀 = 1 × 105, 𝑍 = 0, 𝑞 = 10−8, and 𝑅 = 1 × 104. The
measurement sampling period is set to 1.5 time units.

The true initial states are given by

𝑥1(0) = 3× 105, 𝑥2(0) = 2× 104, 𝑥3(0) = 1× 10−3

The initial covariance for all filters is given by

𝑃 (0) =

⎡
⎣1× 106 0 0

0 4× 106 0
0 0 1× 10−4

⎤
⎦ (41)

The true state time histories are obtained by numerically
integrating the dynamic model using a fourth-order Runge-
Kutta method with a step size of 1/64 time units. To account
for the effect of the process noise, an effective discrete-
time process noise vector is added to the propagated state
vector after each propagation. The discrete-time process noise
covariance is approximated by

𝑄𝑘 =

[
0 0 0
0 𝑞Δ𝑡 0
0 0 0

]

where Δ𝑡 is the integration step size. The integration step sizes
in the filters is 1.5 time units.

To illustrate the difference between the quadrature-based
Gaussian filter and the extended sparse grid quadrature filter
in how the points are updated, a 6-time-unit time update (with
nonzero process noise) is run, in which the two methods use
the same initial conditions. The results of the two methods are
given by Fig. 2. Note that the two sets of points in Fig. 2(a)
and Fig. 2(b) have the same weights, mean, and covariance, but
different distributions and higher moments. For example, the
symmetric points have zero odd moments, but the asymmetric
points have nonzero odd moments. Because the effect of the
process noise is small, the distribution of the points should
resemble the one with zero process noise (Fig. 2(c)). Hence,
the time update of the extended sparse grid quadrature filter
results in better point distributions if the process noise is small.

Three extended sparse grid quadrature filters are compared
with an unscented Kalman filter. The unscented Kalman filter
uses the recommended value of the parameter 𝜅 = 3 − 𝑛 =
0, which leads to zero weight on the central quadrature or
sigma point. The effective number of the quadrature points is
therefore 2𝑛 = 6 instead of 2𝑛+1 = 7. Note that the unscented
Kalman filter with this choice of 𝜅 coincides with the cubature
Kalman filter [6]. The first two extended sparse grid quadrature
filters use the same six quadrature points in the initialization.
The sigma points of the unscented Kalman filter as well as the
quadrature points of these two extended sparse grid quadrature
filters have accuracy level 2, which means that they can be used
to compute up to the third moments of a Gaussian random
vector exactly. The third extended sparse grid quadrature filter
uses a level-3 quadrature point set with 37 points. The level-
3 set can be used to compute up to the fifth moments of a
Gaussian random vector exactly.

Of the three extended sparse grid quadrature filters, the
first filter does not use the optimal transformation in the
update but uses a feasible transformation that satisfies the
covariance constraint and of the form 𝐴 = 𝐿+(𝐿−)−1, where
𝐿− and 𝐿+ are given by Eqs. (34). Both the second and third



direct extended sparse grid quadrature filters use the optimal
transformation found by solving the optimization problems
iteratively with the initial guess a feasible solution.
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(a) Quadrature Based Gaussian Filter
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(b) Extended Sparse Grid Quadrature Filter
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(c) Time Update Without Process Noise

Fig. 2. Six-Second Time Update

The root-mean-square estimation errors of the three ex-
tended sparse grid quadrature filters and the unscented Kalman
filter over 50 runs are shown in Figs. 3, where UKF and
ESGQF in the legends stand for the unscented Kalman filter
and the extended sparse grid quadrature filter, respectively. The
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(b) Velocity Error
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(c) Ballistic Coeficient Error

Fig. 3. Roo-Mean-Square Errors over 50 Monte Carlo Runs



figures clearly show the performance differences between the
filters. Specifically, the unscented Kalman filter is less accurate
than the other filters and that the level-3 extended sparse grid
quadrature filter is the most accurate. Comparing the three
level-2 filters, we can see that the unscented Kalman filter,
which does not transform the points directly, is less accurate
than those that do.

V. CONCLUSIONS

By updating the quadrature points directly, the extended
sparse grid quadrature filter avoids regenerating the quadrature
points in each filter cycle and mitigates the dependence on
the Gaussian approximation to non-Gaussian pdfs. The results
of an illustrative example show that the extended sparse grid
quadrature filter is more accurate than the unscented Kalman
filter. The formulation of and numerical solution to the opti-
mization problem of the extended sparse grid quadrature filter
as well as the time complexity of the filter will be investigated
in further work.
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