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Abstract

We discuss problems of extension of vector-valued functions defined on
subsets of a domain Ω ⊂ R

N which have weak extensions belonging to a
space H (Ω) of smooth functions. We look for conditions which ensure that
there exists an extension in the corresponding space H (Ω, E) of vector-valued
functions.

1 Introduction and notations

We study extension problems inspired by the work of Arendt-Nikolski [1] and Grosse-
Erdmann [13] about holomorphic extension of vector-valued functions. Let E be a
locally complete locally convex space, let H be a sheaf of smooth functions defined
on a domain Ω ⊂ RN , let A ⊂ Ω a subset, let H ⊂ E ′ be a σ(E ′, E)-dense subspace
and let f : A → E be a function such that u ◦ f admits an extension gu ∈ H (Ω) for
each u ∈ H . We look for conditions on A, H and f which ensure that f admits an
extension F to Ω which belongs to the space of vector-valued functions H (Ω, E).
This work continues [7]. We refer to [1, 5, 6, 9, 10, 11, 12, 13, 14, 16, 20] for literature
related to this problem when H is the sheaf of holomorphic functions on Ω ⊆ C.
Only [10] deals with vector-valued harmonic functions. Some of these papers discuss
conditions to a function defined on the whole Ω and with values in E which permit
to conclude that the function is in H (Ω, E). In [7] most of these results are obtained
as a particular case of extension results in the much more general setting of sheaves
of vector-valued smooth functions.
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We refer the reader to [15, 17, 18, 19] for our standard notation about locally
convex spaces. We recall briefly some notation which will be repeatedly used. All the
locally convex spaces which we deal with are assumed to be Hausdorff. A Fréchet-
Schwartz space is by definition a countable projective limit of Banach spaces with
compact linking maps. Such a space is always reflexive. A subset W of E ′ is called
separating if u(x) = 0 for each u ∈ W implies x = 0. Clearly this is equivalent to the
span of W being weak⋆-dense (or dense in the co-topology). We say that W ⊂ E ′

determines boundedness if every B ⊂ E is bounded whenever u(B) is bounded in
C for all u ∈ W . This holds if and only if every σ(E,span W )-bounded set is E-
bounded. Given a Fréchet space E, an increasing sequence (Bn)n of bounded subsets
of E ′ is said to fix the topology if the polars (B◦

n)n taken in E form a fundamental
system of 0-neighbourhoods of E. A subspace H of the dual E ′ of a Banach space
E is called almost norming if BH := {u ∈ H : ‖u‖′ ≤ 1} fixes the topology (cf. [1,
section 1]).

Throughout this paper Ω denotes a subset of RN which is open and connected,
i.e. a domain. We denote by C and C ∞ the sheaves of continuous functions and
infinitely differentiable functions, respectively.
Let in the sequel H be a sheaf of smooth functions on Ω which is closed in C , i.e.
H (ω) is a closed subspace of C (ω) for each ω ⊂ Ω open.
This yields that C (ω) and C ∞(ω) induce the same topology on H (ω). Hence
H (ω) is a Fréchet-Schwartz space endowed with the compact open topology for each
ω ⊂ Ω open. This kind of sheaves include the sheaves of harmonic and holomorphic
functions on open subsets of CN = R2N . Given a sheaf H , the sheaf H (·, E) of
vector-valued functions with values in a locally complete space E is defined by

H (ω, E) := {x 7→ T (δx) : T ∈ L(H (ω)′, E)}, ω ⊂ Ω open.

Here δx denotes the evaluation at x. This definition agrees with the classical defi-
nitions of vector-valued holomorphic and harmonic functions. We refer the reader
for more information, especially for the representation of spaces of vector-valued
functions as spaces of linear mappings, and applications to extension problems, to
[7] (see also [3, 4, 17, 20, 21]).

To formulate our results, we need to include some more definitions. A set of
uniqueness for H (Ω) is a subset M ⊆ Ω satisfying that each function which belongs
to H (Ω) and vanishes on M vanishes on the whole Ω. Therefore, M ⊂ Ω is a set
of uniqueness if and only if {δz : z ∈ M} ⊂ H (Ω)′ is separating. Notice that if H

is the sheaf of holomorphic functions on Ω ⊆ C, then M ⊂ Ω is a set of uniqueness
for H (Ω) if and only if M has an accumulation point in Ω. An increasing sequence
(Mn)n of relatively compact subsets of Ω is called admissible for H if
i) M1 is a set of uniqueness for H (ω) whenever M1 ⊂ ω ⊂ Ω is a domain, and
ii) ({δx : x ∈ Mn})n fixes the topology of H (Ω), i.e. the seminorms

pn(f) = sup
z∈Mn

|f(z)|, f ∈ H (Ω)

define the topology of H (Ω).
If (ωn)n is a regular exhaustion of Ω by relatively compact open sets, Dn is a dense
subset of ∂ωn, and Mn := ∪1≤ν≤nDν then, in case of the sheaves of holomorphic or
harmonic functions, the sequence (Mn)n is admissible.
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2 Extension of functions

There are two types of extension theorems known: The first one guarantees exten-
sion of functions which are defined on sets of uniqueness, i.e. on very thin sets, by
requesting that the extensions satisfy restrictive properties, the second one guaran-
tees extension for bounded functions on sequences of sets which are admissible by
requesting mild properties to the extensions. We formulate our new results together
with the known ones in the following two theorems corresponding to the above
mentioned types.

Theorem 1. Let f : M → E be a function defined on a set of uniqueness M ⊂ Ω
and assume that u ◦ f has an extension fu ∈ H (Ω) for all u ∈ W ⊂ E ′. If
i) W determines boundedness, or if
ii) E is Fréchet, W = ∪nBn, where (Bn)n fixes the topology of E, and (fu)u∈Bn

is
bounded in H (Ω) for all n,
then f has an (unique) extension F ∈ H (Ω, E).

Remark 2. a) Case i) is [7, Theorem 9]. The result is sharp because of [1, Theorem
1.5]
b) Later we show (in Proposition 5) that also condition ii) cannot be considerably
weaker.

Theorem 3. Let f : ∪nMn → E be a function, where (Mn)n is admissible for H ,
and assume that f(Mn) is bounded for each n and u◦f has an extension fu ∈ H (Ω)
for all u contained in a separating subset W ⊂ E ′. If one of the following conditions
is satisfied, then f has an (unique) extension F ∈ H (Ω, E):
i) span W is strongly dense in E ′,
ii) E is Fréchet (or more generally, Br-complete),
iii) f(Mn) is bounded in a continuously embedded quasireflexive (i.e. with finite
codimension in the bidual) Banach space En ⊂ E, n ∈ N,
iv) Mn is closed and f(Mn) is bounded in a continuously embedded separable Banach
space En ⊂ E, n ∈ N.

Remark 4. a) Case i) is [12, Satz 3.3] and case ii) is obtained in [13, Theorem 2] for
the sheaf of one variable holomorphic functions. Both are simultaneously obtained
in [7, Theorem 17] for sheaves of smooth functions.
b) In case of the test functions space D(X), any bounded set is bounded in a
continuously embedded reflexive Banach space and then iii) can be applied. This
space is reflexive and then also i) can applied because in a semireflexive space E
(i.e. E = E ′′ algebraically) each separating subset W ⊆ E ′ has strongly dense span
(see also [16, Theorem 6]).
c) Condition iv) is satisfied if E is a regular inductive limit (and then if it is a
direct sum) of separable Banach spaces and Mn is closed for each n. In [7, Example
20 a)] it is shown the existence of an admissible sequence (Mn)n for the space of
entire functions H (C) formed by non closed subsets of C, a countable direct sum of
separable Banach spaces E = ⊕nEn, and a separating subspace W ⊂ E ′ for which
there exists a non continuous function f : ∪nMn → E bounded on each Mn such
that u ◦ f admits an entire extension fu for each u ∈ W . [7, Example 20 b)] gives a
similar function taking the sequence (Mn)n formed by closed subsets of C but taking
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E = ⊕En as a direct sum of non separable Banach spaces. Consequently Theorem
3 is sharp.
d) Theorem 3 allows to formulate the following result when H (Ω) is the sheaf of
holomorphic or harmonic functions on Ω. Let E, F be locally complete spaces such
that E →֒ F is continuously embedded. If f ∈ H (Ω, F ) and there exists a compact
subset K of Ω such that (the restriction of) f ∈ H (Ω \ K, E) then f ∈ H (Ω, E).

The following result and its proof should be compared with [1, Theorem 1.5] and
[2, Theorem 2]. It shows that in Theorem 1 the condition ii) is also sharp.

Proposition 5. Let E be a Banach space, and let H be a subspace of E ′ such that
BH does not fix the topology of E (i.e. H is not almost norming). There exists a
function f : C → E which is not continuous at 0 and such that u ◦ f is entire for
each u ∈ H and (u ◦ f)u∈BH

is bounded in the space H (C) of entire functions.

Proof. Consider the compact subsets Qn := ([−2n, 1/2n+1] ∪ [1/2n−1, 2n]× [−2n, 2n]
of C = R2. For each n ∈ N we apply the Runge’s Theorem to get polynomials qn

such that qn(1/2n) = 2n and qn(z) < 1/2n if z ∈ Qn. We set bn := sup{|qn(z)| :
|Im(z)|, |Re(z)| ≤ 2n}.

Since H is not almost norming, there exists a sequence (xn)n ⊂ E such that
supu∈BH

|u(xn)| ≤ 1 and ‖xn‖ ≥ 2nbn for each n ∈ N. We define

f(z) :=
∞∑

n=1

qn(z)
xn

‖xn‖
z ∈ C.

For each z ∈ C, there exists n0 ∈ N such that z ∈ Qn for each n ≥ n0. This yields
that f is well defined. Now let u ∈ H such that ‖u‖ = 1, and let K ⊂ C compact.
Let l ∈ N such that K ⊂ [−2l, 2l] × [−2l, 2l]. Let C(l) be the maximum of the
function

∑l−1
n=1 |qn(·)| on [−2l, 2l] × [−2l, 2l]. Then

sup
z∈K

‖u ◦ f(z)‖ ≤
l−1∑

n=1

|qn(z)| +
∞∑

n=l

bn

|u(xn)|

‖xn‖
≤ C(l) + 1.

From these estimates it follows that u ◦ f is holomorphic for each u ∈ H and
(u ◦ f)u∈BH

is bounded in H (C). However, for each j ∈ N,

∥∥∥∥f
(

1

2j

)∥∥∥∥ ≥

∣∣∣∣∣∣
qj

(
1

2j

)
−

∑

n 6=j

qn

(
1

2j

)∣∣∣∣∣∣
≥ 2j − 1,

hence f is not continuous at 0.

3 Auxiliary results and proofs

Let us discuss shortly the concepts of locally convex theory which appear in our
theorems. We present below a first relation between fixing the topology and deter-
mining boundedness. In what follows in this section, E denotes a Fréchet space and
E ′ denotes its dual, endowed with its strong topology if nothing else is specified.
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Proposition 6. Let (Bn)n be a sequence of bounded subsets of E ′ fixing the topology
of E. Set H := span{Bn : n ∈ N}. If H ⊂ E ′ is a subspace such that there exists
a barrelled locally convex topology τ in H which is stronger than σ(H, E) and Bn is
τ−bounded for each n ∈ N, then H determines boundedness in E.

Proof. Since (Bn)n fixes the topology of E it follows that 〈H, E〉 is a dual pair. Let
B ⊂ E be a σ(E, H)-bounded subset. B◦ ∩ H is an absolutely convex, σ(H, E)-
(and then τ−) closed and absorbing subset of (H, τ), i.e. B◦ ∩ H is a barrel, and
then a 0-neighbourhood, in (H, τ). Consequently B◦ ∩H absorbs τ -bounded sets of
H . Hence, for each n ∈ N there exists λn > 0 such that

Bn ⊂ λnB
◦ ∩ H ⊂ λnB

◦.

This yields

B ⊂ B◦◦ ⊂ λnB
◦
n.

Since (Bn)n fixes the topology of E, we get that B is bounded in E.

Let (Bn)n ⊂ E ′ be an increasing sequence of bounded subsets fixing the topology
of E. If each Bn is a Banach disc, then indnE

′
Bn

satisfies the hypothesis of Propo-
sition 6. We can consider even smaller subspaces of E ′ satisfying the hypothesis of
Proposition 6. Given a bounded subset B in a locally complete space E we define

E(B) := {
∑

j

αjbj : (αj)j ∈ l1, (bj)j ⊂ B}

endowed with the Banach space topology which makes it isomorphic to a quotient
of l1(I), I being an index set with the same cardinality as B. Then, if (Bn)n is an
increasing sequence of bounded sets in E ′ one can always consider the (LB)-space
E ′((Bn)n∈N) := indnE ′(Bn) continuously embedded in E ′.

Proposition 7. Let (Bn)n be an increasing sequence of bounded subsets of E ′. The
following assertions are equivalent

(a) (Bn)n fixes the topology of E.

(b) E ′((Bn)n∈N) determines boundedness in E.

(c) span ∪n Bn
σ(E′,E)

determines boundedness in E.

Proof. (a) implies (b) follows directly from Proposition 6. (b) implies (c) be-

cause E ′(Bn) ⊂ spanBn
σ(E′,E)

for each n ∈ N. To see (c) implies (a) we con-
sider the semimetrisable topology τ on E which has a fundamental system of 0-
neighbourhoods defined by (B◦

n)n. The topology τ is coarser than the topology of
E and (c) implies that each τ -bounded set is bounded in E. In fact, if B ⊂ E is
τ -bounded then, for each n ∈ N, there exits λn > 0 such that B ⊂ λnB◦

n and this is

equivalent to λnB◦ ⊃ Bn
σ(E′,E)

. Thus, if we denote by H the space defined in (c), we
have that B is σ(E, H) bounded and then bounded by the assumption. Therefore
τ is metrisable and (E, τ) = E since both topologies have the same bounded sets.
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Remark 8. In case E is a Banach space and H ⊂ E ′, the unit ball BH of H

fixes the topology of E (H is almost norming) is equivalent to H
‖·‖

E′

determining
boundedness in E by Proposition 7, since BH fixes the topology in E if and only

if the unit ball of H
‖·‖

E′

does, and it is easy to check that, if BH denotes the unit

ball of the norm closure of H , then E ′(BH) = H
‖·‖

E′

. Therefore, a strongly closed
almost norming subspace H ⊂ E ′ determines boundedness, and we obtain Theorem
3.5 of [1] as a corollary of Theorem 1, case i).

We obtain now a result about the extension of operators densely defined which
will be used to prove Theorem 1 case ii).

Lemma 9. Let Y be a Fréchet-Schwartz space, let X ⊂ Y ′ a dense subspace, let E
be a Fréchet space and let (Bn)n be an increasing sequence of bounded subsets of E ′

fixing the topology of E. Set H := span ∪n Bn. Let T : X → E a linear map which
is σ(X, Y )-σ(E, H) continuous and satisfies that T t(Bn) is bounded in Y for each
n ∈ N. Then there exists a continuous linear extension T̂ : Y ′ → E.

Proof. Notice that Y can be considered as a proper subspace of the algebraic dual
X∗ of X since X is dense in Y ′. Let (ai)i ∈ l1 and (ci)i ∈ Bn. If u =

∑
i aici ∈

E ′(Bn), then
∑

i ai(ci ◦T ) ∈ Y (T t(Bn)) ⊂ Y . Hence T is σ(X, Y )-σ(E, E ′((Bn)n∈N))
continuous, and the result follows from [7, Proposition 7] and Proposition 7.

Due to the symmetry of the ε-product [17, I, 43.3.(3)], this result can be for-
mulated in the following way: If T : H → Y is a σ(H, E) − σ(Y, X) continuous
linear mapping bounded on each Bn then T admits a continuous linear extension
T̂ : E ′

co → Y . By [7, Theorem 16], the result is completely symmetric in the sense
that we can interchange the roles of Fréchet Schwartz and Fréchet between E and
Y .
Proof of Theorem 1, case ii). Let Y := H (Ω), and let X := span{δz : z ∈ M}.
The linear map T : X → E determined by T (δx) := f(x) is well defined since ∪nBn

is separating. If we define H := span ∪n Bn, then T is σ(X, Y )-σ(E, H) continu-
ous and T t(Bn) is bounded in Y for every n. By Lemma 9, T has an extension
T̂ ∈ L(Y ′, E). Setting F (x) := T̂ (δx) we obtain our extension F ∈ H (Ω, E) of f.2

By the above remark, Theorem 1 ii) and Theorem 3 ii) are symmetric, because
they are direct consequences of Lemma 9 and [7, Theorem 16] respectively. To prove
the cases iii) and iv) of Theorem 3 we need another lemma:

Lemma 10. Let ω, A ⊂ Ω be relatively compact and let, in addition, ω be open such
that A ∩ ω is a set of uniqueness for H (ω) and for H (Ω), and such that

sup
x∈ω

|g(x)| ≤ C sup
x∈A

|g(x)|

for all g ∈ H (Ω). If f : A → E is a bounded function with values in a Banach space
E such that u ◦ f has an extension fu ∈ H (Ω) for all u contained in a separating
subspace H of E ′, then f |A∩ω has an extension F ∈ H (ω, E) whenever one of the
following conditions is satisfied:
i) E is quasireflexive,
ii) A is closed and E is separable.
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Proof. i) Due to a result of Davis and Lindenstrauss [8] (cf also [1, Remark 1.2 h)])
every separating subspace of the dual of a quasireflexive Banach space is almost
norming. Hence BH fixes the topology of E. The estimate in the assumption allows
us to apply Theorem 1, case ii).
ii) H (Ω) is continuously embedded into the Banach space (C (A), ‖ · ‖A) since A is
a set of uniqueness for H (Ω). From the estimate we obtain that, for all x ∈ ω, δx

belongs to the dual of (H (Ω), ‖ · ‖A) and ‖δx‖
′
A ≤ C. Hence, by the Hahn-Banach

theorem and the Riesz theorem there is a family (µx)x∈ω of complex valued measures
µx whose total variations do not exceed C such that

g(x) =
∫

A
gdµx

for all g ∈ H (Ω) and all x ∈ ω.
Let W be the subspace of all u ∈ E ′ satisfying the following two conditions:
a) u ◦ f is measurable,
b) u ◦ f has an extension fu to A ∪ ω such that fu|ω ∈ H (ω) and

fu(x) =
∫

A
fudµx

for all x ∈ ω. Then W is weak∗-dense, since it contains H . We will show that
W = E ′. By the Krein-Smulyan theorem we only have to prove that any u belonging
to the weak∗-closure of W ∩BE′ is contained in W . The set BE′ equipped with the
weak∗-topology is metrizable, because E is separable, hence there is a sequence
(un)n, contained in W ∩BE′, converging to u. The sequence (un ◦ f)n is measurable
and uniformly bounded, hence the pointwise limit u ◦ f is also measurable (and
bounded). We apply Lebesgue’s theorem to obtain that fun

converges pointwise
to a function fu : A ∪ ω → C with fu|A = u ◦ f and fu(x) satisfies the integral
representation of b) for each x ∈ ω. Moreover, from the integral representations it
follows that (fun

|ω)n is a bounded sequence in the Fréchet-Schwartz space H (ω),
hence it possesses a convergent subsequence. Denote its limit by g. In particular,
the subsequence converges pointwise to g. Hence g = fu|ω. We get u ∈ W .
In particular, we proved that the maps u ◦ f |A∩ω possess (unique) extensions gu ∈
H (ω) for all u ∈ E ′, so we may apply [7, Theorem 9] (Theorem 1 i)) to get an
extension F ∈ H (ω, E) of f |A∩ω.

Proof of Theorem 3, cases iii), iv). Let (ωn)n be a regular exhaustion of Ω
consisting of open and relatively compacts sets. Without loss of generality we may
assume that

sup
x∈ωn

|g(x)| ≤ Cn sup
x∈Mn

|g(x)|

for all g ∈ H (Ω) and all n. The subspaces Hn := {u|En
: u ∈ span W} are sepa-

rating. From the previous Lemma we get extensions Fn ∈ H (ωn, En) of f |Mn∩ωn
.

Since H (·, E) is a sheaf, there is a unique F ∈ H (Ω, E) extending f . 2

As a final remark, we notice that Theorem 3 iii) can also be obtained from Theorem
3 ii). In fact, under the hypothesis of theorem 3 iii) one can construct a Hausdorff
countable inductive limit F := indnFn of quasireflexive Banach spaces continuously
embedded in E such that f : ∪nMn → F is bounded on each Mn, and the restric-
tions of the elements of W to F form a separating subset of F ′. The conclusion
follows since F is Br-complete due to [19, 7.2.3, 7.5.12].
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[4] K. D. Bierstedt, Tensor products of weighted spaces, Bonner Math. Schriften
81 (1975) 26-58.

[5] K. D. Bierstedt, S. Holtmanns, Weak holomorphy and other weak properties,
Bull. Soc. Roy. Sci. Liège 72 (2004) 377-381.
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[7] J. Bonet, L. Frerick, E. Jordá Extension of vector valued holomorphic and har-
monic functions, preprint 2004

[8] W. J. Davis, J. Lindestrauss, On total nonnorming spaces, Proc. Amer. Math.
Soc. 31 (1972) 109-111.

[9] N. Dunford, Uniformity in linear spaces, Trans. Amer. Math. Soc. 44 (1938)
305-356.

[10] P. Enflo, L. Smithies, Harnack’s theorem for harmonic compact operator-valued
functions, Linear Algebra Appl. 336 (2001), 21-27
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