EXTENSION OF WEYL-HEISENBERG WAVE PACKET BESSEL SEQUENCES TO DUAL FRAMES IN $L^{2}(\mathbb{R})$

DeEpshikha and L. K. Vashisht

Abstract

Christensen et al. proved in [Extensions of Bessel sequences to dual pairs of frames, Appl. Comput. Harmon. Anal., 34 (2013), 224-233] that in any separable Hilbert space, any pairs of Bessel sequences (even if the given Bessel system is Gabor system in $L^{2}(\mathbb{R})$) can be extended to a pair of dual frames. In this paper, we extend results by Christensen et al. to a pair of Bessel sequences in $L^{2}(\mathbb{R})$ having wave packet structure to a pair of dual frames such that extension have wave packet structure as well. We present sufficient conditions for the extension of a pair of Bessel sequences to wave packet type dual frames for $L^{2}(\mathbb{R})$. Several examples and counter-examples are given to illustrate our results.

Mathematics subject classification (2010): 42C15, 42C30, 42C40.
Keywords and phrases: Hilbert frame, wave packet system, Bessel sequence.

REFERENCES

[1] P. G. Casazza and G. Kutyniok, Finite Frames: Theory and Applications, Birkhäuser, 2012.
[2] P. G. Casazza and N. Leonhard, Classes of finite equal norm Parseval frames, Contemporary Mathematics, 451 (2008), 11-13.
[3] O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2002.
[4] O. Christensen, Frames and Bases: An Introductory Course, Birkhäuser, Boston, 2008.
[5] O. Christensen and A. Rahimi, Frame properties of wave packet systems in $L^{2}\left(\mathbb{R}^{d}\right)$, Advances in Computational Mathematics, 29 (2008), 101-111.
[6] O. Christensen and A. Rahimi, An introduction to wave packet Systems in $L^{2}(\mathbb{R})$, Indian Journal of Industrial and Applied Mathematics, 1 (2008), 42-57.
[7] O. Christensen, H. O. Kim and R. Y. Kim, On Parseval wavelet frames with two or three generators via the unitary extension principle, Canadian Mathematical Bulletin, 57 (2) (2014), 254-263.
[8] O. Christensen, H. O. Kim and R. Y. Kim, Extensions of Bessel sequences to dual pairs of frames, Applied and Computational Harmonic Analysis, 34 (2013), 224-233.
[9] A. Cordoba and C. Fefferman, Wave packets and Fourier integral operators, Communications in Partial Differential Equations, 3 (11) (1978), 979-1005.
[10] W. Czaja, G. Kutyniok and D. Speegle, The geometry of sets of prameters of wave packets, Applied and Computational Harmonic Analysis, 20 (2006), 108-125.
[11] I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions, Journal of Mathematical Physics, 27 (1986), 1271-1283.
[12] I. DaUBECHIES, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.
[13] Deepshikha and L. K. Vashisht, Extension of Bessel sequences to dual frames in Hilbert spaces, submitted.
[14] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Transactions of the American Mathematical Society, 72 (1952), 341-366.
[15] D. Gabor, Theory of communications, Journal of Inst. Electrical Engineering, 93 (3) (1946), 429457.
[16] D. HAN, Dilations and completions for Gabor systems, Journal of Fourier Analysis and Applications, 15 (2) (2009), 201-217.
[17] E. Hernández, D. Labate and G. Weiss, A unified characterization of reproducing systems generated by a finite family II, Journal of Geometric Analysis, 12 (4) (2002), 615-662.
[18] E. Hernández, D. Labate, G. Weiss and E. Wilson, Oversampling, quasi-affine frames and wave packets, Applied and Computational Harmonic Analysis, 16 (2004), 111-147.
[19] D. Labate, G. Weiss and E. Wilson, An approach to the study of wave packet systems, Contemporary Mathematics, 345 (2004), 215-235.
[20] M. Lacey and C. Thiele, L^{p} estimates on the bilinear Hilbert transform for $2<p<\infty$, Annals of Mathematics, 146 (1997), 693-724.
[21] M. Lacey and C. Thiele, On Calderón's conjecture, Annals of Mathematics, 149 (1999), 475-496.
[22] D. F. Li And W. Sun, Expansion of frames to tight frames, Acta Mathematica Sinica (English Series), 25 (2009), 287-292.

