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Abstract—Over the last decade, kernel methods for nonlinear procedure can be summarized in the following two steps: 1)
processing have successfully been used in the machine leim Map the finite dimensionality input data from the input space
community. The primary mathematical tool employed in these F (usually F C RY) into a higher dimensionality (possibly

methods is the notion of the Reproducing Kernel Hilbert Spae. . ... . )
However, so far, the emphasis has been on batch techniques. | INfinit€) RKHS # and 2) Perform a linear processing (e.g.,

is only recently, that online techniques have been consided in adaptive filtering) on the mapped data# The procedure is
the context of adaptive signal processing tasks. Moreovethese equivalent with a non-linear processing (non-linear fiftg)y
efforts have only been focussed on real valued data sequescdo in F.
the best of our knowledge, no adaptive kerel-based stratghas  Ap giternative way of describing this process is through the
been developed, so far, for complex valued signals. Furtherore, . AP . .
although the real reproducing kernels are used in an increasg popularkernel _t”Ck [7], [8]: Given an algorithm, which can
number of machine learning problems, complex kemels haveot, € formulated in terms of dot products, one can construct an
yet, been used, in spite of their potential interest in apptiations alternative algorithm by replacing each one of the dot pot&lu
that deal with complex signals, with Communications being a with a positive definite kernet. The specific choice of kernel
typical example. In this paper, we present a general framew 10 i jicitly defines a RKHS with an appropriate inner product.
attack the problem of adaptive filtering of complex signals,using . )
either real reproducing kernels, taking advantage of a techique Furtr_\ermpre, the Cho'C.e of kernel also defines the type Pf
called complexification of real RKHSs, or complex reproducing nonlinearity that underlies the model to be used. The main
kernels, highlighting the use of the complex gaussian kerhe representatives of this class of algorithms are the cefetira
In order to derive gradients of operators that need to be support vector machine§SVMs), which have dominated the
defined on the associated complex RKHSs, we employ theyagearch in machine learning over the last decade [9]. Besid
powerful tool of Wirtinger's Calculus, which has recently at- SVM d th t licati in adantive filteri
tracted attention in the signal processing community. Wiringer’s S _an € more recent app '(_:a "?r_‘s In a e}p Ive Tiltering,
calculus simplifies computations and offers an elegant todlor there is a plethora of other scientific domains that have
treating complex signals. To this end, in this paper, the ndgbn gained from adopting kernel methods (e.g., image proogssin
of Wirtinger’s calculus is extended, for the first time, to include gnd denoising [10], [11], principal component analysis][12
complex RKHSs and use it to derive several realizations of clustering [13], e.t.c.).

Complex Kernel Least-Mean-Square (CKLMS) algorithm. Ex- o . .
periments verify that the CKLMS offers significant performance In classification tasks (which have been the dominant ap-

improvements over several linear and nonlinear algorithmswhen ~ plications of kernel methods) the use of complex reprodycin
dealing with nonlinearities. kernels is meaningless, since no arrangement can be darived
complex domains and the necessary separating hyperssirface
cannot be defined. Consequently, all known kernel based
. INTRODUCTION applications, as they emerged from the specific background,
rocessing in Reproducing Kernel Hilbert Spacegse real-valued kernels and they are able to deal with real
(RKHSs), in the context of online learning, is gainingyalued data sequences only. To our knowledge, no kernel-
in popularity within the Machine Learning and Signabased strategy has been developed, so far, that is able to
Processing communities [1]-[6]. The main advantage effectively deal with complex valued signals.
mobilizing the tool of RKHSs is that the original nonlinear In this paper, we present a general framework to address
task is “transformed” into a linear one, which can be solvdtie problem of adaptive filtering of complex signals, us-
by employing an easier “algebra’. Moreover, different typeing either real reproducing kernels, taking advantage of a
of nonlinearities can be treated in a unifying way, with ntechnique calledcomplexificationof real RKHSs, or com-
effect on the mathematical derivation of the algorithmsept plex reproducing kernels, highlighting mostly the use d th
at the final implementation stage. The main concepts of tiemplex gaussian kernel. Although the real gaussian RBF
kernel has become quite popular and it has been used in
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a wide variety of kernel methods to the complex domain, thisj = 1,..., N, is called theGram matrix(or kernel matri}
work focuses on the recently developed Kernel LMS (KLMS)f x with respect tox;,...,zy. A Hermitian matrix X' =
[1], [14]. (K ;)N satisfying

To compute the gradients of cost functions that are defined N.N
on the complex RKHSs, the principles of Wirtinger’s calailu H K. o= Z e K >0,

are employed. Wirtinger’s calculus [15] has recently ated
attention in the signal processing community, mainly in the ) .
context of complex adaptive filtering [16]-[23], as a mean8" &ll ¢ € F,i=1,..., N, where the notation denotes the

of computing, in an elegant way, gradients of real valuggPniugate element, is callgebsitive DefiniteIn matrix anal-
cost functions defined on complex domair@€”). To this YSIS _Ilterature, th|s.|s the _defmmon of a positive semidieé
end, the main ideas and theorems of Wirtinger's calculus dR&trix. However, since this is a rather cumbersome term and

generalized to general complex Hilbert spaces for the fifie distinction between positive definite and positive siehi
ime. inite matrices is not important in this paper, we employ the

To summarize, the main contributions of this paper arkerm positive definite in the way presented here. Furtheemor
a) the development of a wide framework that allows reain€ term positive definite was introduced for the first time by

valued kernel algorithms to be extended to treat complea dAf€rcer in the kernel context (see [26]). L&tbe a nonempty
effectively, taking advantage of a technique calteminplex- S€t Then a functiom : X > X' — F, which for all V'€ N
ification of real RKHSs, b) to elevate from obscurity the®nd allz1,....zx € X gives rise to a positive definite Gram
complex Gaussian kernel as a tool for kernel based adaptil@trix &t is called aPositive Definite Kerneln the following,
processing of complex signals, c) the extensiomtingers W€ will frequently refer to a positive definite kernel simy
Calculusin complex RKHSs as a means for an elegant ar§™Mel _ _ _
efficient computation of the gradients, which are involved N€Xt consider alinear clasg of complex valued functions
in the derivation of adaptive learning algorithms, and c th/ defined on a sefX’. Suppose further, that ift we can
development of several realizations of the Complex Kern@ffine an inner produgt, -)3; with corresponding norrj - ||
LMS (CKLMS) algorithm, by exploiting the extension of2nd that# is complete with respect to that norm, i.6{,
Wirtinger's calculus and the generated complex RKHSs. 1S @ Hilbert space. We caitt a Reproducing Kemel Hilbert
The paper is organized as follows. We start with an introdugPace (RKHS)if for all y < X the evaluation functional
tion to RKHSs in Section II, which includes real and complekv @ # — F : T,(f) = f(y) is a linear continuous (or,
kernels, before we briefly review the KLMS algorithm inequwf’;llently, bounded) operator. If this is true, then bg th
Section III. In Section IV, we describe the complexificatiofRIeSZ'S representation theorem, for gil € X there is a
procedure of a real RKHS, that provides a framework tynction g, € #H such thatTy(f) = f(y) = (f,gy)n. The

develop complex kernel methods, based on popular realgaldgnction & = X x X = F : «(z,y) = g,(z) is called

reproducing kernels (e.g., gaussian, polynomial, e.tictrief & reproducing kernebf H. It can be easily proved that the

introduction on Wirtinger's Calculus in finite dimensionafUnction is a positive definite kernel. _
spaces can be found in Section V. The main notions of the\ltérnatively, we can define a RKHS as a Hilbert spate
extended Wirtinger's Calculus on general Hilbert spaces gP" Which there exists a function : X x X — F with the
summarized in Section VI and the CKLMS is developeff!lowing two important properties:
thereafter in Section VII. Finally, experimental resultsda 1) For everyz € X, (-, ) belongs toH.
conclusions are provided in Sections VIl and IX. Throughou 2) + has the so calleceproducing propertyi.e.,
the paper, we will denote the set of all integers, real and _ )
complex numbers bi{, R andC respectively. Vector or matrix @) = {f wCo ), forall f €3, @
valued quantities appear in boldfaced symbols. in particulark(z,y) = (k(-,y), k(-, )%
It has been shown (see [27]) that to every positive definite
Il. REPRODUCINGKERNEL HILBERT SPACES kernelx there corresponds one and only one class of functions

In this section, we briefly describe the theory of Reprodug'-[ V\."th a uniquely dE‘te”T“Feo' inner productl in-it, forming
ing Kernel Hilbert Spaces. Since we are interested on boefhHllbert space and admitting as a.reproducm_g kernel. In
real and complex kernels, we recall the basic facts on RKI—EQCL the kernels p;oduces the entire spac, i.e., # =
associated with a general fieij which can be eitheR or C. span{(, -)lo € X}*. Themap® : X — # : &(z) = «(,2)
However, we highlight the basic differences between the i called thefeature mapof #. Recall, that in the case of

cases. The material presented here may be found with mSPénpl.e)f Hilbe_rt spaces .(i.eE = C) the inner pf‘?‘?'“Ct s
details in [24] and [25]. sesqui-linear (i.e., linear in one argument and antilinedhe

other) and Hermitian:

i=1,j=1

A. Basic Definitions (af +bg, h)w = alf, h)a + b(g, h)w,
Given a functions : X x X — F andz,...,zy € X, (fyag +bh)y = a™(f, g)n + " (f, h)#n,
the matrix K = (K, ;)V with elementsK; ; = x(z;, z;), for (fr9)5 = (9, Hn,

1The term(k; ;)™V denotes a squar®y x N matrix. °The overbar denotes the closure of the set.
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for all f,g,h € H, anda,b € C. In the real case, then = 2,..., N. It takes a few lines of elementary algebra to
condition x(z,y) = (k(-,y),k(-,z)) may be replaced by deduce that the update of the unknown vector parameter is:
k(z,y) = (k(,x),k(-,y))n. However, since in the complexw(n) = w(n — 1) + pe(n)x(n), wherey is the parameter
case the inner product is Hermitian, the aforementioned carontrolling the step update. If we take the initial valueufis
dition is equivalent tox(z,y) = ((k(-,2),x(-,y))»)". One w(0) = 0, then the repeated application of the update equation
of the most important properties of RKHSs is that normields:
convergence implies pointwise convergence. More pregisel n
let {f.}nen C H be a sequence such tham, || f, — f]| = w(n) = Mze(kﬁ)m(/ﬂ) (4)
0, for some f € H. Then, the continuity ofT, gives 1
lim,, f,(z) = lim, T, (f,) = Tu(f) = f(z), for all z € X. : ; :

Although, the underlying theory has been developed tl)—)|/ence, for the filter output at instancewe have:
the mathematicians for general complex reproducing kernel . T T
and their associated RKHSs, only the real kernels have been d(n) =w(n—1)"z(n) =p ) e(k)x(k) x(n), (5)

considered by the machine learning community. One of the k=1
most widely used kernel is th@aussian RBFi.e., for n = 1,2,..., N. Equation (5) is expressed in terms of
d ) inner products only, hence it allows for the application o t
ey o (@) = exp (_ Zizl(j; — i) ) 7 @) keirsnel trick. Thus, the filter output of the KLMS at instance
n

defined forxz,y € R?, whereo is a free positive parameter. . s

Another popular kernel is thpolynomial kernel kg(x, y) == d(n) = (x(n),w(n — 1))y = p Z e(k)w (2(n), z(k)),

(1+wTy)d, for d € N. Many more can be found in the =1 (6)

related literature [7]-[9].

Complex reproducing kernels, that have been extensively n

studied by the mathematicians, are, among othersSttego while w(n) = p e(k)s(-, z(k)), 7)

kernels i.e, k(z,w) = ﬁ for Hardy spaces on the unit b1

disk, and the Bergman kernels, i.e(z,w) = ——z, for forn—=1.2. . N.

Bergman spaces on the unit disk, wheeg [w| < 1 [25]. Another, more formal, way of developing the KLMS is the

In the following, we discuss another complex kernel that h?@llowing. First, we transform the input spacé to a high
remained relatively unknown in the Machine Learning angimensional feature spadé, through the (implicit) mapping

Signal Processing societies. ®: X — H, ®(x) = s(-,z). Thus, the training examples
becomeg®(x(1)),d(1)),...,(®(x(N)),d(N)). We apply the
B. The Complex Gaussian Kernel LMS procedure on the transformed data, with the linear filter
Consider the complex valued function output d(n) = (®(z(n)), w). The model(®(z), w)y is
4 ) more representative than the simpl€"z, since it includes
o _Zi:l(zi —wy) the nonlinear modeling through the presence of the kernel.
Ka.Cd(zaw) = exp ) (3) . . - .
’ o? The objective now becomes to minimize the cost function

, P J , E [|d(n) — (®(z(n)), w)|*] (see [29]). Using the notion of
defined onC* x C, wherez,w € CY, 2 denotes the-th e Frachet derivative [29]-[31], which has to be mobiize
component of the complex vecter € C and exp is the  gjnce the dimensionality of the RKHS may be infinite, we are

extended exponential function in the complex domain. It cafyyje 15 derive the gradient of the aforementioned cost fanct
be shown thak, c. is a complex valued kernel, which we cally i, respect tow, if we estimate it by its current measure-

the complex Gaussian kernelith parametew. Its restriction o+ ld(n) — (®(z(n)),w)|?. Thus the respective gradient

Ko 1= (’_’“Q-Cd)md_xw is the well knownreal Gaussian kernel 5 9. (;,)¢(z(n)). It has to be emphasized, that naw is
An explicit description of the RKHSs of these kernels, tbget ot 4 vector, but a function, i.e., a point in the linear Hitoe

with some important properties can be found in [28]. space. It turns out that the update of the KLMS is given by
w(n) = w(n—1)+pe(n)®(x(n)), wheree(n) = d(n)—d(n).
IIl. KERNEL LEAST MEAN SQUARE ALGORITHM From this update, following the same procedure as in LMS and
In a typical LMS filter the goal is to learn a lin- applying the reproducing property, we obtain equationsi(fs)
ear input-output mapping/ : X — R : f(x) = (7), whichare atthe core of the KLMS algorithm. More details

w'z, X C R¥ based on a sequence of exampleand the algorithmic implementation may be found in [14].
(x(1),d(1)), (x(2),d(2)),...,(x(N),d(N)), so that to min-  Note that in a number of attempts to kernelize known
imize the mean square erraf, [|d(n) — w”x(n)|?]. To this algorithms, that are cast in inner products, the kernek tisc
end, the gradient descent rationale is employed and at eashally, used in a "black box” rationale, without considana

time instant,n = 1,2,..., N, the gradient of the meanof the problem in the RKH space, in which the (implicit)
square error, i.e..-2E[e(n)x(n)], is estimated via its cur- processing is carried out. Such an approach, often, does not
rent measurement, i.eEle(n)x(n)] = e(n)x(n), where allow for a deeper understanding of the problem, especially

e(n) = d(n) —w(n—1)Tx(n) is the a-priori error at instanceif a further theoretical analysis is required. Moreoverpimr
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case, such a “blind” application of the kernel trick on &his relation implies that the complexification proceduse i
standard complex LMS form, can only lead to spaces defineduivalent with the followingcomplexified real kernel trick
by complex kernels, as it will become clear soon. Comple&Xiven an algorithm, which is formulated in terms of complex
RKH spaces, that are built around complexification of realot products (i.ew” z, wherez = = + iy, w = w; + iw»),
kernels, do not result as a direct application of the stahdasne can construct an alternative algorithm by replacindgreac
kernel trick. one of the complex dot products with a positive defiméal

kernel x, with arguments the extended real vectorszodnd
IV. COMPLEXIFICATION OF REAL REPRODUCINGKERNEL 4y (i.e., i((z, y), (w2, wo))).

HILBERT SPACES

To generalize the kernel adaptive filtering algorithms on
complex domains, we need a universal framework regarding
complex RKHSs. A first straightforward approach is to use

V. WIRTINGER'S CALCULUS ONC

Wirtinger's calculus [15] is enjoying increasing poputgri
. 4 : . . |ﬁ the signal processing community mainly in the context of
given in section .II. In this secuon_,lwe. present an altem%’omplex adaptive filtering [16][23], as a means to compiute,
tive simple technique calledomplexificatiorof real RKHSs, an elegant way, gradients of real valued cost functionsatet

which has the advantage of allowing modeling in Comple&(efined on complex domain€). The Cauchy-Riemann con-

RKHSs using popular _well-es_tablished and well underStO_ogitions dictate that such functions are not holomorphicégxt
gglr;nirrr)]ieago{er?in)ce point of view, real kernels (€.g., gaussi from the case where the function is a constant) and therefore
R A the complex derivative cannot be used. Instead, if we censid
v 2 — 2v _ ’

Let'X cR .XDegn(gVX . de %fh <R Tnd X E tthat the cost function is defined on a Euclidean domain with a
{;B +tzy, wllyﬂjb RS | ReK?_'Uéppe Wi ¢ : C.C;an ex |p|:° ucl double dimensionalityK?"), then the real derivatives may be
zr?c udre.n)?Q )e(Qa re% let assoc_;a edwith a rg_a eme employed. The price of this approach is that the computation

€ |(;1e tOTh * an 87_5"%* be IS cor(;ezpon mfg mr:_ermay become cumbersome and tedious. Wirtinger's calculus
gr(;l u%' e.?ﬁ ?}’W; 7t can e_regar € a_s a func 'orbrovides an alternative equivalent formulation, that isdth
el\llnet on edl ]f eHQor— i["e';_{(ﬁ)._ f(w—it—zy) _f f,gr:f’é{[)g' on simple rules and principles and which bears a great resem-
: Iex ' W:'Ibe ItnS N .t?] L. 1S e«'ésyto verlty tha blance to the rules of the standard complex derivative. is th
IS aiS0 a Hilbert space with inner produc section, we present the main notions of Wirtinger's calsulu
(£, 9%z = (f1,91)n + {f2, 92)%, (8) for functions defined on complex domains. These ideas are,

_ _ S . ..,0 Subsequently, extended in section VI to include the case of
for f = (f1,/2). g = (91, 92). Our objective is to enriclH eneral complex Hilbert spaces.

with a complex structure. We address this problem using tHeLet f . C - C be a complex function defined on

complexification of the real RKHS{. To this end, we define C. Obviously, such a function may be regarded as either
the spacél = {f = fi +ifs; f1,f2 € H} equipped with the /a0 " e o ¢ (e, f(z) = flz+iy) = flz,y).

complex inner product: Furthermore, it may be regarded as either a complex valued
(fr9)m = (fi,90)n + (f2, 92)m + i ((f2, 91)n — (f1,92)n), function, f(z,y) = u(x,y) + iv(x,y) or as a vector valued
for f = fi+ifsr g = g1 +igs. Hence.f,g : X C C¥ — C. It fqnction_f(a:,y) = (u(z,y),v(z,y)). We Will_say thgtf is

is not difficult to verify thatH is a complex RKHS with kernel differentiable in the real sensé u andv are d|]‘ferent|§ble. It

k [25]. We call H the complexification ofH. It can readily trns Ol.ﬂ that, when the CO".‘F"eX st_ructure IS -con5|dere11, th
be seen, that, although is a complex RKHS, its respectivereal derivatives may be dgscnbed using an e_q_ulvalent amd mo
kernel is real (i.e., its imaginary part is equal to zero). elegant formulation, which bears a surprising resemblance

To complete the presentation of the required framework f&?:fh the_ E?mple: derlvaltlve. In_factr,] if the Ifungno_yi 1S
working on complex RKHSs using this rationale, we need%{ .erentla e in the complex sen@e. the complex derivative

technique to implicitly map the samples data from the complgx'StS)’ the develc_)ped derivatives.coincide with the cc.empll
input space to the complexified RKHE. This can be done ones. Although this methodology is known for some time in
using the simple rule: the German speaking countries and it has been applied to

practical applications [32], [33], only recently has atted
®(z) = ®(x +iy) = ®(x,y) = ®(x,y) +i®(x,y), (9) the attention of the signal processing community, mostihn
whered is the feature map of the real reproducing kerngl CONtext of works that followed Picinbono’s paper on widely
ie., ®(z,y) = s (z,y)). It must be emphasized, tha lInear estimation filters [16]. o
is not the feature map associated with the complex RRHS ~ The Wirtinger's derivative(or W-derivativefor short) of f
Furthermore, the employed kernel is a real one. Therefbee, £ @ Pointc is defined as follows

algorithms derived using this approach cannot be repratjuce of 1/0f of
if one blindly applies the kernel trick using any complex B_(C) b (8—(0) —ia—(c)>
kernel. However, observe that: z x Y

1 /0u ov 1 [ Ov ou
(®(2),®(2))y = 2(®(x,y), (', y'))u =3 (a_x(c) + 8—y(c)) +5 (a_x(c) - a—y(c)) :
= 2x((z, y), (z',y")). (10)
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The conjugate Wirtinger's derivativdor CW-derivativefor if the functionf(z) = f(z+iy) = f(=,y) is given in terms of

short) of f at ¢ is defined by: x andy, replacingz by (z+ 2*)/2 andy by (z — 2*)/2 gives
of 1/0f of the result. It should be emphasized, that these statemersis m
e (c) = 3 (%(c) z’a—y(c)) be regarded as a simple computational trick rather than as a

, rigorous mathematical rule. This trick works well due to the

:l (@(C) _ @(0)) + r (@(C) + @(C)) . (11) aforementioned properties. Nonetheless, special careldho
2\ Oz dy 2 \ 0z dy be considered whenever these tricks are applied. For exkampl

The following properties can be proved [21], [34], [35]: given the functionf(z) = |2|2, we might conclude thafl =

1) If f has a Taylor series expansion with respect foe., 0. since if we consider: as a constant, therf(z) is also

it is holomorphic) around, then 68f* (c) = 0. a constant. However, one might argue that since there isn’t
2) If f has a Taylor series expanszion with respectzto any rule regarding the complex norm, this rationale leads to
arounde, then 2£ (¢) = 0. an error. Undeniably, if one recasfsas f(z) = zz*, then
a) (96" — ap one concludes thaft =z and %L = »*. Similar rules and
) (G_(C)) L, (c) principles hold for functions defined a@” [34].
4 (2-(0) = 2.
5) Linearity: If f, g are differentiable in the real sensecat VI. EXTENSION OFWIRTINGER'S CALCULUS TO
anda, 8 € C, then GENERAL HILBERT SPACES
d(af + Bg) of dg To apply minimization algorithms on real valued operators
0, (@ =az-(c)+B57(c), defined on complex RKHSs, we need to compute the asso-
d(af + Bg) of dg ciated gradients. To this end, in this section, we genexaliz
T(C) =5 (c) + 5&* (c) the main ideas and results of Wirtinger’s calculus on gdnera

] . . . Hilbert spaces. We begin with a brief review of theéchet
6) Product Rule: Iif, g are differentiable in the real Sensederivative which generalizes differentiability to Hilbert spaces

ate thena ) of 5 and which will be the basis for our discussion.
U9y = 900 + 102 ),
af-g) of dg A. Fréchet Derivatives
5 (©) =55 ()gle) + fle) 5= (c). Since Fréchet differentiability is not the mainstream of

mathematical tools used in the Signal Processing and Machin
eI_earning communities, we give here some basic definitions fo
the sake of clarity. Consider a Hilbert spaleover the field

7) Division Rule: If f, g are differentiable in the real sens
atc andg(c) # 0, then

6(5)( - 8L (c)g(c) = f(0)5(c) F (typically R or C). The operatof : H — F" is said to be
92 - 92(c) ’ Fréchet differentiableat fj, if there exists a linear continuous
8(5) - aazf* ©9(0) - (0 ai{ © operatoriv’ :;Wl, W}j, . .1,1W,,) : };/—;IF such that

h h
8) Chain Rule: Iff is differentiable in the real sense at Il =0 Il

andg is differentiable in the real sense Afc), then where || - ||z = /{-,)m is the induced norm of the cor-

9 9 9 9 f* responding Hilbert Space. Note th&t is considered as a
%o f(c) = 8—g(f(c))a—f(c) + 89* (f(e) 8f (o), Banach space under the Euclidean norm. The linear operator
ngf “ azf gg ajp* W is called theFréchet derivativeand is usually denoted by

(c) = @(f(c))az* (c) + pye (f(c) 5o (c).  dT(fo) : H — F". Observe that this definition is valid not

0z 0z nly for Hilbert spaces, but for general Banach spaces too.

In view r?f '{/r:/e afdogavn\;((ajnn_one_d pro?emes, omla mflght eas'&owever, since we are mainly interested at Hilbert spaces, w
compute the W an erivatives of any complex functfon present the main ideas in this context. It can be proved that i

which is written in terms ot andz*, following the following ¢, 4 linear continuous operafid can be found, then it is

simple tricks: unique (i.e., the derivative is unique) [30]. In the speciate
o ) wherev = 1 (i.e., the operatofl’ takes values orF') using
« To compute the W—_der|vat|ve of a functigi the Riesz’s representatiotheorem, we may replace the linear
which is expressed in terms efand z*, apply continuous operatoW with an inner product. Therefore, the
the usual differentiation rules considering as operator] : H — F is said to beFréchet differentiableat
a constant. fo, iff there exists aw € H, such that
« To compute the CW-derivative of a functign
which is expressed in terms ofand z*, apply lim T(fo+h) —T(fo) — (h,w)n =0, (13)
the usual differentiation rules consideringas Il —0 I1ives
a constant. where (-, )5 is the dot product of the Hilbert spadé and
Note that any complex functiofi(z), which is differentiable || - ||z is the induced norm. The elememnt is usually called

in the real sense, can be cast in terms ahdz*. For example, the gradient ofl" at f, and it is denoted byv* = VT'(fy).
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For a general vector valued operafr= (T1,...,7,) : B. Complex Hilbert spaces
H — F”, we may ea_sny derive that " is differentiable at | ot 7/ pe a real Hilbert space with inner produ€t-)y
fo, thenT is differentiable atfo, for all « = 1,2,...,v, and  5nq%2 H the Hilbert spaces defined as shown in section IV.
that In the following, the complex structure @ will be used to
(h, VT1(fo)* ) derive derivatives similar to the ones obtained from Wgéris
dT(fo)(h) = . (14) calculus onC.

(h,VT, :(f ) Consider the function’ : A € H — C, T(f) =
VA0 H T(us + ivg) = Ty(up,vs) + iTi(ug,vy), defined on an
To prove this claim, consider that sin@ is differentiable, open subset of H, whereug,vy € H andT,.,T; are real

there exists a continuous linear operal® such that valued functions defined oH?. Any such functionT’, may be
IT(fo + ) — T(fo) = W(R)| regarded as defined either on a subsellpbr on a subset of
=0e H2. Moreover, T may be regarded either as a complex valued
Iz =0 I1ives functi : -
. ) unction, or as a vector valued function, which takes vaines
lim <Z IT.(fo+h) —T.(fo) — Wb(h)|F> ~o R2. Therefore, we may equivalently write:
IRl i1 —0 h||2 ' , ,
for all L h " T(f) = T(ug +ivy) = Tr(ug,vg) +iTi(ug, vy),
oralle=1,...,v. Thus, T(f) = (Tr(ug,vg), Ti(ug,vf)) .
T, h)—1T, —W,(h . . . .
lim ( (fo+ 1) (fo) ( )) =0, In the following, we will often change the notation accoglin
IRllz—0 (1P| 2

to the specific problem and consider any elemenifof H
forall . = 1,2,v. The Riesz’s representation theorem dictatefefined either ag = us+ivy € H, or asf = (uy,vs) € H2.
that sincelV, is a continuous linear operator, there existsc  In a similar manner, any complex number may be regarded as
H, such thatW,(h) = (h,w,)q, for all « = 1,...,v. This either an element of, or as an element dk?. We say that
proves thatl, is differentiable atf, and thatw; = VT,(fo), T is Fréchet complex differentiablat ¢ € H, if there exists
thus equation (14) holds. The converse is proved similarly.«w € H such that:

The notion ofFréchet differentiabilitynay be extended to . T(c+h) — T(c) — (h,w)s

include also partial derivatives. Consider the operator: im =0. a7
H* — F defined on the Hilbert spadé” with corresponding IAla=0 1Pl
inner product: Thenw™ is called thecomplex gradienbf T at ¢ and it is
" denoted aav* = VT'(c). The Fréchet complex derivative of
(f 9)n = ZU“QL)H’ T at c is denoted asiT'(c)(h) = (h,w)y. This definition,
— although similar with the typical Fréchet derivative, ®ifs

the complex structure off. More specifically, the complex
inner product, that appears in the definition, forces a great
deal of structure orI'. Similarly to the case of ordinary
complex functions, it is this simple fact that gives birth to
T(fo + M) ~T(fo) = (Wl wim _ (15) @all the important strong properties of the complex derveati
lIhllez—0 |l ar ’ For example, it can be proved, thatdf’(c) exists, then so
where[h], = (0,0,...,0,h,0,...,0), is the element off* doc_esd"T(c), fpr neN. If Tis _d_ifferentiablg at any: € A,
with zero entries everywhere, except at placdhe element T iS called Fréchet holomorphidn A, or Fréchet complex
w* is called the gradient of at f, with respect tof, and it analyticin A, in the sense that it can be expanded as a Taylor

is denoted byw* = V,T(#,). The Fréchet partial derivative S€Tes, i.e.,

where f = (f1, f2,--- fu), 9 = (91,92, .. gu). T(f) is said
to beFréchet differentiableat f, with respect tof,, iff there
exists aw € H, such that

at f, with respect tof, is denoted bY3T-(f), 57 (fo)(h) = 1
([h]e, w)s. - - T(c+h)= Zmd”T(c)(h,h,...,h). (18)
Although it will not be used here, it is interesting to note, n=0 "

that it is also possible to define Fréchet derivatives ohlig The proof of this statement is out of the scope of this paper.
order and a corresponding Taylor’s series expansion. B tfihe interested reader may dig deeper on this subject by
context, then-th Fréchet derivative of” at f,, denoted as referring to [36]. We begin our study by exploring the redas
d"T(f,), is a multilinea? map. If T has Fréchet derivatives between the complex Fréchet derivative and the real Etéch
of any order, it can be expanded as a Taylor series [36], i.@lerivatives. In the following, we will say thdl’ is Fréchet

S differentiable in the complex sengéthe complex derivative
T(fo+h)= Z —d"T(fo)(h,h,....h).  (16) exists, and thal” is Fréchet differentiable in the real sense
o't its real Fréchet derivative exists (i.&,is regarded as a vector

In relative literature the termi"T'(c)(h, h, ..., k) is often Valued operatofl’ : 3{* — #?). Similarly, the expressionT

replaced byi"T/(c) - ", which it denotes that the multilineariS Fréchet complex analytic at” means thatT’ is Fréchet
mapd"T'(c) is applied to(h, h, . .., h). complex analytic at a neighborhood arouadWe will say

that T" is Fréchet real analyticwhen bothT,. and T; have a
3A function is called multilinear, if it is linear in each vatile. Taylor’'s series expansion in the real sense.
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Proposition VI.1. LetT : A C H — C be an operator such and theFréchet Wirtinger's derivativgor W -derivativg as
that T(f) = T(us + ivg) = T(ug,v5) = Tr(ug,vp) + F2(c) : H = C, such thatdk(c)(h) = (h,VT(c)")u.
iT;(ug,vy). If the Fréechet complex derivative @ at a point Consequently, th&réchet conjugate Wirtinger's gradieror
c € A (e, dT(c) : H — C) exists, then, and T; are CW-gradientfor short) and thd-réchet conjugate Wirtinger’s
differentiable at the pointt = (c1,¢1) = ¢1 + ica, where derivative(or CW-derivativg of T' at ¢ are defined by:

c1,co € H. Furthermore,

1 .
VT(c) =3 (V1T (e) +1iVaT(c)) (23)
VuTr(Clch) = VUT%(Cl,CQ),VUTr(Cl,CQ) = _vun(clch)- 1
(19) =3 (VuT-(c) — V,Ti(c))
Equations (19) are th€auchy Riemann conditionsith i V. T V. T
respect to the Fréchet notion of differentiability. Siamilto *3 (VuTi(e) + Vo Tr(e)),
the simple case of complex valued functions, they providg,q OT() : H — C, such that 36}1 (c)(h) =

a necessary gnd sufficient condition, for a pomplex operatQL (V-T(c))")x. Note, that both the W-derivative and the
T, that is defined oril, to be differentiable in the complex c\._gerivative exist, ifT" is Frechet differentiable in the real

sense, provided thdl is differentiable in the real sense. Thisange In view of these new definitions, equation (21) may
is explored in the following proposition. now be recasted as follows

Proposition VI.2. If the operatorT’: ACH — C, T(f) = T h) =T h T(e)* 24
T.(f)+iTi(f), wheref = ug +ivy, is Fréchet differentiable (e+h) =T(c) j (. (Vs (f)) i (24)
in the real sense at a pointc;,c2) € H? and the Féchet + (B (Vi T(e) )y +olllhllw). (25)
Cauchy-Riemann conditions hold: From these definitions, several properties can be derived:
VT, (c1,c2) = VoTi(c, e2), Vo Ty(cr, ) = =V Ti(cr, c2), 1) £ T(f) is f-holomorphic ak (i.e., it has a Ta){lorseries
(20) expansion with respect t§ at c¢), then its Fréchet W-
o _ _ _ derivative atc degenerates to the standard Fréchet com-
thenT is differentiable in the complex sense at the peint plex derivative and its Fréchet CW-derivative vanishes,
(c1,¢2) = €1+ coi € H. ie., VgT(c) =0.

2) If T(f) is f*-holomorphic atc (i.e., it has a Tay-
lor series expansion with respect tp* at c), then
VfT(C) =0.

3) The first order Taylor expansion aroutfd= H is given

Proof: see Appendix A. ]
If the Fréchet Cauchy Riemann conditions are not satisfied
for an operatofT’, then the Fréchet complex derivative does
not exist and the function cannot be expressed in ternts, of

as in the case of Fréchet complex differentiable functices by
equation 18). Nevertheless, T is Fréchet differentiable in T(f +h) =T(f) + (h,(V+T(f)))u
the real sense (i.eZ, andT; are Fréchet differentiable), we +(h* (Vf*T(f))*>H.
may still find a form of Taylor's series expansion by utiligin ’
the extension of Wirtinger’s calculus. It can be shown ($ee t 4) If T(f) = (f, w)u, thenVT(c) = w*, VT (c) =
proof of proposition VI.2 in Appendix A), that: 0, for everyc.
1 5 If T(f) = (f*,w)u, thenV;T(c) =0, Vy-T(c) =
T(c+ h) =T(c) + 3 (h, (V. T(c) =iV, T(c)")y  (21) w*, for everye. ' . _ _
1 6) Linearity: If T, S : H — C are Fréchet differentiable in

+5 (h*, (VuT(c) +iV,T(c)")y + o(||h|lx). the real sense ate H anda, 8 € C, then
One may notice that in this case the associated Taylor's V(T + BS)(c) = aVyT(c) + BV S(c)
expansion is casted in terms of both and h*. This can V(oI + B8S)(c) = aVeT(c) + SV -S(c).

be generalized for higher order Taylor's expansion formula . . . .
by following the same rationale. Observe also thatT'ifis A complete list of the derived properties, together with the

Fréchet complex differentiable, this relation degeresgtiue proofs of the most important ones, are given in Appendix B.

to the Cauchy Riemann conditions) to the respective Taylor, AN important consequence of the previous properties is that
expansion formula (i.e., (18)). In this context, the follng | 1 IS areal valued operatordeﬂne:\dethen_(Vf_T(c_)) -
definitions come naturally. VT (c), and its first order Taylor’s expansion is given by:

We define theFréchet Wirtinger's gradienfor W-gradient  7(f 1 h) = T(f) + (h, (V;T(f)) Y + (h*, (V- T(£)))u
for short) of T at c as —T(f) + (h, V- T(F)g + (b, V 4 T())z)"
V,T(c) :% (V1T (c) — iVaT(c)) =T(f)+2- R[(h, V- T(f))u] .
However, in view of the Cauchy Riemann inequality we have:

j R{(h, V5 T(f))s] < |(h, V- T(F)s
+ 3 (Vuhile) = WuTi(e), < bl IV 57 s

:% (VuT(c) + V., Ti(e)) (22)
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The equality in the above relationship holds#if ] V4T w, with desired responsé(n) = (®(z(n)), w)y, So that to
(where the notatiori] denotes thak andV ¢-T" have the same minimize E [£,, (w)], where

direction, i.e., there is a > 0, such thath = AV ¢-T'). Hence, )2 = 2

the direction of increase of’ is V;-T(f). Therefore, any Ln(w) = le(n)]” = |d(n) — (2(2(n)), w)u|

gradient descent based algorithm minimizifigf) is based = (d(n) — (®(2(n)), w)n) (d(n) — (B(2(n)), w)n)"
on the update scheme: = (d(n) — (w*, ®*(2(n)))u) (d(n)* — (w, ®(z(n)))u),
fo=Fn1—0-VeT(f_1) (26) at each instance. We then apply the complex LMS to the

ina_diff il ¢ dard it f transformed data, estimating the mean square error by its
Assummgl ||er(|ant|a ity ohT a standar resudt ror? current measurement [£,,(w)] = L, (w), using the rules
Fréchet real calculus states that a necessary condition fo, Wirtinger's calculus to compute the CW gradient, i.e.,

pointc to be an optimum (in the sense tlatf) is minimized Vao- Lon(w) = —e(n)* - ®(2(n)). Therefore the CKLMS1
or maximized) is that this point is a stationary point ‘Bf update rule becomes:

e., the Fréchet partial derivatives @f at ¢ vanish. In the

context of Wirtinger’s calculus, we have the following obus w(n) =w(n —1) + pe(n)* - ®(z(n)), (27)

corresponding result. wherew(n) denotes the estimate at iteration

Proposition V1.3. If the functionT : A C H — R is Frechet ~ Assuming thatw(0) = 0, the repeated application of the
differentiable atc in the real sense, then a necessary conditiomeight-update equation gives:

for a pointc to be a local optimum (in the sense tH&fc) is B

minimized or maximized) is that either theéEhet W, or the w(n) =w(n —1) + pe(n)’ (f(n))
Fréchet CW derivative vanishes. =w(n —2) + pe(n —1)"®(z(n — 1))

Proof: Observe that ifT" is real valued, the Wirtinger +56(n) 2(2(n)
derivatives take the forV¢T(c) = 3(VuT(c) — iV, T(c)) _ .
and V¢-T(c) = (V. T(c) +iV,T(c)). If c is a local _uZe(k:) ®(2(k))- (28)
optimum of T then V.T(c) = V,T(c) = 0 and thus
VT (c) = V4-T(c) = 0. Note, that for real valued functions Thus, the filter output at iteration becomes:

the W and the CW derivatives constitute a conjugate pair. d(n) =(®(z(n)),w(n — 1))y
Thus, if the W derivative vanishes, then the CW derivative
vanishes too. The converse is also true. This completes the :Mze(k)<<1’(z(n)) ®(z(k)))u
proof. ] ’
VII. COMPLEX KERNEL LEAST MEAN SQUARES - =21 Rle(k)]r(z(n), z(k))
CKLMS
n—1

In order to illustrate how the proposed framework may be o0 Sle(k k 29

applied to problems of complex signal processing, we ptesen e ; Sle(B)la(z(n), 2(k)), (29)

two realizations of the Kernel Least Mean Squares (KLMS
algorithm for complex data. The first scheme (CKLMS1
employs the complexification of real reproducing kerneée(s
section 1V), while the second one uses pure complex kernd
(CKLMS2). Wirtinger’s calculus is exploited in both cases t
compute the necessary gradient updates.

here the evaluation of the kernel is done by replacing the
complex vectorsz(n), of C¥ with the corresponding real
getors ofR*, i.e., z(n) = (z(n), y(n)).

It can readily be shown that, since the CKLMSL1 is the
complex LMS in RKHS, the important properties of the LMS
(convergence in the mean, misadjustment, e.t.c.) carry ove
to CKLMSL1. Furthermore, we may also define a normalized
A. Complex KLMS via complexification of real kernels yersion, which we callNormalized Complex Kernel LMS

CKLMS1 (NCKLMS1). The weight-update of the NCKLMSL1 is given
Consider the sequence of examplegz(1),d(1)), by:

(2(2),d(2)), ..., (2(N),d(N)), where d(n) € C, B B Iz .

2(n) € V C C, =(n) = o(n) + iy(n), a(n).y(n) € R, @) =wln =D+ gmernrse(n) @ ()

forn=1,..., N. Consider, also, a real reproducing kerrel

The NCKLMS1 algorithm is summarized in Algorithm 1. We
should emphasize that this formulation of the complex KLMS
cannot be derived following the usual “black box” rationafe
the kernel trick, as it has already been pointed out in sectio

defined onX x X, X C R?", and letH be the corresponding
RKHS. We map the pointx(n) to the RKHSH (H is
constructed as explained in section 1V) using the mapgding

®(z(n)) = ®(z(n)) +i®(z(n)) IV. The complexified real kernel trick can be used instead.
R — ~ One might think, that modeling the desired response as

w (- (@), y(m) +i- £ (- (@), y(n), d(n) = (w(n — 1),®(z(n)))g, provides an alternative

forn = 1,...,N, where® is the feature map o#{. The formulation for the CKLMS1 algorithm. In this case, the

objective of the complex Kernel LMS is to design a filterCW gradient of the instantaneous square error is given by
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Algorlthm 1 Normalized Complex Kernel LMS with com- minimize & [ﬁn(’l.U)], at each instance. Once more, we app|y

plexification of real kernels (NCKLMS1) the complex LMS to the transformed data, using the rules of
INPUT: (z(1),d(1)), ..., (2(N),d(N)) Wirtinger’s calculus to compute the gradient 6f,(w), i.e.,
OUTPUT: The expansion V:Ln(w) = —e(n)* - ®(z(n)). Therefore, the CKLMS2
w=3"_ ak)k(, z(k) +i-Sn_, b(k)k(-, z(k)). update rule becomes(n) = w(n — 1) + pe(n)* - ®(z(n)),

as expected, whera(n) denotes the estimate at iteration
Initialization: Seta = {}, b = {}, Z = {} (e, Assuming thatw(0) = 0, the repeated application of the

w = 0). Select the step parameter and the kernel weight-update equation gives:
K. n
forn=1:N do w(n) = e(k) ®(z(k)). (30)
Compute the filter output: k=1
- Thus, the filter output at iteration becomes:
-k(z(n), z(k A =~
,; (), 2(k)) d(n) =(®(=(m)). wln — )
_ n—1 _ _
Z ) - k(z(n), z(k)). =p Z e(k)(®(z(n)), ®(z(k)))u
P k=1
Compute the errore(n) = d(n) — d(n). =13 e(k)r(z(k), z(n)).
= 2r(2(n), 2(n)).
— C\
a(”) = n(Re(n)] + C\\r[e(n)])/'y We should note, that the CKLMS2 algorithm may be
b(n) = u(Rle(n)] — Sle(n)])/7- _ equivalently derived, if one blindly applies the kernelkri
Add the new center(n) to the list of centers, i.e., add o the complex LMS. However, such an approach conceals
z(n) to the listZ, adda(n) to the lista, addb(n) t0 the 4o mathematical framework that lies underneath, which is
list b. needed if one seeks a deeper understanding of the problem.
end for The repeated application of the update equation of the CLMS
yields:
VwLn(w) = —e(n)®(z(n)). Following the same procedure, S N
we conclude that the update rule becomeg:) = w(n—1)+ w(n) = kz_:l e(k)"=(k),
pe(n) - ®(z(n)), and assuming thab(0) = 0, one concludes . =
that: while the filter output at iteratiom is given by:

3

n) =Y e(k)®(=(k))
k=1

However, although this relation is different to equatioB)(2 where the notation denotes the Hermitian matrix. It is

=
st
iMi
Q
—
-~
S~—

exactly the same as before: equations yields the same results.
d(n) =(w(n — 1), ®(z(n)))g Further_more,_ note that, using the complex gaussian kernel,
the algorithm is automatically normalized. The CKLMS2
:“Z e(k)(®(2(k)), ®(2(n)))m, algorithm is summarized in Algorithm 2.

Another formulation of the CKLMS2 algorithm may be

which is in line W|th what we know for the standard complegenved(g))v;l; ﬁ.ﬂ'e?it:etzg dg':grrl?lztpbgtcﬁ?s = (w(n -

LMS.
w(n) =w(n —1) 4 pe(n) - @(z(n)).
B. Complex KLMS with pure complex kernels - CKLMS2 Assuming thatw(0) = 0, the repeated application of the
As, in section VII-A, consider the sequence of examplegeight-update equation gives:
(2(1),d(1)), (2(2),d(2)), ..., (2(N),d(N)), whered(n) € n
C, z(n) e V. C C¥, z(n) = x(n) +iy(n), z(n),y(n) € R”, w(n) = Ze(k)(i(z(k)),
forn=1,..., N. Consider also a complex reproducing kernel P
k defined onX x X, X C C" and the respective complex
RKHS H. Each elementf € H may be cast in the form
f = uy + vy, ug,vy € H, where?H is a real Hilbert

and the filter output at iteration becomes:

space. We map the points(n) to the complex RKHSH d(n) = p > e(k)r(z(n), z(k)). (31)
using the feature ma@ : X — H : ®(z) = (-, x(;, 2))u, =
for n = 1,...,N. Estimating the filter output byi(n) = Note that the two formulations of the CKLMS2 are not

(®(z(n)), w)n, the objective of the complex Kernel LMS is toidentical, as it was the case for CKLMS. However, all the
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simulated experiments that we performed, using the complex
gaussian kernel, exhibited similar performance (in terrhs o
signal to noise ratio - SNR).

noise

n " s(n) Linear t(n) Non linear | ¢(n) r(n) | Adaptive
Algorithm 2 Normalized Complex Kernel LMS2 ] filter filter filter

(NCKLMS?2)

INPUT: (z(1),d(1)), ..., (2(N),d(N)) o
OUTPUT: The expansion

w =33, a(k)s(-, z(k)). w0

e(n)

Initialization: Seta = {}, Z = {} (i.e., w = 0). Select
the step parameter and the parametes of the complex
gaussian kernel.
forn=1:N do
Compute the filter output:

Fig. 1. The equalization task.

n—1
d(”) = a(k) - k(z(k), z(n)). task (see figure 1) and b) a nonlinear channel identification
k=1 task.
Compute the errore(n) = d(n) — d(n).
v = K(z(n), z(n)). A. Channel Equalization
a(n) = pe(n)/7. For the first case, two nonlinear channels have been consid-

Add the new center(n) to the list of centers, i.e., add
z(n) to the list Z, adda(n) to the lista.
end for

ered. The first channel (labeled asft nonlinear channein
the figures) consists of a linear filter:

t(n) = (—-0.94 0.8i) - s(n) + (0.6 — 0.74) - s(n — 1)

C. Sparsification and a memoryless nonlinearity

The main drawback of any kernel based adaptive filtering(n) = t(n) + (0.1 4 0.15) - t*(n) + (0.06 + 0.05i) - t*(n).
algorithm is that & growing number of training pointsy), The second one (labeled atrong nonlinear channein

is involved, as it is apparer!t from_(28), (30) in the CaSfhe figures) is comprised by the same linear filter and the
of complex KLMS. Hence, increasing memory and Con}ionlinearity'

putational resources are needed, as time evolves. Several
strategies have been proposed to cope with this problem ap@h) = (n) + (0.2 + 0.25i) - t*(n) + (0.12 + 0.093) - t*(n).
to come up with sparse solutions. In this paper, we employ t
well known novelty criterion[14], [37]. In novelty criterion
online sparsification, a dictionary of points, C, is formettia
updated appropriately. Whenever a new data (®Ritz,,), d,,)
is considered, a decision is immediately made of whether
add the new cente®(z(n)), to the dictionary of centers.
The decision is reached following two simple rules. First, s(n) = 0.70 (ﬂX(n)+z’pY(n)), (32)
the distance of the new cente®(z(n)), from the current
dictionary is evaluateddis = ming, cc{||®(z(n)) — ck|lu}. WhereX(n) andY(n) are gaussian random variables. This
If this distance is smaller than a given threshéld(i.e., the input is circular forp = +/2/2 and highly non-circular if
new center is close to the existing dictionary), then thetarenp approaches 0 or 1 [18]. Note that the issue of circularity
is not added t&. Otherwise, we compute the prediction errois very important in complex adaptive filtering. Circulgrit
en = dn, — dy,. If |e,| is smaller than a predefined thresholds intimately related to rotation in the geometric sense. A
2, then the new center is discarded. Only|df,| > J the complex random variable is called circular, if for any angle
new center®(z(n)) is added to the dictionary. ¢ both Z and Ze* (i.e., the rotation oZ by angle¢) follow

An alternative method has been considered in [4], whidhe same probability distribution [17]. Loosely speakingn
results in an exponential forgetting mechanism of past.datircularity adds some form of nonlinearity to the signalcdin
In [6], [38], the sliding window rationale has been consatkr be proved that widely linear estimation (i.e., linear estiion
In all the implementations of CKLMS that are presented is thin both z and z*) outperforms standard linear estimation for

t?%ese are standard models that have been extensively used in
the literature for such tasks [1]. At the receiver end of the
channels, the signal is corrupted by white Gaussian noide an
Eﬁfn observed agn). The level of the noise was set to 16dB.

e input signal that was fed to the channels had the form

paper the novelty criterion was adopted. general (i.e., circular or non-circular) complex signéfar
circular signals, the two models lead to identical resulg][
VIIl. EXPERIMENTS [39].

The performances of CKLMS1 and CKLMS2 have been The aim of a channel equalization task is to construct an
tested in the context of: a) a nonlinear channel equalizatioverse filter, which acts on the outputn) and reproduces
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the original input signal as close as possible. To this ere, w i _ MNonfnearchamel equalizaton

apply the NCKLMS1 and the NCKLMS2 algorithms to the -3 o el

set of samples -a —— NCKLMS2 |{
m—— NCKLMS1

10%10g10(MSE)
1
4

((r(n+D),r(n+ D —1),...,r(n+ D —L+1)),s(n)),

1
©

—10+

-l
where L > 0 is the filter length andD the equalization time 12 P oo oo o w00
delay, which is present to, almost, any equalization set up. n

(a)

Non linear channel equalization
T T

Experiments were conducted on a set of 5000 samples
of the input signal (32) considering both the circular and -2 —
the non-circular cases. The results are compared with the wi_ctms| |
NCLMS and the WL-NCLMS (i.e., widely linear NCLMS) e
algorithms and with two adaptive nonlinear algorithms: a) -6 ]
the CNGD algorithm, which is thoroughly described in [17]
and a Multi Layer Perceptron (MLP) with 50 nodes in the
hidden layer (proposed in [18]). In both cases, the complex
tanh activation function was employed. Note that the WL-
NCLMS has been recently used as an alternative to the 12
CLMS, in an attempt to cope with non circularity as well » ‘ ‘ ‘ ‘
as with soft nonlinearities. In all algorithms, the step afed 0 1000 2000 3000 4000 5000
parametery, is tuned for the best possible results (in terms (b)
of the steady-state error rate). For the case of the MLP, the

design was also tuned so that the best possible results were _
Fig. 2. Learning curves for KCLMSLy( = 1/2), KCLMS2, (u = 1/4),

obtained. Time dela})D was also set for optimality. Eigure CLMS (u — 1/16) and WL-CLMS ( — 1/16) (fiter length L — 5, delay
2, shows the learning curves of the NCKLMS1 using the = 2) for the soft nonlinear channel equalization problem, fa) the
real Gaussian kernet(:c,y) — exp(—||m _ yH2/G2) (With circular input case, (b) the non-circular input cape=(0.1).
o = 5) and the NCKLMS2 using the complex Gaussian

d

— S (zimwi)? ; _
kernel i, ca(2,w) = exp (—==5— ) (With 0 = 5), g cpannel Identification
together with those obtained from the NCLMS and the WL-

NCLMS algorithms. Figure 3 shows the learning curves of The non_Iinear _channel that was considered (see [18]) con-
the NCKLMS1 and NCKLMS2 versus the CNGD and thé'Sts Of a linear filter:
L-50-1 MLP. Finally, figure 4 compares the learning curves
of NCKLMS1 versus a split channel approach, that treats the t(n) = Z h(k) - s(n—k+1),
complex signal as two real ones using the KLMS. k=1

10*10g10(MSE)
I
©

|
AN
[S)

5

oo e here
The novelty criterion was used for the sparsification o\?/
the NCKLMS1 with 6, = 0.15 and 6, = 0.2 and of the j(k) = 0.432 (1—|—Cos (M) _ (HCOSM) Z)
NCKLMS2 with §; = 0.1 and d2 = 0.2. In both examples, 5 10
NCKLMS1 considerably outperforms the linear, widely linea for k = 1,...,5, and the nonlinear component:
(i.e., NCLMS and WL-NCLMS) and nonlinear (CNGD and 2(n) = t(n) + (0.15 — 0.1)£3(n).
MLP) algorithms (see figures 2, 3). The NCKLMS2 also

exhibits improved performance compared to the linear, WideSimiIar to the equalization case, the input signal that veastb the
hannel had the form (32). Experiments were conducted ot afse

Ilqear and nonlmear_algonthms. Howeyer, in both ca;e%oooo samples of the input signal (32), corrupted by whitesgian
this enhanced behavior comes at a price in computationg|se, considering both the circular and the non-circutesec The
complexity, since the NCKLMS requires the evaluation of thievel of the noise was set to 18dB. Figure 5, shows the legrnin

kernel function. In terms of the required computer time, theirves of the NCKLMS1 and the NCKLMS2 together with those
complexity of CKLMS1 and CKLMS?2 is of the same order agPtained from the CNGD and thé-50-1 MLP. In this example,

. : Iso, NCKLMS1 considerably outperforms both the CNGD arel th
the complexity of the MLP. Comparing the NCKLMS1 and th‘%-so-l MLP. The NCKLMS2 although performs better than MLP,

NCKLMS2, the experiments show that the results differ, witkNGD, its performance is inferior to NCKLMSL1.
the former one leading to an improved performance. Finally,
figure 4 illustrates that the split channel approach perform IX. CONCLUSIONS

poorly compared to the NCKLMS1, es_pecially in the circular A new framework for kernel adaptive filtering for complex rsi
case, as it cannot capture the correlation between the ®l0 fiocessing has been developed. The proposed methodolesjyleb
channels. providing a skeleton for working with pure complex kernafipws
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Non linear channel equalization Kernel NCLMS versus Dual Channel Real KNLMS
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Fig. 3. Learning curves for KCLMSL( = 1/2), KCLMS2, (u = 1/4),
CNGD and L-50-1 MLP (filter lengthL = 5, delay D = 2) for the hard
nonlinear channel equalization problem, for (a) the cacuhput case, (b) the
non-circular input casep(= 0.1).

Fig. 4. Learning curves for KCLMS1(= 1/2) and Dual Channel Real
KLMS (x = 1/2) for the soft nonlinear channel equalization problem, for
(a) the circular input case, (b) the non-circular input cgse= 0.1).

Consider the first order Taylor expansions®f and T; at ¢ =
c1 +ice = (c1,c¢2):
for the construction of complex RKHSs from real ones, thioug

a technique called complexification of RKHSs. Such an amfroa Tr(e+h) =T:(c) + (h1, VuTr(c))y
provides the advantage of working _with popular and w_eII ustbed + (h2, Vo T (€)) g, + o(|[h]32),
real kernels in the complex domain. It has to be pointed dat t Ti(c + k) = Ti(c) + (h1, VuTi(€)),

our method is a general one and can be used on any type of real

and/or complex kernels that have or can be developed. Toetsiedh + (h2, VoTi(e))y + o([[hl32).

our knowledge, this is the first time that a methodology famptex
adaptive processing in RKHSs is proposed. Wirtinger’s dak has
been extended to cope with the problem of differentiationthia
involved (infinite) dimensional Hilbert spaces. The dediveles and _ . :
properties of the extended Wirtinger's calculus on comgRi<HS T(e+h)=T(e)+ <h1’v“,TT(C) WVaTi(€)y
turn out to be similar in structure to the special case of dinit + (h2, Vo Tr(e) — iV Ti(e))y + o([| h][w)-
dimensional complex spaces. The proposed framework wdiaadpp_l_ implify th tati defi

on the complex LMS and two realizations for the complex Kerne © SIMP ify the notation we may define
LMS algorithm were developed. Experiments, which weregentd _ . :
on both the equalization and the identification problem obalinear VuT(e) = VuTr(e) + z.VuTz(c)
channel, for both circular and non-circular input data, vet a V. T(e) = VT (e) +iVuTi(e)
significant decrease in the steady state mean square esropaced
with other known linear, widely linear and nonlinear tecjuss,

while retaining a fast convergence. T(c+ h) =T(c) + (h1, (VuT(c)")y
+ (ha, (VoT'(€)) )y + o[[ll32).

Multiplying the second relation withh and adding it to the first one,
we take:

and obtain:

APPENDIXA
PROOF OFPROPOSITIONVI.2 Next, we substituté:; and h» using the relationsy; = 2" and
We start with a lemma that will be used to prove the claim.  hy, = hgf* and use the sesquilinear property of the inner product

Lemma A.1. Consider the Hilbert spacil and a, b € H. The limit of H:

(h*.a)s — (hb)s _ Gy Tleth =T+ 3 (B (VuT(e) ~ i9.T(e)" ),

lim
IR ]l—0 [hla 1 pe oo T T A
if and only ifa = b = 0. + 5 (h7 (VuT(€) + VT ()" )y + ol [lhllsr)-
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Non linear channel identification
T T
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0 2000 4000 6000 8000 10000
n
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. . . .
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Fig. 5. Learning curves for KCLMSLi( = 1/2), KCLMS2, (u = 1/4),
CNGD and L-50-1 MLP (filter lengthL = 5) for the nonlinear channel
identification problem, for (a) the circular input case, ¢(be non-circular
input case g = 0.1).

It has already been shown that equation (21) is essentighéor
development of Wirtinger’s calculus. To complete the probfthe
proposition we compute the fraction that appears in the idiefinof
the complex Fréchet derivative:

T(c+ h)—T(c) — (h,w)u

TRl
(5 . (v.7(0) - 7))

3 (0 (VLT(0) 41V, T(@) )~ (o w)a) /Il
ol

[l

Recall that, since(||k||u)/||k|lu — 0 as||h|x — 0, for this limit
to exist and vanish, it is necessary tRa{T'(c) +:V.,T(c) = 0 and

w" =V, T(c)—iV,T(c) (see lemma A.1). However, according to

our definition,

V.T(c) +iV,T(c) = (VuTr(c) — Vo Ti(c))
+1i (VuTi(c) + VT (c)) .

Thus,T is differentiable in the Fréchet complex sense, iff the @au
Riemann conditions hold. Moreover, in this case:

VT(c) =V.Tr(c) +iV.Ti(c)
=V, Ti(c) — iV, Tr(c).
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APPENDIXB
PROPERTIES ORWIRTINGER'S DERIVATIVES ON COMPLEX
HILBERT SPACES

Below we give a complete list of the main properties of the
extended Wirtinger’s Calculus in complex Hilbert spacesigbrous
and detailed presentation of the theory, as well as the grobfll
these properties can be found in [35].

1) If T(f) is f-holomorphic ate (i.e., it has a Taylor series
expansion with respect tgf around ¢), then its Fréchet
W-derivative atc degenerates to the standard Fréchet com-
plex derivative and its Fréechet CW-derivative vanishes,, i
V#T(c) =0.

2) If T(f) is f*-holomorphic ate (i.e., it has a Taylor series
expansion with respect tg* aroundc), thenV¢T'(c) = 0.

3) (VsT(c))" = VT (e).

4) (Vy-T(c)" = V4T (c).

5) If T is real valued, therfV;T'(c))" = VT'(c).

6) The first order Taylor expansion arougfde H is given by

T(f +h) =T(f) + (h, (V5T (£)) )+ (7, (V=T () )a.

7) FT(f) = (f,w)n, thenVT(c) = w*, VT (c) = 0, for
everyc.
8) If T(f) = (w, fu, thenVT(c) =0, VgT(c) = w, for
everyc.
9) If T(f) = (f*,w)u, thenV;T'(c) =0, V§T(c) = w",
for everyc.
10) FT(f) = (w, f*)u, thenV;T(c) = w, V¢+T(c) = 0, for
everyc.
11) Linearity: If T,S : H — C are Fréchet differentiable in the
real sense at € H anda, 8 € C, then

Vi(aT + BS)(c)
V- (aT + S)(c)

aVT(c)+ pVysS(c)
aVz«T(c) + V= S(c).

12) Product Rule: IfT", S : H — C are Fréchet differentiable in
the real sense at € H, then:

V(T - S)(e) = VsT(c)S(c) + T(c)VsS(e),
V(T -8S)(e) =VgT(c)S(c) + T(c)Vg«S(c).

13) Division Rule: IfT, S : H — C are Fréchet differentiable in
the real sense at € H and S(c) # 0, then:

v, (I) () = V¢T(c)S(c) —T(c)VsS(c)

S S2(e) ’
T _ V#T(c)S(c) —T(c)Vy~S(c)
v ()@= o

14) Chain Rule: IfT" : H — C is Fréchet differentiable at € Hi,
S : C — C is differentiable in the real sense @&(c) € C
then:

_ s

0z
o8

+ 5= (T(E)V(T7)(e),
_95

0z
oS

oz*

VS oT(c) (T'(e))VT(c)

VySoT(c) (T(c))VT(c)

+ 75 (T(e))Vy=(T7)(e).

The proofs of properties 1 and 2 are rather obvious. Here,ivee g
the proofs of properties 3, 7 and 11, which have been usedricede
the main results of this paper.

Proof of property 3: The existence oWV ;T'(c) and V¢« T'(c)
is guaranteed by the Fréchet differentiability Bfat ¢ (in the real
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sense). To take the result, observe that:

(V¢T(e)" :% (VuTr(c) + Vo Ti(c))

_ % (VuT;(c) — Vo Tr(c))

:% (VuTr(e) = Vo(~T3)(e))
t3
= (Vg

(Vu(~T))(e) + VuT;(c))
" (c)).

[ |
Property 4 can be proved similarly.

[11]

[12]

[13]

[14]
[15]

[16]

Proof of property 7: Considering the definition of Fréchet[17]

complex derivative (see equation 17), we observe that:

T(c+h)-T(c)=(h,g)m =

<C + h, w>H - (C, w>H - <h7g>H

= (h,w)n — (h, g)u.
Thus, T is Fréchet complex differentiable at with VTI'(¢) = w*
and from property 1V« (c) =0 andV¢(c) = w. [ |

Proof of property 11: Let T'(f) = T-(uys,vs) + iTi(ug, vg),

S(f) = S(ug + ivy) =
functions anda, 8 € C, such thate = a1 + ia2, 8 = B1 + iB2.
ThenR(f) = oT(f) + 8S(f) and the Fréchet W-derivative d®
will be given by:

V;R(c) :% (VuRe(c) + VoRi(c)) + % (VuRi(c) — VoR.(c)).

Applying the linearity property of the ordinary Fréchetrigative,
after some algebra we take the result. For the second pasigwnof
properties 3, 4 and the linearity property of the Fréchedé&kivative,
the Fréchet CW-derivative aR at ¢ will be given by:

Vi« R(c) =V (aT + 5S)(c)
=(Vs(aT + 8S)*(c
=(Vs(a™T" +p*S”

=(@"VsT"(c) +
=a(VsT ()" +
T(c)+pBVs-S(c

which completes the proof. [ ]

)"
)(e)”
B"V$S ()
B (VS (c))
)

:an*
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