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A b s t r a c t . We study the space of all extensions of a real hyperplane arrangement 
by a new pseudo-hyperplane, and, more generally, of an oriented matroid by a new 
element. The question whether this space has the homotopy type of a sphere is a 
special case of the "Generalized Baues Problem" of Billera, Kapranov & Sturmfels, 
via the Bohne-Dress Theorem on zonotopal tilings. 

We prove that the extension space is spherical for the class of strongly euclidean ori-
ented matroids. This class includes the alternating matroids and all oriented matroids 
of rank at most 3 or of corank at most 2. In general it is not even known whether the 
extension space is connected. We show that the subspace of realizable extensions is 
always connected but not necessarily spherical. 

1. Introduction 
Let X be a central arrangement of oriented hyperplanes in IR r. Consider the set £(X) 
of all (equivalence classes of) extensions of X by a new oriented hyperplane H. This set is 
partially ordered, with H < H' whenever H is obtained by moving H' into more special 
position. The poset £(X) is isomorphic to the face poset of a convex r-polytope and hence 
it is homeomorphic to the (r — l)-sphere. 

This homeomorphism is understood in the following sense. With any poset P we 
associate the geometric realization |A(P) | of the simplicial complex A ( P ) of chains in P . 
By the homotopy type of P we mean the homotopy type of the topological space |A(P) | . 
Basic tools for determining homotopy types of posets are Quillen's fiber theorem and its 
relatives. These will be reviewed in Lemmas 3.1 to 3.3. 

From a combinatorial point of view, it is natural to consider the larger poset of all 
extensions of X by a new pseudo-hyperplane. This poset is an invariant of the oriented 
matroid M of X. We call this poset the extension poset €(M) of M. 

More generally, for any (not necessarily realizable) oriented matroid M. of rank r, 

the extension poset €(M) is the set of all one-element extensions of jVf, excluding loops 
and coloops, with their natural partial order [2]. The extension space of M is the space 
|A(£(jVf))|, which we usually identify with S(M). For an introduction to the theory of 
oriented matroids and complete references to the original literature we refer to [6]. 
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The theme of the present article is the following question: Does the extension space 

S(M) have the homotopy type of the (r — l)-dimensional sphere; in symbols £(M) ~ 5 r _ 1
 ? 

An affirmative answer will be given for certain special cases; however, in general it remains 
unknown whether £{M) is even connected. 

We start out in Section 2 with a discussion of the case where M. is realizable. Here 
the question u

£(Ai) ~ gr-iyn j s s e e n ^Q ^e ^ jn s tance of the Generalized Baues Problem 

[3], which asks whether the poset u(P,Q) of cellular strings of a projection of polytopes 
P —*• Q is homotopy equivalent to a sphere of dimension dim(P) — dim(Q) — 1. Again, 
it is generally unknown whether w(P, Q) is a connected space. Using the Bohne-Dress 
theorem on zonotopal tilings [7], we will see that £{M.) is isomorphic to u>(P, Q) when P 

is a regular n-cube projecting onto an (n — r)-zonotope Q, and M. is the rank r oriented 
matroid determined by the kernel of this projection. 

For realizable M. we may also consider the subposet £(M.)real of realizable extensions, 
which is proved to be connected. Using an non-isotopic oriented matroid due to Suvorov 
[22], we will show that £(M.)reai is m general not a nice space. 

Theorem 1.1. There exists a realizable rank 3 oriented matroid M. such that S(M)reai 

does not have the homotopy type of a sphere. 

In Section 3 we relate the topology of extension spaces to linear programming in 
oriented matroids. A special role will be played by oriented matroid programs which 
are euclidean in the sense of Edmonds & Mandel [10]. In fact, euclidean programs are 
characterized by the contractibility of a suitable extension poset (Corollary 3.12). 

In Section 4 we introduce the class of strongly euclidean oriented matroids. The 
following is the main result of this paper. 

Theorem 1.2. Let M. be a strongly euclidean rank r oriented matroid. Then the 

extension poset £(M) is homotopy equivalent to the (r — l)-sphere 5 r _ 1 . 

Theorem 1.2 applies to all oriented matroids of rank at most 3 or corank at most 2. We 
conjecture that there exist oriented matroids of rank 4 which are not strongly euclidean. In 
order to establish strong euclideanness results, we analyze the structure of minimally non-
euclidean programs in terms of their inseparability graphs. As an application we prove that 
the alternating matroid Cn ' r is strongly euclidean, and hence its extension space £(C

n,r
) is 

spherical. By definition, C"'r is the oriented matroid of the cyclic (r — l)-polytope with n 
vertices. 

The strong euclideanness of Cra,r will be used in a subsequent paper to study the 
Higher Bruhat Orders B(n,n — r) of Manin & Schechtman [18]. These can be viewed as 
posets of uniform extensions of Cn , r . 

We wish to thank Eric Babson, Anders Björner, Nicolai Mnev and Jürgen Richter-
Gebert for helpful discussions. This research is supported by the DFG Schwerpunkt at 
Augsburg and by the ARO through MSI Cornell (DAAG29-85-C-0018). The first author 
acknowledges partial support by the NSF (DMS-9002056). 
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2. Realizable extensions and the Generalized Baues Problem 

Throughout this section M. denotes a realizable oriented matroid of rank r > 2 on [n] = 
{1,2, . . . , n } . Let £(M)real be the subposet of £(M) consisting of all realizable rank r 

oriented matroids M' on [n + 1] such that M! \{n + 1} = M and n + 1 is not a loop of 
M'. For two elements M' and M" of £(M)reai we have M! < M" if and only if M' is a 
weak image of M", i.e., every signed basis of M' is a basis with the same sign in M" (see 
[6, Sect. 7.7]). 

Proposit ion 2.1. The space £{M.)reai of realizable extensions of M is connected. 

Proof. Let X be any realization of Ad, considered as a configuration of n vectors in 
IR r . Let X a d be the configuration of linear hyperplanes spanned by vectors in X, and 
let M

ad
(X.) denote the rank r oriented matroid of this hyperplane arrangement. Thus 

M
ad

(X.) is the adjoint of M determined by the specific realization X (see [2], [6, Sect. 5.3]). 
The regions of the arrangement X.

ad are in order preserving bijection with the one-element 
extension of «M which can be realized in X. In other words, the poset £(X) is isomorphic. 
to the poset of nonzero covectors £( .M a d(X)) . 

We call two realizations X and Y of M adjoint equivalent if M
ad

(X.) = M
ad

(Y). 

There are only finitely many adjoint equivalence classes. We choose a system of represen-
tatives X i , . . . , X m , and we abbreviate £; := £(X*) == £(M

ad
(X.i)). Clearly, each d is 

homeomorphic to the (r — l)-sphere 5 r - 1 . 

Let <f>i : Ci «—• £(M.)reai denote the inclusion of the spherical poset £ ; . By con-
struction, each element of £{M)rtal lies in ^,(£j) for some i € [m]. Now consider the 
subposet n^1<^i(£i) of those extensions which can be realized in every realization of M.. 

This poset is non-empty since it contains all parallel extensions of M. More generally, all 
lexicographic extensions of M lie in nj l 1^j(£j) by [6, Prop. 8.2.2]. 

We have shown that the poset £(M)reai is the union of the connected posets <f>i(Ci) 

whose intersection is non-empty. This implies that the space £(M)reai is connected. U 

We will now show that £(M)reai is in general not homotopy equivalent to a sphere. 
Theorem 1.1 is implied by the following more specific result. 

Proposition 2.2. There exists a ranic 3 oriented matroid M. on 14 elements such tiiat 
£(M)real is not homotopy equivalent to a sphere. 

Proof. We choose M to be Suvorov's rank 3 oriented matroid Suv(14) on 14 elements 
[22], in the version presented in [6, Sect. 8.6]. This oriented matroid has the property that 
its projective realization space consists of precisely two points, X j and X 2 . 

In the above notation we have m = 2, that is, M. has precisely two realizable adjoints 
d = M

ad
(Xi) and £ 2 = 7Wad(X2). Both XJd and X%

d are central arrangements of 45 
planes in IR3. The corresponding 45 lines in the projective plane are constructed as the 
connecting lines of the 14 points in [6, Fig. 8.6.1]. By identifying corresponding regions, 
we can determine how the space £{M)rtai is glued from two 2-spheres C\ and £2-
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We now zoom in on a particular local situation in the two projective line arrangements 
C\ and £%. In both adjoints we consider the triangle spanned by the points 9,10 and 11. 
In Figure 1 we depict all the lines of C\ (resp. £2) which pass through this triangle. This 
diagram has been derived from the two "big pictures" in [6, Fig. 8.6.1]. 

F igure 1. A triangle in the two realizable adjoints of the Suvorov oriented matroid. 

The lines which cross the boundary of the triangle {9,10,11} are the same in both 
C\ and £2, and each triangle edge is crossed in the same order. This shows that the cells 
on the boundaries of the two triangles are labeled identically in both adjoints. Hence the 
boundaries of the two triangles are identified in the space £(M.)reai-

This identification of the boundaries extends throughout the shaded part of the inte-
riors in Figure 1. On the other hand, the unshaded interior regions in the two triangles are 
disjoint in £(M.)reai- Note that A(£j) is the barycentric subdivision of the cell complex 
of X"d , and the shaded parts are subcomplexes of these barycentric subdivisions. 

Our discussion shows that the two partly-glued triangles in Figure 1 constitute a non-
trivial 2-cycle in the space £(M.)reat. By considering the negatives of all involved covectors 
of C\ and £2, we find yet another non-trivial 2-cycle. This proves that the rank of the 
second homology group of £(M)reai is at least 3, which completes the proof of Proposition 
2.2 and of Theorem 1.1. D 

Our results in Section 4 imply that the space £(M.) of all (not necessarily realizable) 
extensions of the Suvorov oriented matroid M is homotopy equivalent to S

2
. In particular, 

the 2-cycle coming from the triangle {9,10,11} is a 2-boundary in the extension space 
€{M). 
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An important motivation for studying the extension space of a realizable oriented 
matroid M comes from recent developments in the theory of convex polytopes. The 
remainder of Section 2 is devoted to this connection. It is independent of the rest of this 
paper, and it assumes that the reader is familiar with the theory of fiber polytopes [4] and 
the "Generalized Baues Problem" which was posed in [3, Sect. 3]. 

There is an isomorphism from the extension poset £{M.) to a poset of cellular strings 

on the n-cube. Let C
n = conv {—l,+l} n denote the standard n-cube. The face poset of 

C
n will be identified with the poset of sign vectors {—,0, + } " , which is partially ordered 

componentwise via "— < 0" and "+ < 0". Fix an r-dimensional linear subspace £ in IRn. 
Its oriented matroid M. = ([n], V) is given by the set of vectors V = {sign(v) : v G £ } 
(see [6, Sections 1.2, 3.7]). 

For a G IRn we consider the polytope Pa = (a + £) l~l Cn
. Let Ta denote the poset 

of proper faces of Pa. We get a poset embedding of Ta into {—, 0, + } n by mapping each 
face of Pa to the smallest face of C

n containing it. We say that a G IRn is admissible 

if Pa T^ 0, and we call two admissible vectors a, b G lRn
 equivalent if jFa = ?}>. Thus 

for each equivalence class a we get a subposet Ta of {—,0, + } n . Note that Pa and Ta 

depend only on the image of a in ]Rn /£. The set of admissible vectors in IRn /£ is a 
zonotope Z. The oriented matroid of Z [6, Sect. 2.2] is the dual M*. The equivalence 
classes form a polyhedral cell decomposition T of Z, called the chamber complex. 

Let a, T G T be chambers with a C r . Then there is a surjective order-preserving 
map par : Tr —> Ta, which can be described as follows. Given Fr G Tr, then p£rr(i

?1
r) is 

the join in {—, 0, + } n of all sign vectors G G Ta such that G < FT. 

Let u> = u(C
n
,Z) denote the inverse limit of the inverse system {.?v}o-er in the 

category of posets. By definition, the elements of u> are the tuples (JP0.)(T6r such that 
Par(Fr) = F<r whenever a C r . These tuples are called cellular strings in [3]. The 
following theorem is a reformulation of a result of Bohne Sz Dress on zonotopal tilings [7]; 
a uniform version has also been given by Kapranov & Voevodsky [15, Sect. 4]. 

T h e o r e m 2.3 . The poset tx>(C
n
,Z) is isomorphic to the extension poset £(M). 

The theorem of Bohne & Dress [7] states that the zonotopal tilings of Z are in order-
preserving bijection with the one-element extensions of M. (see also [6, Thm. 2.2.13]). It 
can be seen that this statement is equivalent to Theorem 2.3 using the constructions in [4, 
Sect. 5] and [3, Sect. 3]. The proof of the Bohne-Dress theorem is difficult. Here we only 
describe the maps for the promised isomorphism. 

We first construct a map from u to £(M). For any cellular string F = (jP0.)(Tgr "i 
u! we define the following subset of {—,0, +}

n+1
: 

VF := {(X,0) : X € V } U {±(*V,+) : < r e r } . 

Lemma 2.4. The set VF C { — ,0, + } n + 1
 is the set of vectors of a rank r oriented matroid 

M-p with A ^ F \ { " + 1 } = M. The map OJ -+ S(M), F H + X F , is order-preserving and 

injective. 

For the inverse map one has the following lemma. 
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L e m m a 2.5. Let M.' G £(M). For each equivalence class a in IRn, t iere exists a unique 
vector X of A4' such that a intersects the face of the cube C

n
 defined by X. 

Given a and X as above, then X defines a unique face Fa of the polytope Ta = 
C

n D a. It now remains to be verified that the tuple of faces F = (JP<T)(T6r satisfies 
the gluing relation paT(FT) = Fff whenever a C r . Thus the assignment M! i-> F is a 
well-defined map S(Ai) —* u. It is the inverse to the map in Lemma 2.4. 

3. Extension spaces of oriented matroid programs 

In this section we introduce extension spaces of oriented matroid programs and we discuss 
their homotopy types. An oriented matroid program is euclidean if and only if its exten-
sion space is contractible (Corollary 3.12). For an introduction to linear programming in 
oriented matroids we refer to [6, Ch. 10]. 

We begin by collecting criteria for establishing homotopy equivalence. For a survey 
and general discussion of such criteria see [5]. Every poset P is trivially homeomorphic to 
its order dual P

op
. For every order preserving map / : P —* Q, there is an induced order 

preserving map f
op

 : P
op —• Q°

p
. This leads to dual versions of the results below which 

will not be stated separately. For the set of all elements above x we write P>x := {z G P : 
z > x], and similarly we use P<x, P>x, etc. 

Lemma 3.1 . Let f : P —> Q be an order preserving map of posets. If f~
1
(Q>x) is 

contractible for all x £ Q, then f induces a homotopy equivalence between P and Q. 

Lemma 3.1 is the "Quillen Fiber Theorem" [19, Thm. A], [5, (10.5)]. The following 
variant of Lemma 3.1 is due to E.K. Babson [1]. The proof below is due to A. Björner. 
We thank both of them for the possibility to include this material here. 

Lemma 3.2. [1] Let f : P —• Q be an order preserving map of posets. If 

(i) / - 1 ( x ) is contractible for all x € Q, and 

(ii) P>y PI / - 1 ( x ) is contractible for all x G Q and y G P with f(y) < x, 

then f induces a homotopy equivalence between P and Q. 

Proof. By Lemma 3.1 dualized, it suffices to show that F(x) := f~
1
(Q<x) is contractible 

for all x G Q. We now apply Lemma 3.1 to the inclusion g : f~
1
(x)

 (—> F(x). By (ii), we 
know that g~

1
(F(x)->y) = f~

l
(x) C\ P>y is contractible for all y G F(x). Hence g is a 

homotopy equivalence. Since f~
x
(x) is contractible by (i), also F(x) is contractible. U 

Babson's Lemma 3.2 will be our principal tool for relating the extension spaces S(M.) 

and £(A4/g) in Section 4. In this section we need the following version of the Quillen 
Fiber Theorem. 

Lemma 3.3. Let f : P —* P be an order preserving map which satisfies f(f(x)) = 

f(x) < x for all x G P. Then the surjection f : P —• f(P) is a homotopy equivalence. 
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Proof. We derive this from Lemma 3.1. Let x € f(P). Then the fiber / - 1 ( / ( P ) > x ) has 
a unique minimal element (namely, re). Thus it is a cone and hence contractible. D 

We next define the posets to be investigated in this section. Let M. denote a loop-
less oriented matroid of rank r on a ground set E. By the Topological Representation 
Theorem of Folkman & Lawrence, we can represent M by an arrangement AM of signed 
pseudospheres {Se}eeE [H]> [65 Ch. 4]. 

We distinguish a special element g 6 E. The pair (A4, g) is an affine oriented matroid. 

In the pseudosphere arrangement we interpret (M,g) as the "affine space" 5+ , which 
consists of all covectors Y with Yg = +. Covectors Y with Yg = 0 are said to be at infinity. 

Each element e € E which is not parallel to g is represented by a pseudohyperplane Se D Sf 

in the affine space (Ai,g). An oriented matroid program is a triple (M,g,f), where M is 
an oriented matroid and f,g are distinct elements of M such that / is not a coloop and g 

is not a loop [9], [6, Sect. 10.1]. 

Given (Ai,g) as above, then every extension M. = M. U / yields an oriented matroid 
program (M,g,f) on E U {/}. This program is non-trivial if / is neither parallel nor 
antiparallel to g. By a result of Las Vergnas each extension M. of M. can be identified 
with its localization [16], [6, Prop. 7.1.4]. This is the unique function a which assigns to 
each cocircuit Y of M a sign cr(Y) € {—,0,+} such that (Y, cr(Y)) is a cocircuit of M. 

There is a natural partial order on localizations and hence on extensions which is induced 
by " 0 < - " a n d " 0 < + " . 

Definit ion 3.4. 
(i) The extension poset £(Ai) consists of all extensions of M. by a single element which 

is neither a loop nor a coloop. 
(ii) The extension poset £(M,g) of an affine oriented matroid (Ai,g) consists of all ex-

tensions in £(Ai) that are not parallel or antiparallel to g. 

(iii) The extension poset £(M,g,f) of an oriented matroid program (Ai,g,f) consists of 
all extensions of Ai := M\f by an element / ' such that Ai/g — (M U f')/g. 

In the topological representation AMI the extensions in £(M,g,f) correspond to 
those affine pseudo-hyperplanes Sf> which agree "at infinity" with Sf, that is, SgC\Sf = 
Sgf)Sf>. _ 

We define the graph Gf of an oriented matroid program (M,g, f) as follows, slightly 
modifying [6, Def. 10.1.16]. The vertices of Gf are the cocircuits Y of M with Yg — +. 

These correspond to 0-cells of the arrangement AM — (Se)eeE which lie in the affine space 
S+ Two such vertices are connected by an edge in Gf if and only if they are connected 
by a 1-cell in AM- Some of the edges (Y 0 , ! ' 1 ) of Gf are directed, as follows. Let Z be 
the unique cocircuit obtained by elimination of g from Y

1 and — Y°. The edge (Y0 , Y1) is 
directed from Y° to Y 1 if a(Z) = + , it is directed from Y 1 to Y° if a{Z) = - , and it is 
undirected if cr(Z) = 0, where a denotes the localization of / . 

A path in Gf is a sequence of vertices P = (Y
0
^

1
,..., Y

k
) such that ( Y , _ 1 , Y l) is 

an edge which is either undirected or directed from Y , _ 1 to Y
%

. A path P is directed if at 
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least one edge in P is directed, and undirected otherwise [6, Def. 10.5.4]. 
Two vertices Y and Y' of Gf are said to be equivalent if there is a path from Y to 

Y' and a path from Y' to Y. A strong component of Gf is the induced subgraph of an 
equivalence class of vertices. A strong component is said to be very strong if it contains at 
least one directed edge. Let SC = SC(.A4,#,/) denote the set of strong components, and 
let VSC = VSC(M,g,f) be the subset of very strong components. We define the following 
natural partial order on SC. For two strong components c and c' we set c < c' whenever 
there exists a directed path from a vertex Y in c to a vertex Y' in c'. The set VSC is a 
subposet of SC, with the induced partial order. 

Example 3.5. Let (.M, g, f) be the rank 4 oriented matroid program on { 1 , 2 , . . . , 6,g, / } 
which is defined by the coordinate matrix 

1 2 3 4 5 6 

/ 0 - 1 0 1 - 1 - 1 - e 
1 0 - 1 0 1 l + 2e2 

0 0 1 - 1 0 - e 2 

\ 0 1 0 0 1 + e 1 + 2e + e2 + e3 

where 0 < e < j . Geometrically, this is an arrangement of six planes in affine 3-space (with 
g as the plane at infinity) together with a linear objective function / . The intersection point 
of the planes i, j and k defines a cocircuit Yijjt, for 1 < i < j < k < 6. Two of the cocircuits, 
namely, Y125 = ( 0 0 - + 0 + - 0 ) and Y345 = ( - + 0 0 0 + - 0 ) , lie at infinity. The remaining 
18 cocircuits y1 3 4 = ( 0 + 0 0 + + + + ) , Y236 = ( - 0 0 + - 0 + + ) , Y235 = ( - 0 0 + 0 + + + ) , Yl2Z = 
(000+++4-+), • • • lie in affine space. They are the vertices of the graph Gf of the program 
(M.,g,f). The graph Gf has 39 edges, all of which are directed: 

(^123^124) (^124^126) (^134^123) (^123^135) (^135^136) (^134^124) (^124^146) (^146^145) 

(Y135Y156) (^156^145) (^136^156) (5^156^146) (^UÖ^m) (^236^235) (^235^123) (^123^234) 

(5^245^246) (^246^124) (Y124Y234) (^235^256) (^256^245) (Y23QY25Q) (^256^246) (3.2) 

(^246^126) (^134^234) (^234^346) (^235^135) (^135^356) 0^236 ̂136 ) (^ISÖ^ÖS) (^356^346) 

(^456^245) (^245^145) (^456*246) (^246^146) (^146^346) (^Sö^löö) (Y156Y25e) (^256^456) 

The following method [20, Lemma 4.1] was used for computing the list (3.2). An edge 
{Yijk,Yiji} of the arrangement is directed from Y,jk to Yiji if and only if 

X(i,i,k,l)-x(i,j,g1k)-x(i,j,9,l)-x(hj,9,f) = + 1 (3.3) 

Here x denotes the chirotope of M, that is, x(hj, k, I) equals the sign of the 4 x 4-minor 
with column indices i,j, k, I in (3.1). 

The oriented matroid M. is realizable and all edges of the graph Gf are directed. Thus 
Gf is acyclic, VSC is empty, each vertex itself is a strong component, and the poset SC is 

j 

8. 

/ g 

1 0 \ 
1 0 
1 0 

1000 1 J 

(3.1) 



the transitive closure of Gf. ^From the underlined edges in (3.2) we see that the basis 
1234 is a mutation of A4. This means geometrically that the planes 1,2,3 and 4 bound a 
simplicial region (tetrahedron) in the arrangement. 

Let A4' be the oriented matroid obtained from A4 by reversing the orientation of the 
basis 1234. The graph G'* of the corresponding oriented matroid program (A4',g,f) is 
obtained by reversing all six underlined edges in (3.2). We find the following cycle in G'f 

^124 —* ^123 - * ^135 —* ^136 ~ • ^356 ~* ^156 ~* ^256 ~* ^456 —* ^245 ~* ^246 _ • ^124 (3 .4 ) 

This shows in particular that A4' is not realizable [6, Cor. 10.1.17]. 
The ten cocircuits in (3.4) form one very strong component c of G'*, while each of the 

other eight cocircuits is a strong component all by itself. Hence VSC' = {c}, and the poset 
SC' is given by the following Hasse diagram: 

{^126} {^145} {^346} 

{^146}^ {^134} 

(3.5) 

I 

{̂ 236 } 
Our construction of A4' from A4 is based on a general technique due to N. Mnev (personal 
communication) for producing cycles in graphs of oriented matroid programs. The crucial 
property is that 1234 is a simplicial region of A4 whose vertices {1123,^124,^134,^234} do 
not form an interval in SC. In Theorem 3.13 this technique will be applied to construct 
oriented matroid programs with many very strong components. D 

The following sequence of lemmas will relate the extension space of an oriented matroid 
program (A4,g, f) to the order ideals in its poset VSC of very strong components. 
Lemma 3.6. Let a e £(A4,g,f) and c e SC. 
(i) The localization a has the same value on each cocircuit in c, so that <r(c) is well-

defined. 

(ii) The sets I' := {c € SC : a(c) = —} and J := {c 6 SC : cr(c) =£ + } are order ideals in 

the poset SC. 
(iii) For each very strong component c 6 VSC, we have <7(c) ^ 0. 

Proof. This follows from [6, Lemma 10.5.3]. Parts (i) and (ii) hold because u is constant 
on undirected edges and weakly increasing (in the order < 0 ~< + ) along directed edges 
of Gf. Part (iii) holds because no localization in S(A4,g, / ) assigns a zero to two cocircuits 
which are connected by a directed edge in Gf. U 

— - - p v < ^ j J*J-*V^> 



L e m m a 3.7. Let I' C. I be order ideals of SC such that I\I' is an antichain in SC which 

does not intersect VSC. Then there is a unique localization a € £(M,g,f) such that for 

all c € SC, 
(- i f c e l ' , 

a(c) = I 0 ifceiy, 

v + otherwise. 

Proof. The localization <7 is determined by the requirements that 

Yf if Yg = 0, 

„ ( V , _ , - if n = + and [y] € I ' , 
a^>-)0 if Fff = + and [Y] e I\I', 

+ if Yg = + and [Y] <£ I , 

where [Y] € SC denotes the equivalence class of the cocircuit Y. The proof that every such 
a is a localization is by reduction to corank 2 as in the proof of [6, Thm. 10.5.5]. Our 
assumptions on I\I' are equivalent to the fact that there is no directed edge both of whose 
vertices are in J \ / ' . U 

Definition 3.8. 

(i) An oriented matroid program (Ai,g,f) is euclidean if for every cocircuit Y of M. = 
M\f with Yg ^0 there is an extension a € S(M,g,f) with o(Y) = 0. 

(ii) An oriented matroid M. is strongly euclidean if it has rank 1, or if it possesses an 
element g such that M./g is strongly euclidean and the program (M.,g, / ) is euclidean 
for every extension M. — M. U / . 

Part (i) of Definition 3.8 is due to Edmonds & Mandel [10, Sect. 9.III]. The concept 
in part (ii) is new. Note that realizable oriented matroid programs are always euclidean. 
The following result is due to Edmonds & Mandel [10]. 

Proposition 3.9. An oriented matroid program {M.,g,f) is euclidean if and only if its 

poset of very strong components VSC is empty. 

Proof. The "only if" part follows from Lemma 3.6(iii). For the "if" part let I = SC<[yi 
be the order ideal generated by [Y] and I' := I\{[Y]}. Now apply Lemma 3.7. U 

In order to study the topology of the space £(M,g,f), we introduce the following 
filtration by subspaces. For any two order ideals / ' C J in SC, we define 

S(I',I) := {ae£(M,g,f) : <r(c) = + for c £ I, <r(c) = - for c € I' }• (3.6) 

This contains as special cases 5(0, SC) = £(M,g,f) and £(I,I), which is a single point by 
Lemma 3.7. 
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Lemma 3.10. Let I' C I be order ideals in SC and let Co be a maximal element in I\I'. 

If Co is not in VSC, then the inclusion £ ( I ' , I \ {c 0 }) C £(I',I) is a homotopy equivalence. 

Proof. We define a surjective map ir : £( ! ' , !)•—»• £(!', I\{CQ}), T !-»• 7r(r) by the rule 

x W ( n .= !<Y) for [Y] G 7\{c 0}, 
v A ; ' \ + otherwise, 

for all cocircuits Y with Yg — + . The fact that 7r(r) is a localization of M. is verified 
by reduction to corank 2 [16], [6, Thm. 7.1.8]. Indeed, IT(T) is either identical to r or 
a perturbation of r or a flipping of r , in a more general sense than those considered by 
Fukuda & Tamura [12]. 

The map -K is onto because 7r(r) = T for T £ £( I ' , I \{co}) . To conclude that n is 
a homotopy equivalence, we factor n = 7r o ft into a reverse perturbation -k followed by a 
perturbation ic. These two maps are defined by 

T{Y) for [Y] G J\{co}, 
7r(r)(Y) := { 0 for [Y] = c0 and T(Y) G {-, 0}, 

+ otherwise, 

^ T w V = / r ( Y ) for [Y] G I \ { c 0 } , 
v A

 ' ' \ + otherwise. 

for all cocircuits Y with Yg = + . Note that it is the restriction of 7r to the image of re. 

These maps are order preserving, and they satisfy 7r7f(r) = 7r(r) < r , and 7r7r(r') = 
7r(r') > T' for all r € £(I',I) and r ' = 7r(r). In this situation we can apply Lemma 3.3. 
This shows that both 7f and 7r are homotopy equivalences, and hence so is TC. U 

Theorem 3.11. Let (M,g, f) be any oriented matroid program, and let v be the number 

of order ideals in its poset VSC of very strong components. Then £(M,g,f) is homotopy 

equivalent to a discrete set of v points. 

Proof. Let ^7(VSC) denote the discrete set of order ideals of VSC. By Lemma 3.6(ii) there 
is a map i : £{M,g,f) —»• J7"(VSC) which associates with every localization a G £(M.,g,f) 

the order ideal i(cr) = {c € VSC : cr(c) = - } . 

Consider any order ideal K in VSC, and let I' denote the order ideal it generates in SC. 
Let I be the set of all c in SC such that whenever c' G VSC and c' < c in SC then c' G K. 

Note that I and I' are order ideals in SC with I' C I. It follows from the definitions that 

£( ! ' , I ) = {a G £(M,g,f) : t(cr) = K} = i~\K). (3.7) 

Moreover, no element Co in I \ I' lies in VSC. Thus by repeated application of Lemma 3.10 

we find £ ( ! ' , ! ) cz E(I',I') '= {single point}. 

We have shown that the inverse image under i of each K G JiySC) is a contractible 

space. This completes the proof of Theorem 3.11. LJ 
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Corollary 3.12. The space £(I',I) is contractible if and only if I\I' does not contain 

a very strong component. In particular, the space £{M,g,f) is contractible if and only if 

VSC = 0, that is, if and only if the oriented matroid program (JA,g,f) is euclidean. 

Proof. The first part follows from Lemma 3.10, analogous to the proof of Theorem 3.11. 
The second part is obtained by specializing to I' = 0 and I = SC, using the characterization 
of euclideanness in Proposition 3.9. Ü 

We close this section by showing that the extension space £(M.,g,f) of an oriented 
matroid program can have an arbitrary number of connected components. 

Theorem 3.13. For every t > 1 there exists a rank 4 oriented matroid program on 

n = St + 5 elements whose poset VSC is a chain oft elements. 

Proof. We construct a series of examples whose first case (t = 1) is the program (M.', g, f) 

in Example 3.5. Again, we apply Mnev's technique for generating cycles in Gf. 

For t > 1 and e < -^ we define an arrangement of Zt + 3 affine halfspaces in IR3 by 

—x 
-y 

x 
x -y 

where k = 0 , 1 , . . . , t — 1. By adding the plane at infinity g and a suitable level plane of 
the linear functional f(x, y,z) := x + y + z, we get an oriented matroid program of rank 4 
on the set {f,g} U {1,2,3*, 4*, 5,6* : 0 < k < t}. 

The quadruples of halfspaces [1,2,3*, 4*] describe tetrahedra in the affine arrange-
ment. All vertices in the affine arrangement are simple, i.e., determined by three halfs-
paces. For each k £ {0,1,... ,t — l} ,we have the following sequence of vertices (cocircuits). 
Each vertex v

k is listed with a triple of halfspaces defining it and with the value of the 
linear functional / = x + y + z on v

k
: 

vertex basis / = 
v

k
 = (0 ,0 ,4A;) [1,3*, 4*] 4fc 

> 0 (1) 
> - 1 (2) 

+z > Ak (30 
-z > - 4 Ä ; (4t) 

< 1 + e (5) 
e

2
z < l + 2e + (4fc + l)e2 + e3 

(60 

v
k
 -

v2 — v
k
 -vz — 

V 
k _ 
4 

v
k
= (1,0,4&) [1,3*, 2] 4fc + l 

( l + e,0,4fc) [1,3*, 5] 4& + 1 + 6 
(l + e,0,4fc + e) [1,6*, 5] Ak + 1 + 2e 

( l , -e ,4ib + l - e ) [2,6*, 5] 4k + 2 - 2e 
v

k
= ( l , -e,4fc + l ) [2,4*,5] 4fc + 2 - e 

v
k
= (l,0,4fc + l ) [2,4*,1] 4& + 2 

v
k
= (1,1,4* + 1) [2,4*, 3*] 4fc + 3 

This sequence is a directed path in Gf and hence an increasing chain in SC. The first two 
and the last two vertices are on the tetrahedron [1,2,3*, 4*], the intermediate ones are not. 
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We can define a new oriented matroid program by inverting the orientation of the t 

bases [123fc4fc]. This operation introduces t directed cycles in the graph of the program, 
because it reverses the directed edge from u* to Ug, but preserves the other edges. This 
directed cycle gives rise to a very strong component Cfc. 

If we perform the inversions by local surgery on the pseudoarrangement, then the local 
deformations for the k-th. mutation occur within the level set 4fc—-| < f(x, y, z) < 4fc+3+| . 
So there is a directed path from c* to c^+i, namely, along the pseudoline determined by 
{1,2}. There is no directed path backwards, which means the very strong components Cjt 
and Cfc+i are really distinct. This completes the proof. D 

We remark that all oriented matroids in this construction can be perturbed into 
general position, so Theorem 3.13 remains valid for uniform programs. 

4. Sphericity results 

Theorem 1.2 states that the extension space £{M) of every strongly euclidean rank r 
oriented matroid has the homotopy type of the (r — l)-sphere. Here we prove this theorem, 
and we derive combinatorial criteria for strong euclideanness. In particular, we show that 
each oriented matroid of rank r < 3 or corank n — r < 2 is strongly euclidean and hence 
has spherical extension space. 

The extension posets in Definition 3.4 satisfy the inclusions £(M,g, f) C £(M, g) C 
£{M.). Let [g

+
] denote the (localization of M. defining the) extension parallel to g, and 

let [g~] denote the extension antiparallel to g. Note that £(M)\£(M,g) = {[<7+], [g~]}. 

We will consider the subposet £(M)>[g+] = {a £ £{M) '• <* > [g
+
]} Q £{M,g). 

In the interpretation of (M.,g) as an affine pseudoarrangement, £(M)>[g+] is the set 
of "extensions at the horizon" for which all the affine vertices are on the positive side. 
Similarly, we consider £(M)>[g-] = {or £ £(M) : a > [g~] }. 

Lemma 4.1. The posets £(M)>[g+] and £(M.)>[g-] are isomorphic to £(M./g). 

Proof. We define injective maps K + , K~ : £(M/g)'—> £{M) by 

« W ) - \p(Y) otherwise. 

By definition, £(M)>[g+] is the image of K
+ and £(M)>[g-] is the image of K~. D 

Proposit ion 4.2. 
(1) The contraction of g in M induces surjective, order-preserving maps 

TT: £(M,g) -> S(M/g) 

Ü : £(M) -> {[g
+
],[9~]} ® £(M/g) ~ susp £(M/g), 

(2) Suppose that (M,g, f) is euclidean for all extensions M = Mli f. Then the maps 

•K and II in (1) are homotopy equivalences. 
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Here "©" denotes the ordinal sum of posets, which means that [g
+
] and [g~] are two in-

comparable elements placed below all elements of £{A
/
l/g). Topologically this corresponds 

to forming the suspension over the space of £(A4/g). 

Proof. The maps in (1) are defined as follows. Given any localization p of M, then the 
localization ir(p) of M/g is the restriction of p to the set of cocircuits Y with Yg = 0. 
The localization 7r(/>) is non-trivial (i.e., does not define the extension by a loop) if and 
only if p £ £(M,g). In this case II(p) := ir(p)\ in addition, we set II([#+]) := [g

+
] and 

I I ( b - ] ) := [g~]. The maps 7r and II are order preserving, and they are surjective by 
Lemma 4.1. 

For the proof of (2) we apply Babson's Lemma 3.2. In order to verify hypothesis 
(i) of Lemma 3.2, we let p £ £(M/g) and consider the extension M — M U / defined 
by K+(p). Then the fiber TT~

1
(P) = {r 6 £(M/g) : 7r(r) = p} is the extension space 

£(M,g, f) of the program (A4,<7, / ) . This program is assumed to be euclidean, and hence 
n - 1 ( p ) = £(M,g,f) is contractible by Corollary 3.12. 

In order to verify hypothesis (ii), we consider p £ £(Ai/g) and r G £(A4,g) with 
7r(r) < p. Let Ad = Ad U / as in the previous paragraph, and let SC be the poset of strong 
components of (Ai,g,f). By Lemma 3.6(ii), the sets 

I' := {c e SC : r (c) = - } and I := {c € SC : r (c) ^ + } 

are order ideals in SC satisfying I' C J. We find that 

7T-\p) n £{M,g)>T = {<r€£(M,g) : ir(*) = p, <T>T} 

= {ae£(M,g,f): a>r} = £ ( ! ' , ! ) . 

This poset is contractible by Corollary 3.12. This proves that •K is a homotopy equivalence. 
In order to show the same result for II, we note that the hypothesis (i) of Lemma 3.2 

follows from hypothesis (i) for ir and n - 1 ( [ 0 + ] ) = {[<?+]} and II_1([<7~]) = {[0"]}. For 
hypothesis (ii), we only need to check the case p > 7r(r) = [g^]- In this case we have 
r = [g^ and p € £(M)>[g±], and therefore 

*-\P) n £{M)y[g±] = {«±(p)} 

is a single point, by Lemma 4.1. D 

Proof of Theorem 1.2. Let At be a strongly euclidean oriented matroid of rank r. 

In order to show £(M) cz 5 r _ 1 , we proceed by induction on r. If r < 2, then £{M) is 
homeomorphic to the (r — l)-sphere. Suppose that r > 3. By strong euclideanness there 
exists an element g (E E such that 
(a) M.jg is strongly euclidean, and 

. (b) for every extension M = M. U / , the program (M.,g,f) is euclidean. 
By (b) and Proposition 4.2(2), the map II is a homotopy equivalence between £(M) 

and the suspension of £(M/g). By (a) and the induction hypothesis, the extension space of 
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M/g satisfies £(M/g) ~ S
r 2. Hence the suspension of £{M/g) is homotopy equivalent 

to the suspension of 5 r _ 2 , which is the (r — l)-sphere S
r
~

l
. D 

The remainder of this section deals with explicit classes of oriented matroids to which 
Theorem 1.2 can be applied. We first collect some facts about the structure of minor-
minimal non-euclidean programs. Recall that a minor of an oriented matroid program 
(M,g, f) is a program (M',g, / ) , where M' is a minor of M in which g is not a loop and 
/ is not a coloop. The dual of (M,g,f) is the program (M*,f, g). 

The class of euclidean oriented matroid programs is closed under minors and duality 
[10, p. 276], [9, Thm. 13.14], [6, Sect. 10.5]. In particular, every non-euclidean program 
has a minor (M,g.,f) which is minimally non-euclidean. This means that (M,g,f) is 
not euclidean, but every proper minor of (M,g,f) is euclidean. A program (M,g,f) 

is minimally non-euclidean if and only if its dual program (M*,f,g) is minimally non-
euclidean. 

Lemma 4.3. Let (M,g,f) be a minimally non-euclidean program. Then 

(i) every circuit or cocircuit of M has size at least 3. 
(ii) every circuit or cocircuit that contains both f and g has size at least 4. 

Proof. We only have to treat the case of circuits, by duality. Clearly a minimally non-
euclidean program cannot contain a loop. The set {/, g} cannot be a circuit, otherwise 
all edges in Gf axe undirected and (M,g,f) is euclidean. If h £ {/,g} is contained in a 
2-element circuit, then the programs (M,g,f) and (M\h,g,f) have the same graph Gf, 

and hence (M\h,g,f) is also non-euclidean. If {/, g, h} is a circuit, then (M\h,g,f) is 
non-euclidean as well by [6, Prop. 10.5.10]. U 

Recall that a pair of elements e, e' G E forms an inseparable pair in M if they are either 
covariant (that is, have the same sign in every circuit that contains both) or contravariant 

(that is, have the same sign in every cocircuit that contains both). An inseparable pair is 
inseparable also in the dual and in every minor that contains it. The inseparability graph 

has the vertex set E and an edge for every inseparable pair of elements [6, Sect. 7.8]. The 
inseparability graph is invariant under dualization and reorientation. An element of M is 
isolated if it is not contained in any inseparable pair. 

Proposit ion 4.4. Let (M,g,f) be a minimally non-euclidean oriented matroid program 

such that the contraction M/{g,f} is uniform. Then f is isolated in M/g. 

Proof. Let C be a directed cycle in Gf and suppose that / and h axe contravariant in 
M/g for some element h. If all vertices of C lie in the pseudohyperplane Sh (that is, if 
Yh = 0 for all Y € C), then we can restrict the program to Sh, and in this case (M/h, g, f) 

is non-euclidean. If no vertex of C lies in Sh (if Yh ^ 0 for all Y € C), then we can delete 
Sh from the program, and in this case (M\h,g,f) is non-euclidean. Hence the cycle C 
contains vertices both with Yh = 0 and with Y/, =£ 0. We claim that the sign Yh increases 
weakly along the directed cycle C in the linear order "— -< 0 -< +" , which leads to a 
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contradiction. To prove this, we consider edges W = (Y, Y') on which Yh is not constant, 
that is, Yh = 0 and Y^ 0 or Y^ = 0 and Yh £ 0. 

Given W, choose a basis e i , . . . , e r_2 of E\(Y_U Y') such that Sei f l . . . D 5 ,
er_2 is the 

pseudoline containing the edge W. The direction determined by W is the unique cocircuit 
at infinity Z (E Sg which satisfies Zg = 0 and YoZ = YoY' [6, Lemma 10.1.15]. In the 
arrangement we have Sa fl 5 e i f l . . . fl S€T_2 = {Z, — Z}. 

Assume that W is undirected, i.e., Zf = 0. Since M/{g,f} is uniform of rank 
r — 2, every cocircuit Z with Z / = Zff = 0 satisfies |.E\Z.| = r — 1. This implies / G 
{ e i , . . . , er-2,g}, where / ^ g, and hence Yf = Y* = 0. This is impossible since the cycle 
C can involve only cocircuit s Y with Yf ^ 0. 

Now assume that W = (Y,Y') is directed from YtoY'. If Yh = 0 and Y*h ± 0 
then YoZ = YoY' implies Z/, ^ 0, and hence Y^ = Z/, = Zf = + since / and h are 
contravariant in M/g and Zff = 0. Similarly, if Yh ^ 0, Y^ = 0 then Y ' o ( - Z ) = Y'oY 
implies Zfc ^ 0, and hence Y^ = — Zh = —Zf = — since / and h are contravariant in M/g 

and Zg = 0. In both cases we have Yfc X Y^ in the order " - -< 0 -< +"• Ü 

We can now derive strong euclideanness results in small rank and small corank. 

Corollary 4.5. Every oriented matroid of rank at most 3 is strongly euclidean. 

Proof. If not, then there exists a minimally non-euclidean program (M.,g,f) of rank at 
most 3. By Lemma 4.3, there is no 3-circuit {g,f, h}. This implies that M/{f,g) is 
uniform of rank 1. Now Proposition 4.4 implies that / is not contained in any inseparable 
pair of M./g. But this is impossible since the rank of Ai/g is 2, so the inseparability graph 
has no isolated vertices. D 

Corollary 4.5 is equivalent to the Levi Enlargement Lemma [17], [6, Prop. 10.5.7] 
with a new proof. With Theorem 2.1 it implies that the extension space of a rank 3 ori-
ented matroid is homotopy equivalent to the 2-sphere. The same result has been obtained 
independently by Babson [1]. 

Corollary 4.6. Every rank r oriented matroid onn < r+2 elements is strongly euclidean. 

Proof. In this case A4 = M. U / has at most r + 3 elements. Thus the dual program 
((M.)*,f,g) has at most rank 3 and is therefore euclidean by Corollary 4.5. U 

Proposit ion 4.7. Let (A4,g,f) be a minimally non-euclidean program (with M. = 
M U f) such that M\g is uniform. Then g is isolated in M. 

Proof. We use that (A4, g, f) is minimally non-euclidean if and only if its dual ((A4)*, / , g) 

is minimally non-euclidean. Also, A4\g is uniform if and only if (A4\g)* = (A4\{g, / } )* = 
(M)*/{g,f} is uniform. Thus we can apply Proposition 4.4 to ((A4)*,f, g), which yields 
that g is not in an inseparable pair of (A4)*/f, or, equivalents, of ((A4)*/f)* = M. • 
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Corollary 4 .8. Let M be a uniform oriented matroid so that no minor (on at least two 

elements) has an isolated element. Then M. is strongly euclidean. 

Proof. We proceed by induction on the rank and cardinality of M. Suppose M is not 
strongly »euclidean and let g by any element of M. By the induction hypothesis, the 
contraction M/g is strongly euclidean. Hence there exists an extension M. = M. U / such 
that the program (A4,<7,/) is non-euclidean. Applying the induction hypothesis again, we 
see that (M,g,f) must be minimally non-euclidean. Now Proposition 4.7 implies that g 

is isolated in M, which is a contradiction. D 

In view of Corollaries 4.5 and 4.6, rank 4 oriented matroids on 7 elements are the next 
smallest case of interest. 

P ropos i t i on 4.9 All uniform rank 4 oriented matroids on 7 elements are strongly eu-

clidean, and their extension spaces are homotopy equivalent to the 3-sphere. 

Proof. By the classification of Grünbaum [14, p. 395], there are eleven isomorphism types 
of simple arrangements of seven lines in the projective plane, or, equivalently, eleven re-
orientation classes of uniform rank 3 oriented matroids on [7] = { 1 , . . . , 7}. Among the 
eleven types there is only one arrangement A whose inseparability graph is empty. The 
arrangement A is characterized by the property that it has 10 triangles (mutations). We 
let M.* denote the corresponding uniform rank 3 oriented matroid on [7]. 

Suppose there exists a rank 4 oriented matroid on [7] which is not strongly euclidean. 
Then its inseparability graph must be empty by Proposition 4.7 (every uniform oriented 
matroid on at most seven elements is euclidean), and hence it must be reorientation equiv-
alent to the dual M. of A4*. Since strong euclideanness is invariant under reorientation 
(both the extension space and euclideanness are invariant), it will be sufficient to prove 
that M. is strongly euclidean. This is equivalent to the existence of an element g G [7] 
such that for all extensions M U / , the program (M U / , g, f) is euclidean, because all rank 
3 oriented matroid programs are strongly euclidean. Lemma 4.10 below implies that we 
need to consider only uniform extensions M. 

By a complete enumeration using the computer algebra system MAPLE, we found 
that M. has 7690 distinct uniform extensions M.. A total number of 7648 extensions 
A4 has the property that (A4, g,f) is euclidean for all g G [7]. This number includes 
all realizable extensions of M. All remaining 42 extensions M have the property that 
(A4, g,f) is euclidean if and only if g G {1,2,3,4,5,6}. These computational results have 
been confirmed independently by J. Richter-Gebert, using the classification in [8]. We 
conclude that for all extensions M. of M, the program (M., 1, / ) is euclidean. Hence M. is 
strongly euclidean. U 

For the proof of Proposition 4.9 used the following perturbation lemma. 

Lemma 4.10. Let (A4,g, / ) be a non-eucJidean oriented matroid program of rank 4 such 
that M = A4\f is uniform. Then there exists a non-euclidean program (A4

1
, g,f) such 

that M.' is uniform and M. is a weak image of M'. 
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Proof. We denote by 07 the localization of / on the cocircuits of M.. By replacing 07 
by crfoag we may assume that we have a non-euclidean extension that satisfies cr/(Y) ^ 0 
whenever Yg ^ 0. 

Now consider a cycle C in Gf. If C contains no undirected edge, then we can arbi-
trarily perturb / into general position. Also, by considering a "shortest" directed cycle 
we can assume that C does not traverse any undirected pseudoline in both directions. 
Hence, we can perturb to a uniform non-euclidean program if we can arbitrarily direct all 
the undirected affine pseudolines, that is, if we can independently alter 07 on all pairs of 
cocircuits ±Y with Yg — <?f(Y) = 0. 

To see this, we use reduction to corank 2 [16], [6, Thm. 7.1.8]: it suffices to show that 
the sign pattern on every pseudoline of the arrangement representing A4 is consistent. 
Since we only switch zeroes of 07 to non-zeroes, problems can only occur on a pseudoline 
for which previously all cocircuits had sign 0, i.e., on a pseudoline of Type I (cf. [6, 
Example 7.1.7]). From the above perturbation we know that the pseudoline is contained 
in the sphere at infinity Sgt so it is determined by a pair {g, h}. Since the pseudoline is of 
Type I we get that {g, h, / } is a 3-circuit in M. In particular, h and / are parallel in M/g, 

and hence we get that (A4,g, h) is also non-euclidean, containing the same cycle C in its 
graph as (A4,g,f). However, since M is uniform, we get that the graph Gh of (M,g,h) 

has no undirected edges. Hence the cycle C has no undirected edges. D 

We next show that for any rank r and for any number n of elements there exists 
an oriented matroid which is strongly euclidean, so that Theorem 1.2 is applicable. The 
alternating matroid C

n
'
r is the uniform rank r oriented matroid of linear dependencies on 

the columns of the Vandermonde matrix 

/ I 1 1 . . . 1 X 
£l t2 t3 . . . tn 

t
2
 i

2
 i

2
 t

2 

where ti < t2 < t3 < ... < tn are any n distinct real numbers. Thus Cn ' r is the oriented 
matroid associated with the cyclic (r — l)-polytope with n vertices. We will need the 
following two properties of Cn ' r . For a detailed discussion of alternating matroids and a 
proof of Lemma 4.11 see [6, Sect. 9.4]. 

L e m m a 4 .11 . 

(a) The inseparability graph of Cn ' r is the n-cycle 1—2—3 n—1, for 2 < r < n — 2, 
and a complete graph otherwise. 

(b) Every minor of Cn ' r is isomorphic to an alternating matroid. 

The following theorem is the main application of our results on the structure of min-
imally non-euclidean programs. 
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T h e o r e m 4.12. The alternating matroid Cn , r
 is strongly euclidean. Hence its extension 

space £(Cn , r) is homotopy equivalent to the (r — l)-sphere. 

Proof. By Lemma 4.11, every minor of Cn, r on at least two elements has no isolated 
elements. Corollary 4.8 implies that Cn ' r is strongly euclidean. 0 

5. Remarks 

A potential application of extension spaces lies in the interplay of combinatorics and (dif-
ferential) topology. This interplay is highlighted by the recent combinatorial construction 
of Pontrjagin classes due to Gelfand & MacPherson [13]. Their work suggests in particular 
that the MacPhersonian Mc(n,r) of all oriented matroids of rank r on [n], ordered by 
weak maps, could serve as a discrete model for the real Grassmannian G(n,r). 

The crucial question about MacPhersonians is whether Mc(n,r) and G(n,r) have 

isomorphic cohomology. An inductive approach is to consider the projection G(n, r)\G(n — 

1, r — 1) —» G(n — 1, r) whose fibers are (r — l)-spheres. The combinatorial analogue is the 
deletion map Mc(n,r)\Mc(n — l , r — 1) —> Mc(n — l , r ) on the poset of rank r oriented 
matroids on [n] for which n is not a coloop. The fibers of this map are the extension spaces 
£(M). A different approach to the McPhersonian problem is currently taken in Babson's 
work on the homotopy type and the cohomology of the MacPhersonian [1]. In this context 
our extension spaces £{M) appear as flag spaces Mc(M., r — 1). 

In spite of the results in this article, it remains an open problem whether the extension 
space £{M) is connected for every oriented matroid M.. We only know that £(M) always 
contains a large connected subspace £(M)real by Theorem 1.1, and that it is spherical 
(and hence connected) for r < 3 by Corollary 4.5. It would be worthwhile to investigate 
the scope of the methods developed in this paper. For instance, a challenging problem is 
to construct an explicit oriented matroid which is not strongly euclidean. 

The extension poset £(Cn ' r) of the alternating matroid is closely related to the higher 

Bruhat order B(nyn — r), which was introduced by Manin & Schechtman [18], and further 
studied by Kapranov & Voevodsky [15, Sect. 4]. It turns out that B(n,n — r) is isomorphic 
to a natural partial order on the subset £(C

n,r
)Uni oi uniform extensions of Cn ' r . This 

connection will be developed in a forthcoming paper. 
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