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Let G be a connected complex reductive Lie group. Noting [3], [7], 
[8] that G has the structure of a linear algebraic group, let G be any projective 
manifold in which G is Zariski open and which induces the above algebraic 
structure on G. The purpose of the present note is to announce 

PROPOSITION I. Let G be as above and act holomorphically on a com­

pact Kaehler manifold X. Assume that the Lie algebra of holomorphic vector 

fields on X generated by G is annihilated by every holomorphic one form. 

Let $>: Y —* X be a holomorphic map where Y is a normal reduced analytic 

space. Consider the equivariant map $ ' : G x 7 ~ > I ; $ ' extends meromor-

phically (in the sense of Remmert) to G x Y. 

REMARKS. The condition on vector fields annihilated by one forms is 
automatically satisfied if (cf. [12]—[14]) Hl(X, Q) = 0, or G is semisimple,or 
if every generator of the solvable radical of G has a fixed point, or if G is a 
linear algebraic group acting algebraically on a projective X. Taking Y to be a 
point, one gets the orbits of G to be Zariski open in their closures which are 
analytic sets. A simple corollary is the classical result that there is only one 
structure of a linear algebraic group on G (cf. [7]), and in fact any reductive 
connected subgroup of an algebraic group over C is an algebraic subgroup. 

As a further application of the techniques used, a new proof of an im­
proved form of a fixed point theorem (cf. [12], [13], [14]) of the author is 
given: 

PROPOSITION II. Let S be a connected solvable Lie group acting holo­

morphically on a compact Kaehler manifold X. The following are equivalent: 

(a) S has a fixed point on X. 
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(b) S leaves a compact set in a fibre of the Albanese map invariant. 
(c) S has a fixed point within any compact set K on X that S leaves in­

variant. 
(d) The Lie algebra of vector-fields that S generates on X is annihilated 

by every holomorphic one form on X. 

REMARK. The assertion (c) where K is any compact set is new; the 
method of proof allows one to relax the compactness of X and show if, in ad­
dition, Hl{X, 0X) = 0, then (c) is true. 

The following is the fundamental observation on which everything rests. 

LEMMA . Let X be a compact Kaehler manifold and p: C* —• Aut(X) a 
holomorphic C* action that has at least one fixed point Let A: C* —+ X be 
a holomorphic equivariant map onto an orbit: then A extends to a homomor-

~ i 

phic equivariant map A ofCP1 to X. 

PROOF. Assume without loss of generality that v4(C*) is not a point. 
Let ix be a Kaehler metric on X and CJ the associated Kaehler form. Assume 
that ix has been averaged with respect to the circle subgroup 5 1 C C*. Let x 
be the holomorphic vector-field on X associated to p: C* —• Aut(X). 

Because of equivariance, the Jacobian, dA, of A, maps some constant 
multiple of z(3/3z) onto the restriction of the vector-field x to A(C*). With­
out loss of generality this constant is assumed to be one. 

Let A*ix = a(f) dz ® dl where a(r) is positive and depends only on r 
due to the S1 averaging of jx. A*co = (i/2)a(r)dz A d~z. 

M(X, X) = M (dA ( z ^ ) , dA ( z ^ ) ) = A*v ( * £ , * £ ) 

= a(r)\z\2 <M<oo 

where supA-/x(x, x) = M < °°. 
Now by Lichnerowicz [5] there exists a C°° function 0 on X such that 

30 = co(x). Pulling back and, without confusion, letting 0 stand for A*<l> = 
0O4(z)), one has 

\z<Af)dï = ^dz or \za(f) = ^. 

Now fix one circle, say the unit circle Cx C C* and let CR = {z E C I 

Izl = R}. Assume R > 1; Ct and CR bound an annulus A with 3 A = CR -

Cx. Now 
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li*% = UUr)dz Adz = - fJ | t^A& 
A A 2 7 J 3z z 

= - £ * - + ! f -=WV*ie) * - c 
JCR Z JCX Z l'O V ' 

with C a constant. Now l/^7r0(ReIÖ)^l <M' < °° since 0 is the pullback of 
a bounded function on X. 

Therefore ff-£A*ix <M" < °° where Af" is a positive constant indepen­
dent of R. Thus by Bishop's extension theorem (cf. [1], [2J), A extends holo-
morphically over °°. An identical argument gives extension at 0. Q.E.D. 

Using the above Lemma and the Levi-Griffiths-Shiffman-Siu extension 
theorem (cf. [2], [9], [10], [11]) repeatedly, one proves the result for SL(2, C) 
and groups of the form (C*)w that have a fixed point on X. Then one proves 
it for one parameter unipotent subgroup of G by using the above SL(2, C) re­
sult on an SL(2, C) in G containing the subgroup; this can be done by Jacob-
son-Morosow (cf. [4]). One now proves it for a Borel subgroup of G and uses 
an argument depending on the fact that one has a locally trivial fibring of G 
over G/B which is compact. 

In the very interesting paper [6] of Lieberman, related matters are dis­
cussed. 
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