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Abstract. In a recent paper Aw and Rascle [SIAM J. Appl. Math., 60 (2000), pp. 916–938]
introduced a new model of traffic on a uni-directional highway. Here the author studies an extension
of this model, one which accounts for drivers attempting to travel at the maximum allowable speed.
The author looks at a Lagrangian reformulation of this problem, a formulation that leads to an
effective computational algorithm for solving the resulting system.
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1. Introduction. In a recent paper Aw and Rascle [1] introduced a new phe-
nomenological model for traffic on a uni-directional roadway. The basic descriptors
of their model are the density ρ(x, t) ≥ 0 and velocity u(x, t) ≥ 0 of cars located at
position x at time t. In the classic traffic model studied by Lighthill, Whitham, and
Richards (see [2], [3], and [4]), the velocity u is given in terms of ρ by

u = v(ρ),(1.1)

where ρ → v(ρ) is a smooth, nonnegative, strictly decreasing function on [0, ρmax]
satisfying

v(ρmax) = 0.(1.2)

In what follows we refer to this as the LWR model. For the LWR model, the governing
equation is the continuity equation

∂ρ

∂t
+

∂

∂x
(ρv(ρ)) = 0.(1.3)

These authors make the additional assumption that the flux, F (ρ)
def
= ρv(ρ), which

satisfies 0 = F (0) = F (ρmax), is strictly concave on [0, ρmax], i.e.,

d2F

dρ2
= 2v′(ρ) + ρv′′(ρ) < 0, 0 ≤ ρ ≤ ρmax.(1.4)

They solve (1.3) subject to suitable initial and boundary conditions which guarantee
that the solution satisfies 0 ≤ ρ(x, t) ≤ ρmax. We shall also assume that (1.4) holds.

Aw and Rascle allow for any car velocity u satisfying

0 ≤ u ≤ v(ρ),(1.5)
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730 J. M. GREENBERG

where v(·) is in the LWR model. Their governing balance law is again the continuity
equation

∂ρ

∂t
+

∂

∂x
(ρu) = 0,(1.6)

and they close their system by assuming that α
def
= u − v(ρ) ∈ [−v(0), 0] passively

advects with velocity u, i.e., satisfies

∂α

∂t
+ u

∂α

∂x
= 0.(1.7)

They interpret (1.7) as the Lagrangian form of the conservation law

∂

∂t
(ρ(u− v(ρ))) +

∂

∂x
(ρu(u− v(ρ))) = 0,(1.8)

but this latter interpretation is unnecessary. Aw and Rascle note that smooth solu-
tions of (1.6) and (1.7) also satisfy

∂u

∂t
+ (u + ρv′(ρ))

∂u

∂x
= 0,(1.9)

and this latter system, namely (1.7) and (1.9), is strictly hyperbolic with wave speeds
c1 and c2 satisfying

c1
def
= u + ρv′(ρ) = α + F ′(ρ) < c2

def
= u(1.10)

so long as 0 < ρ < ρmax. Once again,

−v(0) ≤ α
def
= u− v(ρ) ≤ 0 and F (ρ)

def
= ρv(ρ).(1.11)

Discontinuous solutions of (1.6) and (1.7) satisfy the Rankine–Hugoniot equation
associated with (1.6), namely

ds

dt
[ρ] = [uρ] =

(ρ− + ρ+)

2
[u] +

(u− + u+)

2
[ρ].(1.12)

Here x = s(t), t1 < t < t2, is a curve across which the solution of (1.6) and (1.7) expe-

riences a jump discontinuity, (ρ−, u−)(t)
def
= limε→0+(ρ, u)(s(t) − ε, t), (ρ+, u+)(t)

def
=

limε→0+(ρ, u)(s(t) + ε, t), and finally [ρ] = ρ− − ρ+ and [u] = u− − u+.
Discontinuities associated with the system (1.6) and (1.7) come in two flavors.

The first type, called contact discontinuities, have the property that [u] = 0 and
ds
dt = u− = u+. In this situation, (1.12) supplies no information about [ρ], but (1.7)
implies that

v(ρ−) = v(ρ+) + α+ − α−.(1.13)

The fact that

u+ = u− > c1− = α− + F ′(ρ−) = α− + v(ρ−) + ρ−v′(ρ−)(1.14)

implies that ρ− is determined by the ρ+ and the states α+ and α−, which, by virtue
of (1.7), are given in terms of the initial data by

α−(t) = α−(0) = lim
ε→0+

α(s(0)− ε, 0+)(1.15)
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and

α+(t) = α+(0) = lim
ε→0+

α(s(0) + ε, 0+).(1.16)

This last observation was apparently not noticed by Aw and Rascle, but it does point
out the anticipatory nature of the system, namely that u and ρ behind a contact are
determined by u and ρ ahead of it. This observation is exploited in section 2 with our
downwind difference scheme.

In the second family of discontinuities we have

α−
def
= u− − v(ρ−) = u+ − v(ρ+)

def
= α+.(1.17)

This latter relationship, when combined with (1.12), implies that

ds

dt
[ρ] = α−[ρ] + [F (ρ)](1.18)

or

ds

dt
= α− +

[F (ρ)]

[ρ]
.(1.19)

Once again F (ρ)
def
= ρv(ρ) and we assume that F satisfies (1.4). For such discontinu-

ities to be admissible we insist that 0 ≤ ρ− < ρ+ ≤ ρmax. This admissibility condition
guarantees that the Lax entropy criterion

c1−
def
= α− + F ′(ρ−) > ṡ = α− +

(F (ρ−)− F (ρ+))

ρ− − ρ+
> c1+

def
= α+ + F ′(ρ+)(1.20)

is satisfied across these discontinuities.
One weakness of the Aw–Rascle model is the fact that drivers operating at speed

u in traffic with local density ρ never adjust their vehicles’ operation to achieve the
maximum allowable speed, namely v(ρ). Here we shall account for that and replace
(1.7) by

∂

∂t
(u− v(ρ)) + u

∂

∂x
(u− v(ρ)) = − (u− v(ρ))

δ
,(1.21)

where 0 < δ is interpreted as a relaxation or adjustment time. Our model has the
same discontinuity structure as the Aw–Rascle model. The only difference is that
across contact discontinuities α−(t) = e−t/δα−(0) and α+(t) = e−t/δα+(0), where
(α−, α+)(0) = limε→0+(α(s(0)− ε, 0+), α(s(0) + ε, 0−)).

Our goal is an effective computational scheme for solving (1.6) and (1.21). In
section 2 we present such a scheme. It is based on a Lagrangian reformulation of
the system and leads naturally to a downwind integration scheme which is stable and
well behaved. This scheme exploits the fact that the system has no mechanism to
spontaneously generate contact discontinuities but does require additional smoothness
in the field α = u− v(ρ) at t = 0.

In section 3 we present some interesting numerical simulations.
Throughout, we restrict our attention to initial data u0(·) and ρ0(·) satisfying

0 ≤ u0(x) ≤ v(ρ0(x))(1.22)
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whenever ρ0(x) > 0. One consequence of our analysis is that for future times these
inequalities are preserved; that is,

0 ≤ u(x, t) ≤ v(ρ(x, t))(1.23)

whenever ρ(x, t) > 0. This assumption on the data was criticized by one reviewer and
we justify it by saying that our highway is populated by enlightened individuals who
drive safely. It was by no means obvious for the relaxation models that if the drivers
were enlightened at t = 0, then they would stay enlightened for all future times but,
in fact, this is the case.

2. Lagrangian reformulation and scheme I. Our first computational model
for the system (1.6) and (1.21) is based on an equivalent Lagrangian formulation. To
keep things simple we assume that the initial data satisfies

−v(ε) ≤ α0(x) ≤ 0(2.1)

and

ε ≤ ρ0(x) ≤ v−1(−α0(x))(2.2)

for −L < x < L. If L < ∞ we can allow ρ0(x) ≡ 0 for |x| > L. In this situation,
α0(x) is unspecified for |x| > L.

We let

M(x)
def
=

∫ x

0

ρ0(ξ)

ρmax
dξ, −∞ < x < ∞,(2.3)

define the constants M− and M+ by

M− = lim
x→−∞M(x) and M+ = lim

x→∞M(x),(2.4)

and for any M ∈ (M−,M+) we let χ0(M) be the unique solution of

M =

∫ χ0(M)

0

ρ0(ξ)

ρmax
dξ.(2.5)

We further suppose that (ρ, u, α) is a solution of the initial value problem

∂ρ

∂t
+

∂

∂x
(ρu) = 0,(2.6)

∂α

∂t
+ u

∂α

∂x
=

−α

δ
,(2.7)

u = v(ρ) + α,(2.8)

and

ρ(x, 0+) = ρ0(x) and α(x, 0+) = α0(x), −∞ < x < ∞;(2.9)

let x = χ(M, t) be the autotrajectory defined by

∂χ

∂t
= v(ρ(χ, t)) + α(χ, t) and χ(M, 0+) = χ0(M);(2.10)



EXTENSIONS OF A TRAFFIC MODEL OF AW AND RASCLE 733

and observe that (2.5), (2.6), and (2.10) imply that for any

M− < M1 < M2 < M+,

M2 −M1 =

∫ χ(M2,t)

χ(M1,t)

ρ(x, t)

ρmax
dx.

(2.11)

This latter identity in turn yields

γ(M, t)ρ(χ(M, t), t) ≡ ρmax,(2.12)

where

γ(M, t) =
∂χ

∂M
(M, t).1(2.13)

Moreover, if we let

A(M, t)
def
= α(χ(M, t), t),(2.14)

then (2.7), (2.8), and (2.10) imply that A satisfies

∂A

∂t
= −A

δ
, M− < M < M+,(2.15)

while (2.10) and (2.13) imply that

∂γ

∂t
=

∂

∂M
(ṽ(γ) +A), M− < M < M+.(2.16)

Here

ṽ(γ) = v

(
ρmax

γ

)
,(2.17)

and ρ → v(ρ) is the function introduced in (1.1). The system (2.15) and (2.16) is
solved subject to the initial conditions

A(M, 0+) = α0(χ0(M)) and γ(M, 0+) =
∂χ0

∂M
(M) =

ρmax

ρ0(χ0(M))
, M− < M < M+,

(2.18)

where, once again, χ0(·) is defined in (2.5). We note that the hypotheses v′(ρ) < 0
and (ρv′′(ρ) + 2v′(ρ)) < 0 imply that

∂ṽ

∂γ
= −ρmax

γ2
v′
(
ρmax

γ

)
> 0, γ ≥ 1,(2.19)

and

∂2ṽ

∂γ2
=

ρmax

γ3

(
ρmax

γ
v′′

(
ρmax

γ

)
+ 2v′

(
ρmax

γ

))
< 0.(2.20)

1This is a standard reformulation in gas dynamics; for details, see Courant and Friedrichs
[5, p. 30].
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Computational model. Our computational model is based on the Lagrangian
system (2.15) and (2.16). The fact that ∂ṽ

∂γ > 0 suggests using downwind differencing

in (2.16). Such differencing is, in fact, equivalent to applying a first order Godunov
scheme to (2.16). Our spatial grid has points

Mk
def
=

∫ x0
k

0

ρ0(ξ)

ρmax
dξ,(2.21)

and 0 < (∆M)k = Mk+1 −Mk.
In what follows, γn

k will denote the cell average of γ(·, n∆t) over (Mk,Mk+1),

(∆M)kγ
n
k =

∫ Mk+1

Mk

γ(M,n∆t)dM,(2.22)

and An
k will denote the point value

An
k = A(Mk, n∆t).(2.23)

We replace (2.16) with the downwind difference approximation

γn+1
k = γn

k +
∆t

(∆M)k

(
ṽ(γn

k+1) +An
k+1 − ṽ(γn

k )−An
k

)
(2.24)

and (2.17) with

An
k = A0

ke
−n∆t/δ = α0(χ0(Mk))e

−n∆t/δ.(2.25)

The trajectory updates are given by

xn+1
k = xn

k + ∆t (ṽ(γn
k ) +An

k ) ,(2.26)

and these satisfy

xn+1
k+1 − xn+1

k

(∆M)k
= γn+1

k .(2.27)

For completeness, we also update the density by

(
xn+1
k+1 − xn+1

k

)
ρn+1
k = ρmax(∆M)k.(2.28)

The numbers ρn+1
k are the cell averages of the density over the interval

(
xn+1
k , xn+1

k+1

)
.

Up to this point we have said nothing about boundary conditions. Based on (2.2)
we know that ρ0(x) ≥ ε on (−L,L). If L = +∞, then no boundary conditions are
necessary. If L < ∞ and ρ0 ≡ 0, x > L, then

M+ =

∫ L

0

ρ0(ξ)

ρmax
dξ < ∞.

In this situation, we impose the boundary condition

∂χ

∂t
(M+, t) = v(0) +A−(M+, t) = v(0) + α0

−(L)e−t/δ
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or its discrete analogue

xn+1
N+1 = xn

N+1 + ∆t(v(0) + α0
−(L)e−n∆t/δ).(2.29)

Here, the index (N + 1) is such that MN+1 = M+ =
∫ L

0
ρ0(ξ)
ρmax

dξ. In the region

x > χ(M+, t) the density will be zero; i.e., no cars are present. The situation where
ρ0(x) ≡ 0 for x < L is handled differently. No boundary condition is required. This
is because of the positivity of ∂ṽ

∂γ . If N1 < 0 is the index so that

−∞ < MN1
=

∫ −L

0

ρ0(ξ)

ρ

def
= M− < 0,(2.30)

then we use the standard updates (2.24) for this index. Of course, the actual solution
has the property that ρ(x, t) ≡ 0 for x < χ(M−, t).

Estimates for (2.24) and (2.25). We note that (2.17) and (2.20) imply that

max
γ≥1

(
∂ṽ

∂γ
(γ)

)
=

∂ṽ

∂γ
(1) = ρmax | v′(ρmax) | .

In what follows, we shall assume that ∆t is such that

ρmax | v′(ρmax) |
(∆M)k

∆t < 1.(2.31)

Lemma 2.1. Suppose that for all k in our computational index set

γn
k ≥ 1, 0 ≤ ṽ(γn

k ) +An
k , An

k ≤ 0,(2.32)

and that (2.31) holds. Then the same inequalities hold for index n + 1.
Proof. We first note that if ṽ(γn

k )+An
k+1 −An

k ≥ limγ→∞ṽ(γ) = v(0), then (2.24)

implies that γn+1
k ≥ γn

k ≥ 1. On the other hand, if ṽ(γn
k ) + An

k+1 − An
k < v(0), then

(2.32) implies that there exists a unique 1 ≤ Γn
k < ∞ such that ṽ(Γn

k ) = ṽ(γn
k+1) +

An
k+1 − An

k , and this latter identity, when combined with (2.24) and (2.31), implies

that 1 ≤ min(Γn
k , γ

n
k ) ≤ γn+1

k ≤ max(Γn
k , γ

n
k ). We now turn to establishing the

inequality ṽ(γn+1
k ) + An+1

k ≥ 0. If ṽ(γn
k+1) + An

k+1 − An
k ≥ v(0), then the inequality

γn+1
k ≥ γn

k ≥ 1 implies that ṽ(γn+1
k ) + An+1

k ≥ ṽ(γn
k ) + An

k + An+1
k − An

k , and our
induction hypothesis ṽ(γn

k )+An
k ≥ 0, together with An+1

k −An
k = (e−∆t/δ−1)An

k ≥ 0,
yields the desired result. On the other hand, if ṽ(γn

k+1) + An
k+1 − An

k < v(0), then

ṽ(Γn
k ) = ṽ(γn

k+1) + An
k+1 − An

k and min(Γn
k , γ

n
k ) ≤ γn+1

k ≤ max(Γn
k , γ

n
k ). If Γn

k < γn
k ,

then ṽ(γn+1
k ) + An+1

k ≥ ṽ(Γn
k ) + An+1

k = (ṽ(γn
k+1) + An

k+1) + (An+1
k − An

k ) ≥ 0. On

the other hand, if γn
k ≤ Γn

k , then ṽ(γn+1
k ) +An+1

k ≥ (ṽ(γn
k ) +Ak) + (An+1

k −An
k ) ≥ 0,

and this completes the proof.
The following lemma covers the situation where the initial data satisfies ρ0(x) ≥

ε > 0 on −∞ < x < ∞. This hypothesis, together with (2.18), guarantees that the
initial sequence satisfies γ0

k ≤ ρmax

ε .
Lemma 2.2. If ρ0(x) ≥ ε > 0 on −∞ < x < ∞ and (2.31) holds, then the

sequence {γn
k } defined in (2.24) satisfies

γn
k ≤ ρmax

ε

[
1 + max∞<x<∞ | α0

x(x) |
∆t

1− e−∆t/δ

]
.(2.33)
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Proof. The identities (2.24) and (2.25) imply that

γn+1
k =

(
1− ∆tcnk,k+1

(∆M)k

)
γn
k +

∆tcnk,k+1

(∆M)k
γn
k+1

+ ∆t
(

α0(χ0(Mk+1))−α0(χ0(Mk))
χ0(Mk+1)−χ0(Mk)

)(
χ0(Mk+1)−χ0(Mk)

(∆M)k

)
e−n∆t/δ,

(2.34)

where 0 ≤ cnk,k+1 =
ṽ(γn

k+1)−ṽ(γn
k )

γn
k+1−γn

k
≤ ρmax |v′(ρmax)|. Moreover, (2.31) implies that

0 ≤ ∆tcnk,k+1

(∆M)k
≤ 1, and thus (2.34) when combined with ∂χ0

∂M ≤ ρmax

ε implies that

Γn def
= max

k
(γn

k ) satisfies

Γn+1 ≤ Γn + ∆t
ρmax

ε
max∞<x<∞ | α0

x(x) | e−n∆t/δ,(2.35)

and (2.35) and Γ0 ≤ ρmax

ε then yield the desired upper bound.
We note that the estimates

1 ≤ γn
k ≤ ρmax

ε

[
1 + max−∞<x<∞ | α0

x(x) |
∆t

(1− e−∆t/δ)

]
,(2.36)

when combined with (2.28), imply that

ε[
1 + max−∞<x<∞ | α0

x(x) | ∆t
(1−e−∆t/δ)

] ≤ ρnk ≤ ρmax.(2.37)

In the situation where L < ∞ and ρ0(x) ≡ 0, x > L, we lose the upper bound (2.36).

The bound fails because for the index k = N , where MN+1 = M+ =
∫ L

0
ρ0(ξ)
ρmax

dξ, we
have

γn+1
N = γn

N +
∆t

(∆M)N

[
ṽ(∞)− ṽ(γn

k ) + (α0
−(L)− α0(χ0(MN )))e−n∆t/δ

]
,

and the argument used to establish Lemma 2.2 fails. In this situation we are left with
the estimates

1 ≤ γn
k , 0 ≤ ṽ(γn

k ) +An
k , and 0 ≤ ρnk ≤ ρmax.(2.38)

Our final estimate supplies a one sided bound for ∂γ
∂M . Here we require that the

points
{
x0
k

}
and {Mk} defined by

Mk =

∫ x0
k

0

ρ0(ξ)

ρmax
dξ(2.39)

satisfy

∫ x0
k+1

x0
k

ρ0(ξ)

ρmax
dξ ≡ ∆M, a constant.(2.40)

We also require that ρ0(x) ≥ ε > 0 on (−∞,∞).
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Lemma 2.3. If the hypotheses of the preceding paragraph hold, and if (2.31) is
valid, then

max
k

(
max

[
0,

γn
k+1−γn

k

∆M

])
≤ max

k

(
max

[
0,

γ0
k+1−γ0

k

∆M

])

+ max
M

∣∣∣∂2α0(χ0(M))
∂M2

∣∣∣ ∆t
1−e−∆t/δ .

(2.41)

Proof. We observe that (2.24) with (∆M)k ≡ ∆M implies that

γn
k+1 − γn

k

= (γn−1
k+1 − γn−1

k ) + ∆t
∆M

(
ṽ(γn−1

k+2 )− ṽ(γn−1
k+1 )

)− ∆t
∆M

(
ṽ(γn−1

k+1 )− ṽ(γn−1
k )

)

+ ∆t
∆M

(
α0(χ0(Mk+2))− 2α0(χ0(Mk+1)) + α0(χ0(Mk))

)
e−(n−1)∆t/δ

=
(
1− ∆t

∆M ṽ′(γn−1
k+1 )

)
(γn−1

k+1 − γn−1
k ) + ∆t

∆M ṽ′(γn−1
k+1 )(γn−1

k+2 − γn−1
k+1 )

+ ∆t
2∆M ṽ′′(θn−1

k,k+1)(γ
n−1
k+1 − γn−1

k )2 + ∆t
2∆M ṽ′′(θn−1

k+1,k+2)(γ
n−1
k+2 − γn−1

k+1 )2

+ ∆t
∆M

(
α0(χ0(Mk+2))− 2α0(χ0(Mk+1)) + α0(χ0(Mk))

)
e−(n−1)∆t/δ.

(2.42)

Moreover, (2.42) and ṽ′′ < 0 imply that

max
k

(
max

[
0,

γn
k+1−γn

k

∆M

])
≤ max

k

(
max

[
0,

γn−1
k+1 −γn−1

k

∆M

])

+ ∆tmax
M

∣∣∣∂2α0

∂M2 (χ0(M))
∣∣∣ e−(n−1)∆t/δ,

(2.43)

and (2.43), together with ∆t
∑n−1

k=0e
−k∆t/δ ≤ ∆t

1−e−∆t/δ , yields the desired result.
We note that if our time step ∆t is chosen so that

∂ṽ

∂γ
(1)

∆t

∆M
= ρmax|v′(ρmax)| ∆t

∆M
= µ ∈ (0, 1),

then the estimate (2.41) implies that

PV (γ(M,n∆t)) ≤ PV (γ(M, 0+))

{M1 < M < M2} {M1 < M < M2 + ρmax|v′(ρmax)|
µ (n∆t)}

+ max
M

∣∣∣∂2α0(χ0(M))
∂M2

∣∣∣ (M2 + ρmax|v′(ρmax)|
µ (n∆t)−M1

)
.

Here PV denotes the positive variation. This latter estimate, together with the results
of Lemma 2.2, also implies that the total variation of γ(·, n∆t) over (M1,M2) is a
priori bounded in terms of the initial data, and this latter estimate is sufficient to
guarantee that our approximate solutions converge to weak solutions of (2.15), (2.16),
and (2.18). The one sided estimate (2.41) also guarantees that our weak solutions
satisfy γ− > γ+ (equivalently ρ− < ρ+) across shocks.

3. Simulations. The computations which we present here were computed using
the Lagrangian formulation of section 2; in particular (2.25)–(2.28). The graphical
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displays render the piecewise constant cell averages, {ρnk}, and particle velocities,
un
k = v(ρnk ) + An

k , versus the current particle positions {xn
k}. In these computations

we also introduced adaptivity to maintain resolution of the density. In particular, if
(xn

k+1 − xn
k ) exceeds a prescribed threshold, then we introduce a new particle ξnk =

(
xn
k+xn

k+1

2 ), locally modify ρ and A by

(ρnew)n(x) = ρnk , xn
k < x < xn

k+1 and (αnew)n(x) =




An
k , x = xn

k ,

An
k+An

k+1

2 , x = ξnk ,

An
k+1, x = xn

k+1,

(3.1)

and then perform our update.
All simulations were run with δ = 1 and

v(ρ) = 1− ρ(3.2)

or equivalently

ṽ(γ) = 1− 1

γ
,(3.3)

where

γ = 1/ρ.(3.4)

The first simulation is as run with the initial data

ρ0(x) =




0, x < −1,
.4, −1 < x < 0,
.2, 0 < x < 1,
.4, 1 < x < 2,
0, 2 < x,

(3.5)

and

α0(x) =




0, x < −1,
−(sin2(πx))/3, −1 ≤ x ≤ 2,
0, 1 < x.

(3.6)

At t = 0 our initial distribution of grid points was

x0
k =




−1 + k
400 , 0 ≤ k ≤ 400,

0 + (k−400)
200 , 401 ≤ k ≤ 600,

1 + (k−600)
400 , 601 ≤ k ≤ 1000.

(3.7)

With this distribution

∆x =




1
400 , 0 ≤ k ≤ 399,

1
200 , 400 ≤ k ≤ 599,

1
400 , 600 ≤ k ≤ 999,

(3.8)
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and

∆m = .001.

Of course our regridding or particle addition algorithm destroys the constancy of ∆m.
We regridded whenever xn

k+1 − xn
k ≥ 1/100.

Snapshots of the solution are shown at times t = 1, 2, 3, 4, 5, and 10 in Figures 1–6.
By time t = 10 we have achieved the quasi-steady profile with contact discontinuities
at the leading and trailing edge of the traffic and a rarefaction wave in-between.
Behind the trailing contact and ahead of the lead contact we have ρ ≡ 0. The top
figure in each frame shows the density distribution, the middle shows the velocity
profile and the bottom figure shows the α profile. To maintain continuity in these
graphs we have set α = 0 and u = 1 in the regions where ρ = 0.

Fig. 1.

The second simulation was run with the periodic initial data

ρ0(x) = .1 + .4 sin2(πx) and α0 = −.2 sin2(πx).(3.9)

This of course yields an initial velocity profile

u0(x) = .9− .6 sin2(πx).(3.10)

Our initial particle positions were

x0
k =

k

400
, −∞ ≤ k < ∞,(3.11)

and we regridded whenever xn
k+1 − xn

k ≥ 1
200 . Snapshots of this solution (over four

spatial periods) are shown at times t = .1, .3, .5, .7, 2, and 4 in Figures 7–12. By this
latter time, the solution has converged to a familiar N wave.
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Fig. 2.

Fig. 3.

Movies of these simulations may be found on the author’s web site (http://www.
math.cmu.edu/math/people/greenberg.html). Click on traffic1.mpg for the first sim-
ulation and traffic2.mpg for the second one.
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Fig. 4.

Fig. 5.
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Fig. 6.

Fig. 7.



EXTENSIONS OF A TRAFFIC MODEL OF AW AND RASCLE 743

Fig. 8.

Fig. 9.
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Fig. 10.

Fig. 11.
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Fig. 12.
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