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The basic concepts of the Landau theory of phase transitions are introduced through working examples.

A number of rules governing the application of the theory to second and first-order transitions are

given. The approach to magnetostructural transitions in magnetic mulltiferroic materials is detailed.

Examples of transitions induced by replica of the same order-parameter in superconducting and liquid

crystal systems, are described. The theory of reconstructive transitions is outlined and illustrated by

the examples of the graphite-diamond transition and by the phase diagram of iron. An extention of

the phenomenological approach to incommensurate structures to the crystal-amorphous transition is

proposed (see also the chapter by Perez-Mato et al. for further discussion and applications).

1. INTRODUCTION

In the pioneering article of Landau [1] the phenomenological theory of phase transitions intended to

establish the mutual compatibility of the symmetry and physical characteristics of a phase transition:

Relationship between the symmetry of the phases, consistency between the nature of the symmetry

change and the nature of the physical quantities behaving anomalously across the transition. This

aim was achieved by means of introducing the concepts of order-parameter and Landau free-energy.

Although in its initial formulation the theory considered the simple case of continuous (second-order)

transitions induced by a single irreducible representation between group-subgroup related phases, it

proved subsequently to apply, providing suitable extensions, to discontinuous (first-order) transitions

[2], to transitions associated with several order-parameters [2], or to reconstructive transitions involving

a loss of the group-subgroup relationship [3]. The theory was used to describe almost all types of

phase transitions occurring in hard or soft condensed matter physics, such as structural and magnetic

transitions in crystalline materials [4], the superconducting [5] and superfluid [6] transitions, the liquid-

solid [7] and liquid-vapour [8] transitions, and the variety of transitions disclosed in liquid crystals [9]

and complex fluids [10]. After introducing the basic concepts of the Landau theory (Sec. 2) and some

rules governing its application (Sec. 3), we describe recent extensions and selected applications of the

theory: Application to multiferroic materials (Sec. 4), to unconventional superconductors and liquid-

crystal systems (Sec. 5), to reconstructive transitions (Sec. 6), and to the formation of the amorphous

state (Sec. 7).

2. BASIC CONCEPTS OF THE LANDAU THEORY

2.1 Non-equilibrium free-energy and order-parameter

Let us introduce the basic concepts of the Landau theory through the example of a ferroelectric phase

transition occurring at the critical temperature Tc in a crystal having a tetragonal paraelectric structure,
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Figure 1. Unit-cell of the parent structure with tetragonal 4/mmm symmetry. �p shows the displacement of the M+

ion at the transition, while the M− ions are not shifted.

Table 1. Transformation of the polarization components under the symmetry operations of the crystallographic
point-group 4/mmm.

denoted I, with 4/mmm point-group symmetry (Figure 1). Its vertices and its centre are respectively

occupied by negative (M−) and positive (M+) ions. The ferroelectric phase II, stable below Tc, results

from the displacement of the M+ ions out of the centre of the cell, in an unspecified direction. As this

displacement generates an electric dipole �p, phases I and II are characterized by �p = 0 and �p �= 0,

respectively, and at the macroscopic level by �P = 0 and �P �= 0, where �P is the electric polarization

representing the sum of the dipoles over the unit volume.

The first concept of the Landau theory is that the I → II phase transition can be described by a

non-equilibrium free-energy F (T , �P ) expressed as a truncated Taylor expansion of the �P components,

the equilibrium values of the �P components in the I and II phases corresponding to absolute minima of

F with respect to the (Px , Py , Pz) variables. Such expansion is justified by the assumption of continuity

of the phase transition in two different meanings: 1) The components vary continuously across Tc and

therefore take small values close below Tc; 2) F is a continuous and derivable function of T and �P .

The new idea is that F is invariant by the symmetry operations of the parent phase I and is therefore

formed by invariant monomials of the �P components. Table 1 shows the transformation of (Px , Py , Pz)

by the symmetry operations of 4/mmm. One can verify that only quadratic (P 2
z , P 2

x + P 2
y ) and higher

even-degree monomials (P 4
z , P 6

z , P 4
x + P 4

y , P 2
x P 2

y ) remain invariants. Minimization of

F (T , �P ) = F0(T ) + a1P 2
z + a2(P 2

x + P 2
y ) + ... (1)

with respect to Px , Py and Pz yields the equations of state

�F

�Pz

= 2a1Pz + ... = 0,
�F

�Px

= 2a2Px + ... = 0,
�F

�Py

= 2a2Py + ... = 0. (2)

and the stability conditions

�2F

�P 2
z

= 2a1 + ... ≥ 0,
�2F

�P 2
x

= 2a2 + ... ≥ 0,
�2F

�P 2
y

= 2a2 + ... ≥ 0. (3)

Equations (2) and (3) show that phase I ( �P = 0) is stable for positive values of a1 and a2. Accordingly,

phase II ( �P �= 0) can take place below Tc as a stable state only if a1 or a2 become negative. It means
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Figure 2. (a) Regions of the pressure-temperature plane corresponding to different signs of the phenomenological
coefficients a1 and a2. (b) Figure illustrating the vanishing of the coefficient a1 at a continuous transition while a2

remains positive.

that one of these coefficients has to change its sign at the transition, i.e., a1 or a2 is equal to a0(T − Tc)

with a0 > 0. Here comes an important result of the Landau model: Either a1 or a2 changes its sign at

T = Tc , but both coefficients cannot change their sign simultaneously. It means that below Tc the M+

ion can move either along the z axis or in the (x, y) plane but not in a general direction. This result stems

from the property, illustrated by Figures 2(a) and 2(b), that a simultaneous vanishing at Tc of a1 and a2

should be observable at a single point of a two-dimensional (e.g. Temperature-Pressure) phase diagram

(Fig. 2 (a)) and would lead to a ferroelectric state II, the symmetry of which would be modified by a

vanishingly small variation of the external variables (temperature or pressure). Since the Landau model

aims to describe a ferroelectric state stable within a finite range of temperature and pressure, one has to

conclude that only one coefficient, let say a1, changes it sign at Tc (Fig. 2 (b)), the other coefficient (a2)

remaining positive within a certain interval close to Tc. In this interval one has a2 = 0 above and below

Tc. Therefore the useful form of F reduces to

F (T , Pz) = F0(T ) + a1P 2
z + b1P 4

z + ... (4)

Minimization of F truncated at the fourth-degree is expressed by the equations:

Pz(a1 + 2b1P 2
z ) = 0 and a1 + 6b1P 2

z ≥ 0 (5)

which give the equilibrium values of Pz indicated in Fig. 3:

P e
z = 0 for T ≥ Tc and

P e
z = ±

[

a0(Tc − T )

2b1

]1/2

(6)

for T < Tc, under the condition b1 > 0. The variable Pz whose equilibrium is zero above Tc and

becomes non-zero below Tc is the transition order-parameter. The property that a single quadratic

invariant coefficient (a1) becomes negative at the transition can be formulated in group-theoretical terms,

by considering the set of one and two-dimensional matrices given in Table 1, which transform as Pz and

(Px , Py), respectively. These matrices form two among the irreducible representations of the 4/mmm

point-group. Therefore, the Landau theory shows that a continuous transition is induced by a single
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Figure 3. Temperature dependence of P e
z , given by Eq. (6), across the transition.

Figure 4. (a) Plot of F (T , Pz) − F0(T ), given by Eq. (4), for three characteristic temperatures. (b) Plot of
F (T , Px , Py) − F0(T ), given by Eq. (7), for T < Tc.

irreducible representation of the parent symmetry group. The dimension of the matrices (here one or

two) determines the order-parameter dimensionality.

2.2 Low-symmetry phases. Domains. Critical behaviour

A number of classical results of the Landau theory can be deduced from the preceding model:

1) Symmetry of the low-temperature phase is a subgroup G of the parent symmetry-group G0 =
4/mmm, formed by the symmetry operations leaving invariant the order-parameter considered as

a direction in a vector space. In the one-dimensional vector space Pz , Table 1 shows that G =
4 mm. In the two-dimensional vector space (Px , Py) the invariant directions are (Px , 0), (Py , 0), and

(Px , Py), (−Px , Py) with Px = Py , corresponding to absolute minima of the fourth-degree expansion:

F (T , Px , Py) = F0(T ) + a2(P 2
x + P 2

y ) + b2(P 2
x + P 2

y )2 + b3P 2
x P 2

y (7)

and to the G-groups 2x mm, 2y mm, 2xy mm and 2x̄y mm.

2) The low-temperature states split into energetically equivalent domains of identical symmetries,

the number of which is determined by the ratio between the order of G0 (13) and the order of G (8

or 4). Therefore, two ferroelectric domains (±Pz) coexist in the G = 4mm state (Fig. 4(a)), whereas

four domains (Fig. 4(b)) are found for each of the two classes of mm2 states [(±Px , 0), (0, ±Py)] and

[±Pxy , ±Px̄y]. The domains transform into one another by the symmetry operations lost at the G0 → G

symmetry change.

3) The critical behaviour of measurable physical properties related to first or second derivatives

of F , can be obtained, namely (i) the order-parameter Pz given by Eq. (6), varying as ≈ (Tc − T )1/2
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Figure 5. Critical behaviour at a second-order phase transition associated with the free-energy F (T , Pz) for: (a) the
entropy S(T ), (b) the specific heat CEz(T ) and (c) the dielectric susceptibility �E(T ).

(Fig. 3), (ii) the entropy S = −( �F
�T

)Pz
which displays no discontinuity at Tc (Fig. 5 (a)), implying zero

latent heat L = Tc�S(Tc) at the transition, (iii) the specific heat CEz
= T

(

�S
�T

)

Ez
at constant field Ez

conjugated to the order-parameter Pz , which undergoes an upward discontinuity at Tc (Fig. 5(b)), and

(iv) the dielectric susceptibility � = LimEz→0
�Pz

�Ez
which diverges at Tc following the Curie-Weiss law

(Fig. 5 (c)). The continuity across Tc of the physical quantities Pz and S, related to first derivatives of F ,

and the discontinuity of CEz
and �, corresponding to second derivatives of F , characterize second-order

phase transitions, as defined by Ehrenfest [11].

2.3 Secondary order-parameters. Improper ferroelectric transitions

The preceding considerations have been restricted to the “primary” order-parameters, Pz or (Px , Py),

the symmetry-breaking of which determines the essential properties of the phase transition at Tc, such

as the symmetry of the stable state(s) which may arise below Tc, the domain pattern and the shape

of the critical anomalies at the transition. Other physical quantities may arise below Tc, which do not

modify the preceding properties but may influence secondary features of the phase diagram. In our

introductory example, an eventual deformation of the unit-cell along z induced by the displacement of

the M+ ion, which is expressed by the strain-tensor component ezz = (z − z0)/z0, constitutes an example

of secondary (non-symmetry-breaking) order-parameter. In order to determine the influence of ezz on

the transition behaviour, one has to include in the free-energy F the lowest degree coupling invariant

between ezz and the primary order-parameter Pz as well as the elastic energy 1
2
C33e2

zz . F reads:

F (T , Pz , ezz) = F (T , Pz) + cP 2
z ezz + 1

2
C33e2

zz (8)

Minimizing with respect to ezz gives:

ee
zz = − c

C33

P 2
z = − ca0

2b1C33

(Tc − T ) (9)

below Tc, and ee
zz = 0 for T ≥ Tc (Fig. 6. (a)). Replacing in Eq. (8) ezz by its equilibrium value given

by Eq. (9), one gets the renormalized free energy

F (T , Pz) = F0(T ) + a1P 2
z +

(

b1 − c2

2C33

)

P 4
z (10)

It shows that the secondary order-parameter ezz renormalizes the fourth-degree coefficient. It therefore

influences the limit of stability of the phases and the amplitude of the critical anomalies, but the

phase diagram remains unchanged. The temperature dependences of ee
zz , which varies linearly with

(Tc − T ) (Fig. 6(a)), and of the elastic susceptibility Lim�zz→0

�ezz

��zz
, which undergoes a step-like jump

at Tc (Fig. 6(b)), show that secondary order-parameters display a different critical behaviour than the

primary order-parameter.
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Figure 6. Temperature dependence of (a) the secondary order-parameter ezz given by Eq. (9); (b) the corresponding
elastic susceptibility �e.

In our introductory example, the electric polarization is the primary order-parameter since it is

directly correlated to the symmetry-breaking transition mechanism consisting of the displacement of the

M+ ions. One deals here with a proper ferroelectric transition. However, the spontaneous polarization

may also be a secondary order-parameter, the primary symmetry-breaking mechanism corresponding to

a set of displacements inducing indirectly the formation of electric dipoles. In this case one speaks of

an improper ferroelectric transition. This denomination is also used for ferroelastic transitions in which

a spontaneous strain may constitute either the primary or the secondary order-parameter.

3. FIRST-ORDER TRANSITIONS. RULES GOVERNING THE APPLICATION

OF THE LANDAU THEORY

3.1 First-order phase transitions

A large majority of the experimentally observed structural phase transitions are discontinuous [2].

When a group-subgroup relationship is preserved between the phases, discontinuous transitions can be

nevertheless described theoretically, using the concepts introduced in Sec. 2 for continuous transitions.

As a first example let us consider the free-energy given by Eq. (4), describing the paraelectric-

ferroelectric transition I → II, in which the stability condition b1 > 0 was assumed. For b1 < 0 there

exists for T < Tc, no stable minimum of F truncated at the fourth degree. Expanding F at the sixth

degree

F (T , Pz) = F0(T ) + a1P 2
z + b1P 4

z + c1P 6
z (11)

and assuming a1(T − Tc), b1 < 0 and c1 > 0, the equations minimizing F , which are

Pz(a1 + 2b1P 2
z + 3c1P 4

z ) = 0 and a1 + 6b1P 2
z + 15c1P 4

z ≥ 0 (12)

provide the following description, summarized in Fig. 7, for the transition between phases I and II. For

T > T2 = Tc + b2
1

3a0c1
phase I (P e

z = 0) is the only stable phase. At T = T2 phase II, corresponding to

P e
z = ±

[

−b1 +
(

b2
1 − 3a0c1(T − Tc)

)1/2

3c1

]1/2

(13)

arises as a metastable state, associated with a secondary minimum in the non-equilibrium curve of

F (T , Pz) − F0(T ). On cooling the stability increases and phases I and II become equally stable at

T1 = Tc + b2
1

4a0c1
. Below T1 phase I becomes metastable down to Tc where it becomes unstable. Therefore,

discontinuous transitions are characterized by the following properties: 1) A region of coexistence

between phases I and II in the temperature interval �T = T2 − Tc = b2
1

3a0c1
in which the two phases are

alternately metastable. The transition may occur at any temperature within the interval. However, the

most probable transition temperature is T1, corresponding to an equal stability for the two phases. The
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Figure 7. Temperature dependence of the non-equilibrium Landau expansion F − F0 given by Eq. (11).

Figure 8. Temperature dependence of (a) the order-parameter, (b) the entropy and (c) the susceptibility associated
with the order-parameter, across a first-order transition.

existence of a region of coexistence for the two phases implies a thermal hysteresis on cycling across

the transition, i.e, the transition does not take place at the same temperature on cooling and heating.

2) A discontinuous jump �P e
z (T1) = (− b1

6c1
)1/2 of the equilibrium order-parameter P e

z at the transition

(Fig. 8(a)).

3) A latent heat at T1 (Fig. 8(b)) which results from the order-parameter discontinuity, given by

L = T1�S(T1) = a0T1[�P e
z (T1)]2 = − a0b1T1

6c1
. As for P e

z and S, a discontinuity will be also observed for

all physical quantities related to first derivatives of F , such as the volume or the spontaneous strains.

Therefore, discontinuous transitions are first-order transitions following Ehrenfest classification [11].

4) Specific discontinuities at T1 for the physical quantities related to second derivatives of F .

Figures 8(c) shows, for example, the temperature-dependence of the dielectric susceptibility, which

undergoes a finite upward jump on cooling across T1.

Figure 9 summarizes the phase diagram involving a second-order (b1 > 0) and first-order (b1 < 0)

transitions. The cross-over between the two regimes occurs at a tricritical point corresponding to

b1(Tc) = 0 and a1(Tc) = 0.

3.2 Integrity basis. Rule for truncating the Landau free-energy. Number of low-symmetry

stable states

The Landau free-energy given by Eq. (4) or Eq. (11) can be expanded using a single invariant of the

order-parameter ℑ = P 2
z and its successive powers ℑ2, ℑ3, . . . By contrast the free-energy defined by

Eq. (7) requires two independent invariants ℑ1 = P 2
x + P 2

y and ℑ2 = P 2
x P 2

y . ℑ and (ℑ1, ℑ2) form the

integrity basis associated with the order-parameters Pz and (Px , Py), respectively. In a more general

way, the integrity basis associated with a given order-parameter is the set of independent invariant

monomials which can be formed from the order-parameter components. The concept of integrity basis
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Figure 9. Phase-diagram in the (a1, b1) plane, corresponding to the Landau expansion given by Eq. (11). The
tricritical point Tc separates the second-order transition line T = Tc from the first-order transition curve T = T1.
The temperature dependence of F − F0 is shown in significant regions of the phase-diagram.

Figure 10. Orbit spaces associated with the order-parameters (a) Pz and (b) (Px , Py).

allows determining the necessary degree at which one has to expand a free-energy F in order to disclose,

from the minimization of F , the full set of stable states associated with a given order-parameter.

Rule 1: If n is the highest-degree of the monomials forming the integrity basis, one has to truncate the

free-energy at the degree 2n for a second-order transition from the parent phase, and at the degree 2n+2

for a first-order transition.

In the case of F (Pz), n = 2 and F has to be expanded at the fourth-degree for a second-order

transition (Eq. (4)), and at the sixth-degree for a first-order transition (Eq. (11)). For F (Px , Py), n = 4

and F should be expanded at not less than the eighth-degree. Therefore, the fourth-degree at which the

free-energy given by Eq. (7) is expanded does not account for the full set of stable states associated with

the order-parameter (Px , Py). One can show that expanding F (Px , Py) at the eighth-degree stabilizes an

additional phase, corresponding to Px �= Py and to the lower symmetry mz , associated with a general

displacement of the M+ ion in the (x, y) plane.

In order to predict the number of stable states N associated with a given order-parameter one

can construct the phase diagram in the space of the order-parameter invariants (the orbit-space).

Figures 10(a) and 10(b) show such phase diagrams for Pz and (Px , Py). One can verify that the stable

states correspond to the origin (the parent phase), and to curves and surfaces of the orbit space (the low

symmetry states) merging at the origin.

Rule 2: The low-symmetry stable state associated with a given order-parameter corresponds to curves

merging at the origin of the orbit-space, to surfaces limited by the curves, and to volumes limited by the
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surfaces. Surfaces are associated with subgroups of the limiting curves, and volumes to subgroups of

the limiting surfaces.

The preceding rule applies straightforwardly when the orbit space has a dimension m ≤ 3. For

m > 3 one deals with hyper-surfaces and hyper-volumes and it is more practical to consider projections

(cuts) of the orbit-space on two-or-three-dimensional spaces. In the particular case where m is equal

to the order-parameter dimensionality n (m = n), the total number of stable states for groups generated

by reflexions is N = 2n. This is the case for thePz and (Px , Py) order parameters for which one has,

respectively, m = n = 1, and m = n = 2. Therefore the number of stable states are respectively N = 2

and N = 22 = 4.

3.3 Dependence of the phenomenological coefficients on external variables

In the free-energies F (T , Pz) and F (T , Px , Py) only one phenomenological coefficient, a1 or a2

corresponding to the quadratic invariants P 2
z or P 2

x + P 2
y , has been assumed to vary linearly and

critically with temperature. The theoretical phase diagram resulting from a Landau model, shown for

example in Fig. 9, is drawn in the space of the free-energy coefficients. In order that the theoretical phase

diagram reflects the experimental phase diagram, one has to follow precise rules, deduced from the

theory of Singularities [12], for determining the coefficients varying with external variables (T , P , x, ...)

and the form of their dependence on the external variables. 1) The number of varying coefficients

should be equal to the number of external variables, i.e., one-two-or-three dimensional phase diagrams

require a dependence of one-two-or-three coefficients, respectively, on the external variables. 2) Only the

coefficients, whose sign determines the stability of the phases can be assumed to depend on the external

variables. The remaining coefficients remain constant. 3) The coefficient of the highest degree invariant

in the free-energy is always a positive constant. 4) The coefficient of the quadratic invariant depends

linearly and critically on the external variable inducing the transition (e.g; the temperature). Such linear

dependence ensures that the experimental phase diagram can be deduced from the theoretical phase

diagram by a linear transformation preserving its singularities. However, the preceding coefficient, as

well as coefficients of higher power invariants may depend nonlinearly on the other external variables

(e.g. pressure or concentration). The non-linear dependence may involve integer or fractional powers of

the external variables.

According to the preceding rules, the phase diagram associated with F (T , Pz) expanded at the

fourth-degree (Eq. (4)) is necessarily one dimensional, since b1 is a positive constant, and a1 can

be assumed to vary in function of the single external variable T . Expanding F (T , Pz) at the sixth-

degree (Eq. (11)) allows constructing the two-dimensional phase diagram of Fig. 9. Assuming c1 > 0,

one can simply take a1 = a0(T − Tc) and b1 = b0(P − Pc) (a0 > 0, b0 > 0) for preserving the main

topological features of the theoretical phase diagram in the Temperature-Pressure phase diagram,

namely, a parabolic shape for the first-order transition curve T1(P ) = Tc + b2
0(P−Pc)2

4a0c1
and a tricritical

point at T1(Pc) = Tc.

Figures 11(a)–(c) show different two-dimensional phase diagrams associated with the (Px , Py) order-

parameter for an eighth-degree expansion:

F (T , P , Px , Py) = F0(T , P ) + a1ℑ1 + a2ℑ2
1 + a4ℑ4

1 + b1ℑ3 + b2ℑ2
3 + c13ℑ1ℑ3 (14)

where ℑ1 = P 2
x + P 2

y and ℑ3 = ℑ2
1 − 8ℑ2, with ℑ2 = P 2

x P 2
y . One can verify that the topological features

of the phase diagram associated with a given order-parameter can be modified depending on the signs

and values of the phenomenological coefficients. However, a number of features are preserved, which

can be foreseen from the topology of the phase-diagram in the orbit space (Fig. 10(b)), as for example

the existence of four distinct phases, the region of stability of the lower symmetry phase IV, which is

always found between phases II and III, or the property of phases II and III to be reached directly from

phase I across a second-or-first-order transition line. Note that in the free-energy expansion, given by
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Figure 11. Phase diagrams in the (a1, b1) plane, associated with the eighth-degree expansion given by Eq. (14),

corresponding to (a) a4 < 8b2, c13 > 0 and
c2

13

4b2
< a2 <

c2
13

32a4
; (b) c13 > 0 and 0 < a2 <

c2
13

4b2
; (c) a2 < 0 and 4a2b2 <

c2
13. Dashed, full, and dashed-dotted curves correspond, respectively, to second-order, first-order, and limit of

stability curves.

Table 2. Set of matrices associated with the three-dimensional irreducible representation T2u of the P m3̄m space-
group at the centre of the primitive-cubic Brillouin-zone.

Eq. (14), a number of high-degree invariants have been neglected, such as ℑ3
1 or ℑ2

1ℑ3, which can be

shown to modify non-essential aspects of the phase diagrams, as the shape of the transition lines or the

width of the metastability regions. Here, Pressure-Temperature phase diagrams can be deduced from

the theoretical phase diagrams by assuming a linear temperature and pressure dependence for a1 and b2,

while the other coefficients remain constant.

3.4 Application to Barium titanate

Let us illustrate the theoretical considerations presented in the preceding sections by the concrete

example of Barium titanate. The parent phase of BaTiO3 corresponds to the cubic perovskite structure

of symmetry P m3̄m. The order-parameter associated to the sequence of ferroelectric phases [13]

P m3̄m → 120◦C → P 4mm → 5◦C → Amm2 → −90◦C → R3m is formed by the three components

(Px , Py , Pz) of the polarization, which span a three-dimensional irreducible representation (denoted T2u)

of the P m3̄m space-group, at the centre of the primitive-cubic Brillouin-zone. Table 2 gives the 48

matrices corresponding to the image-group (the set of distinct matrices) of T2u. From the transformation

00007-p.10



Contribution of Symmetries in Condensed Matter

Figure 12. Topology of (a) the orbit space (ℑ1, ℑ2, ℑ3) of Barium titanate deduced from Fig. 13, and (b) cross-
section (ℑ2, ℑ3) of the orbit space.

Figure 13. Symmetry relationship between the possible stable states associated with the three-component order-
parameter inducing the ferroelectric transitions in BaTiO3. The equilibrium values of the polarization components
and the number of ferroelectric domains are indicated for each stable state.

properties of these matrices, the following independent invariants, forming the integrity basis of T2u,

can be constructed: ℑ1 = P 2
x + P 2

y + P 2
z , ℑ2 = P 4

x + P 4
y + P 4

z and ℑ3 = P 2
x P 2

y P 2
z . Since the number of

invariants m=3 is equal to the dimensionality n = 3 of the order-parameter, the number of distinct stable

states permitted by the symmetry of the order-parameter is 23 = 8. Figure 12 shows the location of the

phases in the orbit spaces (ℑ1, ℑ2, ℑ3) and (ℑ2, ℑ3). Figure 13 summarizes the space-group symmetries

of the phases, the corresponding invariant directions in the three-dimensional order-parameter space,

which can be obtained from the matrices of T2u, and the number of ferroelectric domains for each low-

symmetry phase. In addition to the three ferroelectric phases reported in BaTiO3, four lower symmetry

phases having the symmetries P m, Cm or C1 display regions of stability in the phase diagram. In order

to obtain the full set of stable phases, the free-energy should be expanded at not less than the twelfth

degree. Neglecting a number of high-degree invariants, one can take:

F (T , P , Px , Py , Pz) = F0(T , P ) + a1ℑ1 + a2ℑ2
1 + a3ℑ3

1 + a4ℑ4
1 + b1ℑ2 + b2ℑ2

2 + d1ℑ3

+c12ℑ1ℑ2 + c13ℑ1ℑ3 + c112ℑ2
1ℑ2 + d2ℑ2

3 (15)

When F is truncated at the sixth degree, the theoretical phase diagram contains the three ferroelectric

phases actually found in BaTiO3 (Fig. 14(a)), or only two of them (Fig. 14(b)). An eighth-degree

expansion allows stabilization of one more phase of Cm (Fig. 14(c)) or P m (Fig. 14(d)) symmetry. Only

a twelfth-degree expansion permits the full set of low-symmetry phases to be stabilized. The corre-

sponding three-dimensional phase diagram, shown in Fig. 15, requires three varying external variables.

The proper paraelectric-ferroelectric transitions in Barium titanate are also improper ferroelastic

transitions, the spontaneous strains corresponding to secondary order-parameters. This can be foreseen

by the number of ferroelastic domains arising in each phase, which corresponds to half of the number
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Figure 14. Selected phase diagrams in the (a1, b1) plane, associated with the Landau expansion given by Eq. (15)
truncated at the sixth degree (Figures (a) and (b)) and at the eighth degree (Figures (c) and (d)).

Figure 15. Three-dimensional phase-diagram in (a1, b1, d1) space, corresponding to the twelve-degree expansion
given by Eq. (15).

of ferroelectric domains. For example, the tetragonal P 4mm phase displays six ferroelectric domains,

corresponding to ±Px , ±Py and ±Pz . Each pair of ferroelectric domains is coupled to a single

ferroelastic domain, as shown in Fig. 16, via the coupling invariants: P 2
z (2ezz − exx − eyy), P 2

y (2eyy −
ezz − exx) and P 2

x (2exx − eyy − ezz).

4. PHASE TRANSITIONS INDUCED BY SEVERAL ORDER-PARAMETERS: THEORY

OF MAGNETIC MULTIFERROICS

4.1 Phase diagrams associated with a reducible order-parameter

The transitions examined in the preceding sections were related to a single irreducible order-parameter,

in agreement with the essential statement of the Landau theory which associates a phase transition to a

single irreducible representation. There exist, however, experimentally observed phase transitions which
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Figure 16. Configuration of the unit-cell for the six ferroelectric domains and three ferroelastic domains associated
with the P 4mm phase of BaTiO3. Ps and es denote the corresponding spontaneous polarization and strain.

have to be connected to more than one irreducible order-parameter. Referring to Fig. 2(b), two main

situations can be met: 1) The transition associated with the Pz order-parameter occurs discontinuously

at T1 > Tc and triggers the vanishing of the a2 coefficient at T1, giving rise below T1 to a phase

displaying non-zero equilibrium values of Pz and (Px , Py). The symmetry of this phase corresponds

to the intersection of the symmetries induced by both order-parameters. Such situation, first described

by Holakovsky [14], is found in a number of structural transitions. 2) Another situation, described

by Lifshitz [15], corresponds to a sequence of two successive second-order transitions taking place

consecutively at Tc1 and Tc2. The first transition at Tc1, corresponds to the vanishing of a1, with the

spontaneous onset of a Pz component, whereas the second transition at Tc2 gives rise to spontaneous

values of (Px , Py). The symmetry of the phase arising below Tc2 will reflect the coupling of both

order-parameters Pz and (Px , Py), although only one symmetry breaking mechanism associated with

(Px , Py) is involved. This situation, which is realized in a number of magnetic multiferroic compounds,

is described in the following subsections.

4.2 Theoretical description of the sequence of phase transitions in MnWO4

4.2.1 Phenomenological description at zero magnetic field

As a first illustrative example of transition induced by coupled order-parameters let us describe

the sequence of magnetic phases occurring in MnWO4. Below its wolframite-type structure of

monoclinic P 2/c symmetry, MnWO4 undergoes three successive magnetic transitions [16, 17]

at 13.5 K (TN ), 12.7 K (T2) and 7.6 K (T1). They lead, respectively, to an incommensurate

antiferromagnetic phase (AF3), an incommensurate elliptical spiral phase (AF2) displaying an electric

polarization �P //b, and a commensurate antiferromagnetic phase (AF1). The transition wave-vectors are
�kinc = (−0.214, 1

2
, 0.457) for AF2 and AF3, and

�kcom =
(

±1

4
,

1

2
,

1

2

)

for AF1.

At variance with structural transitions which are induced by irreducible representations of

crystallographic space-groups, magnetic transitions are induced by irreducible corepresentations of

magnetic space-groups [18]. In the present case, the parent phase is the paramagnetic gray space-

group P 2/c1′, which is formed by the symmetry operations of P 2/c plus their combination with the

time-reversal symmetry operation T . Since the spin-densities considered in the Landau approach to

magnetic phase transitions are macroscopic (average) non-quantum objects, T is simply represented by
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Table 3. Generators of the irreducible corepresentations �
k1 and �

k2 of the P 2/c1’ paramagnetic space-group,

deduced from the irreducible representations
⌢
�1 and

⌢
�2 of Gk = my , given in Kovalev’s tables [19], for kinc and kcom.

T is the time-reversal symmetry. For AF2 and AF3, � ≈ 0.457�, �1 ≈ 0.418� and �2 = 2�. For AF1, � = �1 = �/2
and �2 = �.

the matrix −I , where I is the identity matrix. Therefore the irreducible corepresentations of P 2/c1′ are

simply deduced from the corresponding irreducible representations of P 2/c, as shown in Table 3, by

adding a set of matrices obtained by multiplying the matrices of the relevant irreducible representations

of P 2/c by −I . Taking into account the symmetry group Gk = my of k̄inc and �kcom one gets two

relevant two-dimensional irreducible corepresentations [19], denoted �
k1 and �

k2, whose generators

are given in Table 3. The complex amplitudes transforming according to �
k1 and �

k2 are denoted

S̄1 = S1ei�1 , S̄∗
1 = S1e−i�1 and S̄2 = S2ei�2 , S̄∗

2 = S2e−i�2 . For �k = �kinc the order-parameter invariants

ℑ1 = S2
1 , ℑ2 = S2

2 and ℑ3 = S2
1S2

2 cos 2�, with � = �1 − �2 yield the Landau expansion

�1(T , S1, S2, �) = �10(T ) + �1

2
ℑ1 + 	1

4
ℑ2

1 + �2

2
ℑ2 + 	2

4
ℑ2

2 + 
1

2
ℑ3 + 
2

4
ℑ2

3 (16)

which has to be expanded up to the degree 2n = 8 since the degree of ℑ3 is n = 4. Minimizing with

respect to � gives

S2
1S2

2 sin 2�(
1 + 
2S2
1S2

2 cos 2�) = 0 (17)

Eq. (17) and the minimization of �1 with respect to S1 and S2 show that five distinct stable states,

denoted I-V, may arise below the paramagnetic (P ) phase for different equilibrium values of S1, S2

and�. This can be foreseen from the phase diagram in the orbit-space shown in Fig. 17(a) which

contains two curves, two surfaces limited by the curves and the volume limited by the surfaces.

Theoretical phase diagrams showing the location of the phases can be constructed in the two dimensional

spaces (�1, �2) and (�2 − �1, 
1) (Figs. 17(b) and 17(c)), and in the three-dimensional space (�1, �2, 
1)

(Fig. 17(d)). Since the AF2 and AF3 phases possess incommensurate structures one can only determine

their magnetic point-groups. On that goal one cannot use, as for commensurate structures, the matrices

of the irreducible corepresentations for disclosing the invariant directions in the order-parameter space.

The procedure for determining the macroscopic (point-group) symmetries of incommensurate phases

was given by Dvorak et al [20]. In particular, one can use here the following useful rules: 1) When

the phase of the order-parameter (here �1, �2 or �) can be shifted without modifying the stability

of the incommensurate structure, its point-group coincides with the point-group GP of the parent

structure (here the paramagnetic point-group 2/m1′), 2) If the phase of the order parameter is fixed, the

point-group symmetry of the incommensurate structure is a subgroup of GP formed by the symmetry

elements preserving the spontaneous macroscopic physical tensor components induced by a coupling

with the order-parameter (i.e. here, components of the magnetization �M and electric polarization �P ).

Figure 18 gives the magnetic point-group symmetries of the five phases which may stabilize below the

paramagnetic phase. They correspond to gray magnetic point-groups associated with antiferromagnetic

structures.

Neutron diffraction data [21] show that the AF3 phase is induced by �
k2, coinciding with phase I in

Fig. 17, with S1 = 0 and S2 �= 0. It has the magnetic point-group 2y/my1′ involving a doubling of the

b-lattice parameter and an incommensurate modulation of the spin-density in the (x, z) plane. The AF2

spiral phase, induced by �
k1 + �

k2 identifies to phase II in Fig. 17, corresponding to S1 �= 0, S2 �= 0,
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Figure 17. Phase diagrams at zero magnetic field deduced from the minimization of �1, given by Eq. (16) in (a)
the orbit space (ℑ1, ℑ2, ℑ3), (b) the (�1, �2) plane, (c) the (�2 − �1, 
1) plane, and (d) the (�1, �2, 
1) space. In (d) the
phases are separated by second-order transition surfaces which become curves in (b) and (c).

� = (2n + 1) �
2
, and to the magnetic symmetry 2y1′. The dielectric free-energy �

D
1 = �PyS1S2 sin � +

P 2
y

2�0
yy

gives the equilibrium polarization

P e
y = ±��0

yySe
1Se

2 (18)

which changes its sign for opposite senses of the spiral configuration, as observed experimentally [22].

The order-parameter S̄2, activated at the paramagnetic→AF3 transition, is frozen at the AF3→AF2

transition. Therefore, Eq. (3) expresses a linear dependence of Py on S̄1. In the AF3 and AF2 phases �1

can be truncated at the fourth-degree. Putting �1 = a1(T − T0) and �2 = a2(T − TN ) one finds that Py

varies in the AF2 phase as

P e
y (T ) = ±A(T2 − T )1/2 (19)

with A = ��0
yy

[

a2(a2
1+a1	2)

	2(	1	2−
2
1)(TN −T2)

]1/2

. The dielectric permittivity follows a Curie-Weiss-type law

�yy(T ) =
(

1 − C
TN − T

T − T2

)

(T > T2), and �yy(T ) =
(

1 − D
TN − T

T2 − T

)

(T < T2) (20)

with C = �0
yya2�

2

a2
1+a1	2
, and D = C


2
1−	1	2


2
1−4	1	2

. Figure 19 shows the excellent fit of P e
y (T ) and �yy(T ) with the

experimental curves. The low value of ≈ 40 �C/m2 found for Py at 10 K, reflects the hybrid character

of the ferroelectricity in spiral magnets: The critical anomalies are typical of a proper ferroelectric

transition, while the magnitude of the polarization is of the order found in improper ferroelectrics.

Neutron diffraction results [21] indicate that the transition to the commensurate AF1 phase triggers

a decoupling of S̄1 and S̄2. The lock-in at T1, induced by �
k2, gives rise to the invariant ℑ4 = S4

2 cos 4�2.
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Figure 18. Connections between the magnetic point-groups of phases I-V induced by �
k1 + �

k2 and equilibrium
conditions fulfilled by the order-parameters involved in MnWO4, in each phase.

Figure 19. Fit of the temperature dependences of the spontaneous polarization P e
y (T ) (Eq. (19)) and dielectric

permittivity �yy(T ) (Eq. (20)) with the experimental points from Taniguchi et al [16].

The Landau expansion associated with the transition to AF1 is

�2(T , S2, �2) = �20(T ) + �′

2
S2

2 + 	′

4
S4

2 + 
′
1

4
S4

2 cos 4�2 + 
′
2

8
S8

2 cos2 4�2 (21)

The equations of state show that three commensurate phases, denoted I’-to III’, displaying a fourfold

unit-cell (�b + �c, �c − �b, 2�a + �c), may appear below T1. The AF1 phase identifies to phases I’ or II’, stable

for cos 4�e
2 = ±1, both described by the magnetic space group Ca2/c (see the chapter by Rodríguez-

Carvajal and Bourrée for the notation of magnetic space groups). Phase III’, stable for cos 4�e
2 = 
′

1	
′2


′
2�

2 ′ ,

has the symmetry Cac.

4.2.2 Magnetic field induced effects

The AF1, AF2 and AF3 order-parameter symmetries allow describing the magnetoelectric effects

[16, 17, 22] observed in MnWO4. Let us first note the following: 1) Since the magnetic symmetries of the
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Figure 20. Magnetoelectric phase diagram of MnWO4 in magnetic field parallel to the b axis, from Taniguchi
et al [16].

ordered phases correspond to gray point-groups one can expect magnetic-field induced magnetoelectric

effects, but not the reciprocal electric-field induced magnetoelectric effects, since the time-reversal

symmetry forbids the existence of non-zero macroscopic components of the magnetization �M under

applied electric field. 2) When applying a magnetic field �B to a phase, the magnetic symmetry of the

phase may be lowered as it corresponds to the intersection of its symmetry group at �B = 0 with the

symmetry group of the magnetic field.

Various magnetic field induced effects are observed in MnWO4: 1) The region of stability of the

AF2 phase decreases with respect to AF3 and AF1 with increasing By field (Fig. 20) and depends on the

orientation of �By with respect to the magnetic easy axis; 2) Above a threshold field B th
y of about 10 T,

the AF2 phase undergoes a polarization-flop transition Py → Px ; 3) Cycling across B th
y and canting

oppositely �B with respect to the y axis, yields an opposite sign for Px . The reduction of the stability

range of AF2 with respect to AF3 and AF1 can be deduced from the equation expressing the stability

of the AF2 phase under By field. Taking into account the magnetic free-energy �
M
1 = � M2

2
− �B. �M

and coupling invariants 
1M2
y S2

1 and 
2M2
y S2

2 , the stability condition
�2

�
′
1

�S2
1

�2
�

′
1

�S2
2

−
(

�2
�

′
1

��2

)2

≥ 0, with

�
′
1(T , S1, S2, By) = �1(T , S1, S2) + �−2

yy B2
y (
1S2

1 + 
2S2
2 ), yields

T2(By) − T2(0) = −��−2
yy B2

y (22)

where � = (	1
1 + 
1
2)(	1�1 + 
1�2)−1. For � < 0 the stability range of the AF2 phase decreases with

respect to AF3 under increasing By field. In a similar way the AF2 stability range reduces with respect

to AF1, under By field. The polarization flop corresponds to a first-order transition to phase III’, which

displays a polarization component Px and no Py component. Therefore, the threshold field By is given

by the equality of the expansions

�1(T , Se
1 , Se

2) − B th
y MII

y = �II (T , Se
2) − B th

y MIII ′
y (23)

Above B th
y the AF2 phase switches to the high-field phase III’, which symmetry Cac cancels Py and

gives rise to the polarization

P III ′
x = −�′�0

xxSe2

2 sin 2�e
2 (24)
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deduced from the dielectric free-energy �
D
2 = �′PxS2

2 sin 2�2 + P 2
x

2�0
xx

. Decreasing By below B th
y switches

back phase III’ to AF2. If �B is canted at an angle � with respect to the b-axis in the (x, z) plane, the

magnetoelectric coupling νPxMxMyS1S2 sin � induces the polarization

P e
x = −2�0

yyν�−2
yy B2

y Se
1Se

2 sin �e sin 2� (25)

Canting oppositely �B from the b-axis (� → −�) reverses P e
x . Increasing again By above B th

y yields

an opposite sign for P III ′
x in phase III’, as observed by Taniguchi et al [23]. The AF2 stability range

depends on the angle �0 of �B and magnetic easy axis in the paramagnetic phase. This property relates

to the anisotropy of the magnetic free-energy �
M
1 = 1

2
�M�̂ �M − �B �M , where �̂ is the paramagnetic

susceptibility tensor, with tan 2�0 = 2�xz(�xx − �zz)−1. If �B is at an angle � with the x-axis in the

(x, z) plane, one finds

T2(�) − T2 = �B2

{

1 − td−1

2

[

t − (t2 − 4d)1/2 cos 2(� − �0)
]

}

(26)

Where t = �xx + �zz and d = �xx�zz − �2
xz . For � < 0 the AF2 stability range is maximum along the

easy axis (� = �0). It decreases when � increases from �0 to �0 + �
2
, reducing to the stability range

at zero field if �xz , �xx << �zz . Such variation has been observed in the AF2 phase, in which �0
∼= 35◦

coincides with the direction of the spins in the (x, z) plane. When �B is at an azimuthal angle � with the

(x, z) plane, the AF2 stability range decreases when � increases from � = 0 to � = �/2, as reported

experimentally.

4.2.3 Microscopic origin of the unconventional ferroelectricity in magnetic multiferroics: The

Dzialoshinskii-Moriya and symmetric interactions

Let us express the phenomenological order-parameters S̄1 and S̄2 in function of the magnetic spins

in the commensurate phases I’-III’. Denoting s1-s8 the spins associated with the eight Mn2+ ions of

the fourfold primitive monoclinic unit-cell (Fig. 21), one can write si = sa
i �a + sb

i
�b + sc

i �c (i = 1 − 8),

where �a, �b and �c are the monoclinic lattice vectors. Projecting the 24 × 24 matrices transforming the

s
a,b,c
i -components on �

k1 and �
k2 gives

S̄
a,c
1 = L

a,c
1 + iL

a,c
3 , S̄b

1 = −Lb
4 + iLb

2, S̄
a,c
2 = −L

a,c
4 + iL

a,c
2 , S̄b

2 = Lb
1 + iLb

3 (27)

where the S̄m
i (i = 1, 2 m = a, b, c) represent different forms of S̄1 and S̄2. The Lm

i (i = 1 − 4) are

projections of the vectors L1 = s1-s2-s7+s8, L2 = s1-s2+s7-s8, L3 = s3-s4+s5-s6, and L4 = s3-s4-s5+s6.

Table 4 summarizes the equilibrium values of the spin-components in phases I’, II’ and III’ which

correspond to S̄
a,b,c
1 = 0 and cos 4�

a,b,c
2 = 1 (I’), cos 4�

a,b,c
2 = −1 (II’) and cos 4�

a,b,c
2 �= ±1 (III’).

Figures 21(a) and 21(b) represent the magnetic structures in the (x, z) plane for phases I’ and II’. It

shows that structure of phase II’ coincides with the antiferromagnetic order reported in the AF1 phase

of MnWO4. The lack of spin components along �b assumed for this phase may be due to their relativistic

origin as suggested in Ref. [21]. The equilibrium values given for the spin components in Table 4, allow

to determine the magnetic structure of Phase III’, which identifies to the high-field phase of MnWO4.

Other commensurate structures can take place for �k = �kcom when the spin components associated

with S̄1 and S̄2 order simultaneously. Two among these structures, denoted IV’ (�e
1 = 0, �e

2 = �/2)

and V’ (�e
1 = �/2, �e

2 = 0), display the symmetry 2y and the same form of Py = 1
2i

(S̄1S̄∗
2 − S̄2S̄∗

1) =
S1S2 sin � as in the AF2 phase. Although these structures are not stabilized in MnWO4 they represent

lock-in limits of the incommensurate AF2 structure, and can be used for investigating the microscopic

origin of ferroelectricity in the spiral magnetic structure. Since S̄1 and S̄2 are both realized by three
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Figure 21. Projections on the (x, z) plane of the magnetic structures of (a) phase I’ and (b) phase II’ deduced
from Table IV. The coordinates of the eight Mn2+ ions corresponding to the spins �s1 − �s8, in the primitive
monoclinic unit-cell of the two structures, are for ion 1
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independent combinations of spin components, Py is expressed as the sum of nine terms:

Py = �1(sa2

1 + sa2

3 − sa2

5 − sa2

7 ) + �2(sb2

1 + sb2

3 − sb2

5 − sb2

7 ) + �3(sc2

1 + sc2

3 − sc2

5 − sc2

7 )+
+�4(sa

1 sc
1 + sa

3 sc
3 − sa

5 sc
5 − sa

7 sc
7) + �5(sb

1 sa
5 − sa

1 sb
5 + sb

3 sa
7 − sa

3 sb
7 ) + �6(sb

1 sc
5 − sc

1sb
5 + sb

3 sc
7 − sc

3sb
7 )

+�7(sb
1 sa

3 − sa
1 sb

3 + sb
5 sa

7 − sa
5 sb

7 ) + �8(sb
1 sc

3 − sc
1sb

3 + sb
5 sc

7 − sc
5sb

7 ) + �9(sa
3 sb

5 − sc
3sa

5 + sc
1sa

7 − sa
1 sc

7)

(28)

in which the equilibrium relationships s1 = -s2, s3 = -s4, s5 = -s6 and s7 = -s8, which hold for all

commensurate structures of MnWO4, have been taken into account. The �1 − �4 terms in Eq. (28) are

symmetric invariants involving a single atom. Their origin is entropic and due to on-site interactions.

The �5 − �9 terms represent Dzialoshinskii-Moriya (DM) antisymmetric coupling interactions [24, 25]

between neighbouring pairs of spins s1, s5 (or the equivalent pair s3, s7), s1, s3 (s5, s7) and s3, s5 (s1,

s7). The DM interaction is currently assumed as the microscopic source of the polarization in the spiral

structure of magnetic multiferroics. The preceding results on MnWO4 confirm explicitly this view, but

show that other symmetric effects are also involved in the formation of the electric dipoles. Furthermore,

equilibrium relationships of the spin components in phase IV’ and V’ (Table 4) preserve the symmetric

and DM contributions in Eq. (28). It indicates that the interactions giving rise to the polarization in

the commensurate ferroelectric phases of multiferroic compounds are of the same nature than in the

spiral phases. One should note that the DM interactions, as well as the Katsura-type contribution [26]
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Table 4. Equilibrium values of the magnetic spins for phases I’-to-V’ considered in the text.

eij × si × sj (where eij is the distance between neighbouring Mn atoms i and j), cancel in Eq. (28) when

all spin components are cancelled except sa
1 and sa

7 in phase IV’, or sa
3 and sa

5 in phase V’, while keeping

a finite value Py = �1(sa2

1 − sa2

7 ) and Py = �1(sa2

3 − sa2

5 ) in phases IV’ and V’. Therefore symmetry

considerations predict the existence of a polarization induced by symmetric interactions, although such

effect may encounter considerable restrictions at the microscopic level.

4.3 Survey of the theoretical description of RMnO3 and RMn2O5 multiferroics

A similar theoretical description than for MnWO4 can be proposed for the sequence of three magnetic

phases, denoted I-III, observed below T1 = 41 K in TbMnO3 [27–29], although the lower-temperature

non-polar phase III arising below T3 = 7 K is more complex than a simple lock-in structure of the

ferroelectric spiral structure of phase II, stabilized below T2 = 28 K. The similarity with MnWO4 stems

from the property that the two irreducible corepresentations involved in the phase sequence of TbMnO3,

denoted �2 and �3, have the same image-group than �
k1 and �

k2, in spite of a different paramagnetic

symmetry , and transition wave-vector �k = (0, 0.28, 0). Therefore, the coupling of �2 and �3 yields for

TbMnO3 the same Landau expansion, given by Eq. (16), the same phase diagrams shown in Fig. 17, and

an analogous hybrid “pseudo-proper” behaviour for the ferroelectric spiral phase. However, due to the

higher Pbnm1’ symmetry of the paramagnetic phase, the magnetic symmetries of the antiferromagnetic

phases I an II display higher symmetric gray magnetic point groups, given in Fig. 22. Besides, the

polarization-flop process in TbMnO3 shows more complex features than in MnWO4. Under applied

magnetic field along the x or y directions, the spontaneous Pz polarization existing at zero field in

the spiral phase of TbMnO3 is switched along the x direction above threshold fields B th
x ≈ 9 T and

B th
y ≈ 4.5 T, respectively, at a first-order lock-in transition to a commensurate phase with �k = (0, 1

4
, 0).

The first-order transition process can be decomposed in two stages: Under Bx or By field the spiral phase

II is switched to a lower symmetric ferroelectric phase, above threshold fields given by the stability

condition of phase II under Bx or By field, which triggers a decoupling of the two order-parameters

involved in phase II, and a lock-in transition to a ferroelectric phase, associated with a single order-

parameter. This phase has the symmetry 2mm, which cancels Pz and gives rise to Px . Such interpretation
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Figure 22. Connections between the magnetic point-groups I-V and corresponding equilibrium conditions fulfilled
by the order-parameters inducing the sequence of phases observed in TbMnO3.

in terms of a two-stage process is supported by the observation in TbMnO3 of the coexistence of distinct

structural phases in the intermediate field regime [30]. Another support is provided by the observation

in DyMnO3 of similar field-induced flops [31], not associated with a high-field commensurate lock-in

phase. It implies the stabilization of an intermediate phase with 2x symmetry induced by magnetoelectric

couplings 
1PxMxMzS2S3 sin � or 
2PxMxMyS2S3 sin � under Bx or By fields, where S̄2 and S̄3 are

the order-parameters transforming as �2 and �3.

A different situation is found in TbMn2O5 [32] due to the property that a single four-dimensional

irreducible corepresentation induces the spiral phase observed in this compound. On cooling below

the paramagnetic (P) phase, of symmetry Pbam1’, TbMn2O5 undergoes five phase transitions taking

place successively at T1 = 43 K, T2 = 38 K, T3 = 33 K, T4 = 24 K and T5 = 10 K [33, 34], the

corresponding phases being denoted I-V. The P → I → II sequence of incommensurate phases is

associated with a four-component order-parameter transforming as an irreducible corepresentation,

denoted G1, with the wave-vector �k = (1/2, 0, kz) At T3 = 33 K the commensurate phase III takes place

for �k = (1/2, 0, 1/4) preserving the dimensionality, but not the symmetry of the order-parameter. By

contrast the incommensurate phases IV and V correspond to the coupling of two four-dimensional order-

parameters associated with two irreducible corepresentations, denoted �1 and �2, at �k = (0.48, 0, 0.32).

The four-component order-parameter associated with the P → I → II transitions can be denoted

S1 = �1ei�1 , S∗
1 = �1e−i�1 , S2 = �2ei�2 and S∗

2 = �2e−i�2 . It yields the invariants ℑ1 = �2
1 + �2

2, ℑ2 =
�2

1�
2
2 and ℑ3 = �2

1�
2
2 cos 2�, with � = �1 − �2, and the Landau expansion:

�1(�1, �2, �) = a1ℑ1 + a2ℑ2
1 + b1ℑ2 + b2ℑ2

2 + c1ℑ3 + c2ℑ2
3 + dℑ1ℑ3 + . . . (29)

Minimizing �1 shows that seven phases can be stabilized below the P phase for different equilibrium

values of �1, �2 and �, summarized in Fig. 23. The corresponding phase diagrams in the orbit space

(ℑ1, ℑ2, ℑ3) and in the coefficient spaces (a1, b1, c1) and (b1, c1), are shown in Fig. 24. Phases I and II of

TbMn2O5 correspond to phases 1 (�1 �= 0, �2 = 0) and 6 (�1 �= �2, � = (2n + 1)�/2) in Fig. 23, which

display the magnetic point-groups mmm1’ and m2m. The equilibrium polarization in phase II, deduced

from the dielectric free-energy

�
D
1 = �1�1�2Py sin � +

P 2
y

2�0
yy

, is

P e
y = ±�1�

0
yy�1�2 (30)
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Figure 23. Connections between the magnetic point-groups of phases 1-7 induced by the irreducible
corepresentation, denoted G1 in ref. [32], of the P bam1′ paramagnetic structure of TbMn2O5, and equilibrium
conditions fulfilled by the order-parameter in each phase.

Figure 24. Phase diagrams deduced from the minimization of the Landau expansion given by Eq. (29) in (a) the
(a1, b1, c1) space, (b) the (b1, c1) plane for a1 < 0, and (c) the orbit space (ℑ1, ℑ2, ℑ3).

corresponding to an effective linear dependence of P e
y on �2, since �1 has been already activated in

phase I. Therefore, below T2, in the ferroelectric phase II, one has P e
y (T ) ∝ (T2 − T )1/2 (Fig. 25(a)), and

the same temperature dependence, given by Eq. (20), for the dielectric permittivity �yy(T ) (Fig. 25(b)).

Therefore the transition to phase II shows the same hybrid behaviour as the analogous transitions in

TbMnO3 and MnWO4, i.e. it behaves critically as a proper ferroelectric transition, although the value of

the polarization (about 40 nC/cm2) in phase II is that of an improper ferroelectric.

At T3 = 33 K the wave-vector locks into the commensurate value �k = (1/2, 0, 1/4) giving rise to

the (umklapp) invariants �4
1 cos 4�1 + �4

2 cos 4�2 and �2
1�

2
2 cos 2(�1 + �2). The symmetry of the order-

parameter is changed but not its dimensionality. Taking into account these additional invariants yields an

equilibrium ferroelectric phase for �1 = ±�2 = n�/4, having the same magnetic point-group symmetry

m2m as phase II, with a commensurate lattice parameter 4c. The transition coincides with a slight change

in the slope of P e
y (T ) (Fig. 25(a)), and no noticeable anomaly of the dielectric permittivity. In contrast

the transition occurring at T4 = 24K to phase IV exhibits a finite jump of �e
yy(T ) which reflects a typical

improper ferroelectric transition. The improper character of the transition is consistent with the form of

the polarization in phase IV which is:

P e
y = ±�2�

0
yy�1�3 (31)

where �1 and �3, which are amplitudes of two distinct four-dimensional order-parameters which are

both activated at the III → IV transition mechanism, vary as ∝ (T4 − T )1/2 for T < T4. Therefore, Py
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Figure 25. Least square fits for (a) the squared polarization P e2
y ∝ (T2 − T ) and (b) the inverse dielectric

permittivity �−1
yy ∝ |(T2 − T )| reported by Hur et al [33].

Figure 26. Temperature dependence of P e
y (T , Hx) given by Eq. (34) for �1 > 0, �2 < 0, ν < 0.

varies linearly as (T4 − T ), which expresses a typical improper ferroelectric behaviour for the III →
IV transition. The dielectric permittivity below T4 is given by �e

yy(T4) = �0
yy

1−�2
2�

0
yyf

, where 0 < f < 1

represents a combination of phenomenological coefficients.

Below T4, P e
y (T ) is the sum of two distinct contributions given by Eqs. (30) and (31):

P e
y (T ) = ±�0

yy

[

�1�1(T2 − T )1/2 + �2(T4 − T )
]

(32)

where �1 ∝ (T1 − T2)1/2. Assuming �1 > 0 and �2 < 0, one can verify that P e
y (T ) decreases for

T ≤ TMax = T2 − �2
1

4�2
2

(T1 − T2) The strong increase observed below T5 reflects a positive contribution

to the total polarization of the electric polarization in phase V (Fig. 26). Under applied magnetic field

Hx the spontaneous polarization in phase IV becomes:

P e
y (Hx) = ±�0

yy�1�3(�2 + ν�−2
0 H 2

x ) (33)

due to the magnetoelectric coupling ν�1�3PY M2
x . For ν < 0 the application of a Hx field enhances the

negative contribution to the temperature dependence of the total polarization, leading to:

P e
y (T , Hx) = ±�0

yy

[

�1(T1 − T2)1/2(T2 − T )1/2 + (�2 + ν�−2
0 H 2

x )(T4 − T )
]

(34)

Therefore, P e
y (T , Hx) changes sign for the temperature dependent threshold field

H c
x (T )2 = −�2

0

ν

[

�2 + �1(T1 − T2)1/2(T2 − T )1/2

(T4 − T )

]

(35)

as shown in Fig. 26.
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Similar sequences of ferroelectric phases are found in other RMn2O5 compounds [35–37], where

R = Bi, Y or a rare-earth heavier than Nd. In these compounds, at variance with TbMn2O5 in which

the pseudo-proper coupling occurs between distinct components of the same order-parameter, the

pseudo-proper coupling is created between two distinct four-component order-parameters associated

with the wave-vector �k = (kx , 0, kz). However, with the exception of DyMn2O5 and BiMn2O5, the order-

parameters involved in the RMn2O5 family correspond to the symmetries disclosed for R = Tb, i.e., to
�k = (1/2, 0, kz), (kx , 0, kz) and (1/2, 0, 1/4).

5. PHASE TRANSITIONS INDUCED BY REPLICA OF THE SAME ORDER-PARAMETER:

UNCONVENTIONAL STATES OF SUPERCONDUCTORS AND LIQUID CRYSTALS

5.1 Specific property of phase transitions associated with continuous symmetry groups

In the preceding sections the parent structure was described by a discrete, crystallographic or magnetic,

symmetry group. When continuous groups are involved, the lowest symmetry group induced by an

irreducible representation � of dimension n ≥ 2 of the parent symmetry group G0, can only be obtained

by considering the reducible representation � + � + � + ..., the number of �
′s figuring in the sum

being smaller or equal to n. This result stems from the specific property of continuous groups that the

minimal symmetry group Gm induced by � (defined as the invariance group of the general direction

in the representation space) does not coincide with the lowest symmetry group Gk associated with �

(corresponding to the kernel of the homomorphism of G0 on �(G0)). Therefore, in order to obtain the

full set of broken symmetry phases associated with a given irreducible representation � of a continuous

group, one has to consider different replica of �. We will illustrate this property by considering

examples of phase transitions in superconducting and liquid crystal systems, which are both described

by continuous symmetry groups.

5.2 Unconventional s-pairing wave superconductivity

The parent (Normal) state of a superconductor is generated by four groups:

G0 = [U (1) × T ] ⊗ OR(3) ⊗ OS(3) (36)

Where U (1) is the continuous group generated by gauge operations g�. T is the group formed by

the time-reversal operation T and the identity. OR (3)and OS (3) are, respectively, the full orthogonal

group in real and spin spaces. In the Ginzburg-Landau theory of superconductivity [5], the transition

to the superconducting state is associated with a two-component s-pairing wave order-parameter

corresponding to a complex wave function �1 = �1ei�1 and its complex conjugate �
∗
1 = �1e−i�1 . It

transforms as a two-dimensional irreducible representation � of G0 which can be written:

� = �1 × V (37)

where �1 is the identity irreducible representation of OR (3) ⊗OS (3) and V is the vector representation

of U (1) ×T . The single superconducting state induced by � has the same structural symmetry as

the normal state and is time-reversal invariant: Only the gauge-symmetry is broken at the Normal-to-

superconducting transition. Let us show that the phase diagram associated with the four-component

reducible order-parameter (�1, �∗
1, �2 = �2ei�2 , �∗

2 = �2e−i�2 ) transforming as � + � contains two

different superconducting states, which possess respectively the minimal symmetry Gm and the lowest

symmetry Gk associated with � [38]. From the transformation properties of the order-parameter

components under the symmetry operations of G0 one finds for any continuous or discrete symmetries

of OR (3) ×OS (3), the following invariant monomials: ℑ1 = �2
1, ℑ2 = �2

2 and ℑ3 = �1�2 cos(�1 − �2),

which give the Landau expansion:

�(�i , �i) = a1ℑ1 + a2ℑ2
1 + b1ℑ2 + b2ℑ2

2 + c1ℑ3 + c2ℑ2
3 + d1ℑ1ℑ2 + d2ℑ1ℑ3 + d3ℑ2ℑ3 + . . . . (38)
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Figure 27. Phase diagrams in the (a1, b1) plane, corresponding to the Landau expansion given by Eq. (38), and
truncated either at the fourth degree ((a)), or at the sixth degree ((b)). Dashed and full lines are, respectively,
second-order and first-order transition lines. N1 and N2 are three-phase points; T1 and T2 are tricritical points.

Figure 28. Difference between the minimal (Gm) and lowest (Gk) symmetry groups describing the superconducting
states associated with the � representation defined by Eq. (37). The order-parameters �1 and �2, transforming as
�, are represented in the complex plane schematized by a circle. The gauge (g�) and time-reversal (T ) operations
act as rotations and reflections (�v) in this plane. When only one (a) or two collinear order-parameters (b) are
involved a single superconducting state (I) is stabilized, which possesses the minimal symmetry Gm generated by
the reflection �1

v = T g−2�1
. At variance, when �1 and �2 are dephased (c) and additional superconducting state

(II) can be stabilized, which possesses the lowest symmetry group Gk reduced to the identity: the time reversal
symmetry T is lost.

Minimization of � yields three possible stable states, which are represented in the phase diagrams of

Fig. 27. In addition to the Normal state of symmetry G0, which is stable for �1 = �2 = 0, two different

superconducting states can be stabilized:

1) State I, corresponding to (�1 �= 0, �2 = 0) or (�1 = 0, �2 �= 0) or (�1 �= 0, �2 �= 0, �1 − �2 =
0, �). It has the minimal symmetry group Gm of the conventional s-pairing superconducting state,

namely Gm = [OR(3) ⊗ OS(3)] × Hm, where Hm is generated by the symmetry operation T.g−2�1
in

which time reversal symmetry combines with the gauge symmetry (Figs. 28(a) and (b)). As shown in

Fig. 27(a), state I can be reached from the Normal phase across a second-order transition.

2) State II, which is stabilized for �1 �= 0, �2 �= 0 and �1 − �2 �= 0, �. It has the lowest symmetry

Gk = OR(3) ⊗ OS(3) associated with the irreducible representation � (Fig. 28(c)). Accordingly, at the

Normal→State II and State I →State II transitions, the time reversal symmetry is broken even when

assuming an isotropic symmetry in real and spin spaces. The spontaneous physical quantity arising in

phase II transforms as:

� = i

2
(�1�

∗
2 − �

∗
1�2) = �1�2 sin(�1 − �2) (39)

A non vanishing macroscopic physical quantity corresponding to � is ( �E1 × �E2). �H , where �E1 and
�E2 are differently oriented electric fields, and �H is a magnetic field. In this case � identifies to a

combination of components of the third-rank tensor �ijk characterizing a second-order magnetoelectric

effect expressed by:

�P = � �E + �( �E × �H ) (40)
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Figure 29. In-plane configurations of (a) the Sm-C∗ phase, and (b) the Sm-C∗
P phase.

where �P is the polarization induced by the conjuncted application of �E and �H , and � is the dielectric

permittivity. Note that �P will appear perpendicularly to �E under application of �H . Note also that the

reciprocal magnetoelectric effect, corresponding to the equation of state Mi = �ijkEj Ek will not be

observable, since the induced magnetization vanishes identically.

5.3 Unconventional chiral ferroelectric liquid crystal phase

A close analogy with the s-pairing wave superconducting states can be found in the ferroelectric

phases of chiral liquid crystals formed from rod-like molecules [39, 40]. The order-parameter of

the Sm − A∗ → Sm − C∗ phase transition is a two-component tilt vector �� = (�1, �2) describing the

magnitude and the tilt of the long molecular axis �n from the normal �z to the smectic layers, with a

tilt angle �. Because of the chirality of the molecules, a linear coupling between the tilt and the in-

plane polarization exists, leading to a spontaneous transverse polarization �P t = (Px , Py) perpendicular

to �n and �� (Fig. 29(a)). The precession of �n around the �z direction, results in a helical ferroelectric

Sm − C∗ phase, having a zero spontaneous macroscopic polarization. Considering a bilinear coupling

between the components of �� and �P t implies assuming a four-component reducible order-parameter

� = (�1, �2, Px , Py) which transforms as the sum E1 + E2 of two identical irreducible representations

associated with the D∞ symmetry-group of the Sm − A∗ phase. In this case the monoclinic C2

symmetry of the Sm − C∗ phase, which corresponds to orthogonal directions for �� and �P t , is not

the lowest symmetry involved by the E1 + E2 representation. The lowest symmetry is triclinic C1, and

coincides with an angle � �= �/2, between �� and �P t . Let us show that the corresponding triclinic smectic

configuration, which displays a spontaneous polarization component Pz (Fig. 29(b)), can be stable.

From the transformation property of the four-component order-parameter � under the symmetry

operations of D∞ one finds the following independent invariants ℑ1 = �2
1 + �2

2 = �2, ℑ2 = P 2
x + P 2

y =
P 2

t and the piezoelectric coupling invariants ℑ3 = �1Py − �2Px = �Pt sin � and ℑ4 = Pz(�1Px +
�2Py) = Pz�Pt cos �. The corresponding Landau free-energy density reads:

�(�, Pt , �, Pz) = a1�
2 + a2�

4 + P 2
t

2�0
xx

+ b1P 4
t − c1�Pt sin � + c2�

2P 2
t sin2 � − d1Pz�Pt cos � + P 2

z

2�0
zz

(41)

Minimization of � shows that, in addition to the parent Sm − A∗ phase (�e = P e
t = 0), two distinct

tilted smectic configurations with � �= 0 and Pt �= 0 can be stabilised: 1) The standard Sm − C∗
configuration shown in Fig. 29(a), for �e = (2n + 1)�/2, which has the monoclinic C2 symmetry, and

the spontaneous polarization P e
t = c1�

0
xx�, denoting the pseudo-proper character of the ferroelectric

order in liquid crystals. 2) The Sm − C∗
P configuration, shown in Fig. 29(b), which is stabilized

for sin �e = c1

P e
t �e(2c2−d2

1 �0
zz )

�= 0, ±�/2, �. It has the symmetry C1 and a spontaneous polarization in

general direction, with a Pz component given by P e
z = d1�

0
xx�

eP e
t cos �e. Note that P e

z results from a
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Figure 30. Phase diagrams corresponding to the Landau expansion � defined by Eq. (41), assuming (a) a fourth
degree expansion in � and Pt , (b) a sixth degree expansion.

second-order piezoelectric effect, i.e. from the simultaneous existence of tilt-angle and in-layer

polarization, under the condition that the scalar product ��. �P t �= 0. The phase diagrams involving the

Sm − C∗ and Sm − C∗
P phases are shown in Fig. 30. They are topologically identical to the phase

diagrams of Fig. 27.

6. RECONSTRUCTIVE PHASE TRANSITIONS

6.1 Phase transitions between group-subgroup unrelated structures

Continuous or slightly discontinuous structural transitions have been the almost exclusive subject of

the theoretical approaches to phase transitions: From the initial work of Landau (in which the author

assumes a group-subgroup relationship between the symmetries of the phases) to the different statistical

physics approaches, such as the Ising model (which leads to a lowering of symmetry with respect to

the initial structure), and the sophisticated theory of critical phenomena. However, the most widespread

and fundamental types of structural transitions found in nature involve no group-subgroup relationship

between the phase symmetries. In this respect, two different situations should be distinguished. The

phases may correspond to different equilibrium components of the same order-parameter and display

different subgroups of a common parent symmetry group. This is, for example, the case of the low

temperature phases of Barium titanate, corresponding to subgroups of the P m3̄m perovskite symmetry.

Here, the structures of the phases are closely related between them by small structural modifications,

across slightly discontinuous transitions. Reconstructive phase transitions [3, 41–44] belong to another

class in which the transition mechanisms exhibit drastic changes, with critical displacements of the order

of magnitude of the lattice parameters, large latent heat and thermal hysteresis, and an eventual breaking

of part of the chemical bonds. In the following subsections we show that despite the preceding features,

a theoretical description of reconstructive transitions can be performed, preserving the main concepts of

the Landau approach.

6.2 Basic ideas of the theory of reconstructive transitions

We summarize hereafter the basic ideas of the theory of reconstructive phase transitions, assuming

that the transition mechanism can be formulated in terms of atomic displacements. Let us consider two

phases A and B having no group-subgroup relationship between the space-groups GA and GB describing

their structures. GA and GB possess common subgroups G1, G2, G3 . . ..corresponding to common stable
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Figure 31. (a) Step-like dependence on temperature for the order-parameter associated with a reconstructive
transition. Temperature dependence of the specific heat (b) and susceptibility (c) for a reconstructive transition.

substructures of the A and B structures. Starting from the A structure, the reconstructive mechanism

transforming A in B proceeds via a critical displacement field �i going across one of the substructures

of A and B associated with one of the Gi subgroups denoted GAB, which fulfils the following constraints:

1) It corresponds to the set of minimal critical displacements permitting to reach the B structure. 2) It is

compatible with the observed epitaxial relationships between A and B and with the various experimental

data reported for the two phases (domains, strains, vibration spectra...).

3) It is consistent with the transition mechanisms leading to other stable phases having regions of

stability in the phase diagram. Accordingly, the determination of the transition path transforming A into

B cannot be simply based on symmetry (group-theoretical) considerations but requires a careful analysis

of the real structures, and of the available experimental observations on the transition.

For vanishingly small or non specific critical displacements, the symmetry of the initial A structure

is lowered to GAB. The B structure is obtained for specific large fractional displacements �i at which

the new symmetry elements pertaining to the B structure arise. Furthermore, determining the order-

parameter symmetry from the irreducible representations �1 and �2 associated, respectively, with the

hypothetical GA → GAB and GB → GAB transitions, one can show that the order-parameter modulus

� of the GA → GB reconstructive transition is a periodic function �(�i) of the critical displacements,

whose minima and maxima coincide with GB, whereas �(�i) = 0 corresponds to GA. Therefore, the

Landau expansion �(�(�i)) has to be minimized with respect to the �i variables, the equations of

state ��

��i
= ��

��
.
��

�i
= 0 showing that two types of equilibrium states can be distinguished: 1) Landau

states obtained for ��

��
= 0, which are group-subgroup related to the A and B structures; 2) Limit (non-

Landau) states, given by
��

��i
= 0, for which the group-subgroup relationship is lost. As a consequence

of the periodic-dependence on the critical displacements of the order-parameter, the order-parameter

space becomes a fibre bundle instead of a Hilbert space for group-subgroup related transitions. Another

consequence is the specific critical properties of reconstructive phase transitions, such as i) the step-

like temperature dependence of the order-parameter, since the initial and final structures correspond to

fixed displacements (Fig. 31(a)); ii) the delta-shaped specific heat at the transition (Fig. 31(b)), and iii)

the finite discontinuity of the susceptibility associated with the field-conjugate to the order-parameter

(Fig. 31(c)). Besides, since symmetry operations are lost at both the A → B and B → A transitions,

domains are formed in both phases, in contrast to group-subgroup related phases where domains are

observed only in the “daughter” phase.

6.3 The graphite-diamond reconstructive transition

As a first illustrative example let us consider the reconstructive transition mechanism between the

graphite and diamond structures [45, 46]. Figure 32 represents the assumed displacive mechanisms
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Figure 32. Structural mechanisms for the reconstructive phase transitions between carbon polymorphs via a
common substructure. The conventional hexagonal and cubic unit-cells are represented by thick lines. The unit-
cells of their common substructures are shown by thin lines. The small arrows represent the real magnitudes of the
atomic displacements.

transforming hexagonal graphite (HG) (P 63/mmc, Z = 4), rhombohedral graphite (RG) (R3̄m, Z = 6),

hexagonal diamond (HD) (P 63/mmc, Z = 4) and cubic diamond (CB) (F d3̄m, Z = 8) into each other.

The figure shows that the different carbon structures possess a common substructure displaying an

orthorhombic Cmcm (HG), Bmmb (HD, or monoclinic C2/m (RG, CD) symmetry, whose basic vectors

(�a, �b, �c) are related with the basic vectors of the conventional hexagonal (HG, RG, HD) or cubic (CD)

unit cells of the different allotropes by:

�a = �aHG = �aRG = −�aHD = 1
2
(�a + �b)CD

�b = (�a + 2�b)HG = (�a + 2�b)RG = �cHD = − 1
2
(�a + �b − 2�c)CD (42)

�c = �cHG = 1
3
(�a + 2�b + 2�c)RG = (�a + 2�b)HD = 1

2
(�a + �b + 2�c)CD

In agreement with the observed orientational relationships [001]HG//[120]HD , [100]HG//[100]HD and

[120]HG//[001]HD , the atomic displacements transforming HG into HD is shown in Figs. 32(a) →
(d) → (h). It consists of antiparallel fractional displacements ± 1

16
�b and ± 1

12
�c combined with ± 5

48
�b

and ± 1
12

�c. The HG → HD transition involves a drastic compression of about 35% along �c and

small decompression (2%) and compression (6%) along �a and �b, respectively. A similar mechanism,

represented in Figs. 32(a) → (e) → (i), holds for the HG → CD transition. Starting from the

transformed uni-cell of HG, the CD structure results from a reduction of the angle � from 90◦ in HG
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Figure 33. Periodic dependence (dark grey curve) of the effective transition order-parameter �(�), defined by
Eq. (43), associated with the transition from hexagonal graphite (HG) to rhombohedral graphite (RG), cubic
diamond (CD) and hexagonal diamond (HD), in function of the critical displacements along [120]HG.The curve
in black represents the periodicity of the displacements giving rise to the RG structure (first term in Eq. (43)). The
light-grey curve is a higher harmonic (second term in Eq. (43)) whose periodicity reflects the onset of the HD and
CD structures from HG and RG, respectively.

to 70.529◦ in CD, and a set of antiparallel fractional displacements: ± 1
16

�b and ± 1
16

�c, combined with

± 5
48

�b and ± 1
16

�c. The transition involves a large compression of 35% along �c and small decompressions

(2%) along �a and �b. The HG→RG transition mechanism shown in Figs. 32(a) → (b) → (c), consists

of a reduction of the angle � from 90◦ in HG to 78.040◦ in RG, and of fractional displacements of the

carbon atoms by ± 1
12

�b.

The order-parameters associated with the transitions from HG to the other carbon polymorphs

are of two types. (1) Macroscopic strains which consist of (i) the shear strain eyz expressing the

changes in the angle � and reduces the hexagonal HG symmetry to monoclinic, (ii) the tensile strain

exx-eyy corresponding to an orthorhombic deformation of the hexagonal cell, (iii) the compression

ezz along �c. (2) A cooperative set of fractional displacements along �b and �c. Both types of order-

parameters are activated for obtaining the polymorphic structures, which appear as limit states, arising

for definite atomic displacements and critical strains. The periodic character of the reconstructive

transition mechanisms is illustrated in Fig. 33, in which the order-parameter is plotted as a function of

the atomic displacements � along the [120] direction in HG. The periodic function �(�) representing the

effective order-parameter associated with the HG →(HD, CD, RG) transitions is the truncated Fourier

series:

�(�) = 0.958 sin(6��) + 0.125 sin(42��) (43)

The first term in Eq. (43) expresses the “primary” symmetry-breaking displacements giving rise

to the RG structure from HG, and the second term is a higher harmonic related to secondary

displacements leading to the HD and CD structures from HG and RG, respectively. Taking into account

the transformation properties of the displacements � by the symmetry operations of the HG space-

group, yields two distinct effective free-energies F1(�(�)) = �
2
�2 + 	

4
�4 + 


6
�6, for the HG →(RG,
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Figure 34. Theoretical phase diagrams corresponding to the minimization of the (a) F1(�(�)) and (b) F2(�(�))
Landau expansions, given in the text, with respect to the displacements �. Solid, dashed and dashed-dotted
lines represent, respectively, first-order transition, second-order transition and limit of stability lines. The hatched
areas are regions of phase coexistence. N is a three-phase point. Tr is a tricritical point. The arrows suggest the
thermodynamic path followed in carbon.

Figure 35. Schematic representation of the pressure-temperature phase-diagram of iron.

HD) transitions, and F2(�(�)) = �′

2
�2 + 	′

3
�3 + 
′

4
�4, for the HG → CD transition. The corresponding

theoretical phase diagrams are shown in Fig. 34. The left- or right-hand side of the theoretical phase

diagram of Fig. 34(b), which exhibits only the HG and CD phases, reflects the topology of the

experimental phase diagram of carbon [47]. The anti-isostructural CD variant may coincide with the

cubic n-diamond structure [48], which is composed of hexagonal-ring planes puckered in the opposite

direction with respect to CD.

6.4 The phase diagram of iron

Two of the most commonly encountered reconstructive mechanisms are found in the phase diagram of

iron: the bcc → hcp Burgers mechanism [49], and the bcc → fcc Bain deformation mechanism [50].

The three �-bcc, 
-fcc and �-hcp phases merge at a triple point and are separated by transition curves

which are almost straight lines. The temperature-pressure phase diagram of iron, shown in Fig. 35,

contains an additional �-bcc phase in the low pressure-high temperature region below the melt, as

well as a more recently discovered high-pressure 	-phase, for which two different structures have

been proposed: a double-hcp structure and an orthorhombic structure of symmetry Pbcm [51, 52].

The reconstructive mechanisms relating the different phases are shown in Fig. 36. They can be
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Figure 36. Structural mechanisms associated with the reconstructive transitions between the fcc 
-phase of iron and
bcc �−Fe or hcp �−Fe. The intermediate substructure common to the three phases, represented in all the figures,
has the symmetry I4/mmm (Z = 1) for the 
 → � transition, and Cmcm (Z = 2) for the 
 → � transition. The
(a)→(d)→(i) path represents the reconstructive mechanism from 
−Fe to an eventual high-pressure 	 modification
[52], the existence of which remains to be confirmed.

described as occurring via a common substructure having the monoclinic symmetry C2/m (Z = 4).

All the mechanisms can be expressed in terms of critical strains and fractional displacements [53]. The

corresponding order-parameters are periodic functions of the critical displacements as represented in

Fig. 37.

7. INCOMMENSURATE STRUCTURES AND THE CRYSTAL-AMORPHOUS TRANSITION

7.1 Landau theory of incommensurate structures

In the Landau theory the increment of the probability density describing the change in the spatial

distribution of atoms in a crystal undergoing a phase transition reads:

��k =
p

∑

i=1

�k
i (�r)�k

i (�r) (44)

where the �
k
i (�r) are normalized functions transforming as the basis of an irreducible representation of

the parent space-group G0, the �k-vector corresponding to a point of the Brillouin zone of the parent

structure. The stable states of the crystal are characterized by definite values �k
i of the order-parameter

components associated with an absolute minimum of the transition free-energy �(�k
i ), expressed as a

polynomial expansion of the �k
i . Lifshitz has noted that when the transition leads to an inhomogeneous

low-symmetry structure, the preceding condition does not test completely the stability of the phases
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Figure 37. (a) and (b): Periodic dependence of the order-parameter for the � → 
 → � phase sequence in function
(a) of the angle � between the diagonals in the (110) cubic plane, and (b) of the displacements � along the [011]
cubic direction. (c) and (d): Periodic dependence of the order-parameter at the � → � transition in function of the
displacements � along the [11̄0] bcc direction. In (d) the geometrical constraints imposed by the size of the atoms
is also taken into account.

at the macroscopic level, as �(�k
i ) has also to be minimum with respect to variations of the �k

i , which

vary continuously from one point to another in the low symmetry phase. As a consequence, instead of a

homogeneous polynomial expansion for the free-energy, one has to consider a functional

�(�k
i ,

��k
i

�xj

) =
∫

�(�k
i (�r))d �r (45)

where the sum runs over the volume of the system, the free-energy density � depending on the �k
i

and on their spatial derivatives. If the �k
i vary slowly at the microscopic level, Lifshitz shows [54] that to

determine the eventual stability of an inhomogeneous structure, it is sufficient to consider antisymmetric

gradient invariants of the form �k
i

��k
j

�xl
− �k

j

��k
i

�xl
with i �= j , (xl = x, y, z). If such terms (called Lifshitz

invariants) are allowed by the parent symmetry, an inhomogeneous phase may stabilize across a second-

order transition from the parent phase. These ideas were used by Dzialoshinskii [55] in the description

of incommensurate helimagnetic structures. In incommensurate structures the transition wave-vector

varies with temperature (or pressure, or concentration) within an interval ��k, and therefore one has to

consider the variation of ��k(�r) in this interval. Dzialoshinskii proposed to fix the value �k = �kc, where
�kc represents a rational vector associated with the lock-in transition, which generally takes place below

the range of stability of the incommensurate phase. The physical assumption underlying this choice is

that, within the incommensurate phase, the system is asymptotically governed by a periodic potential

possessing the symmetry of the lock-in phase, i.e., the incommensurate structure is treated as a spatial

modulation of the lock-in structure. As a consequence the �
k
i functions form the basis of a single

irreducible representation associated with �kc, but the order-parameter components �
kc

i appear as slowly

modulated functions of the actual order-parameter components �k
i . As a consequence � is a continuous

function of �k through the sequence of parent-incommensurate-lock-in phases.
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7.2 Phenomenological theory of the amorphous solid state

7.2.1 Basic assumptions of the model: The gauge invariant free-energy

An amorphous solid phase can be obtained by overcooling a liquid [56], by irradiating a crystal with

different types of particles [57], or by pressurizing a crystal phase [58]. Although the microscopic

mechanism and transformation kinetics depend on the amorphization process and class of materials,

all amorphous phases show no long-range order and physical properties (solidity, high viscosity, small

diffusion) which make the amorphous state essentially different from the liquid state [56]. An amorphous

phase can be assumed to result from a parent crystal phase. This assumption is obviously justified for

irradiation-induced and pressure-induced amorphizations. For glasses formed from a liquid one can

consider as the parent phase the crystal phase bypassed on overcooling, since the local glass structure

reflects the chemical bonding of the bypassed crystal. For introducing the model [59], let us assume

that the order-parameter of the crystal amorphous transition has two complex components � = �ei�

and �∗ = �e−i�, where � and � depend on the space coordinates xj (j = 1, 2, 3). At variance with

the approach to incommensurate structures, the critical wave vector �k associated with the crystal-

amorphous transition is assumed to vary continuously from one point to another of the amorphous

phase:

�kc(xj ) =
3

∑

k=1

�k(xj )�t∗
k (46)

where the �t∗
k are the reciprocal lattice vectors of the parent crystal phase, the �k coefficients varying

continuously in space. This is consistent with assumed geometrical topology of amorphous structures in

which each two neighbouring cells display different basic translations.

The primitive translation operators t̂i of the parent crystal phase transform the order-parameter as:

t̂i� = ei �k.t̂ic� and t̂i�∗ = e−i �kc .�t i �∗. Since �kc.�t i = 2��i , one has:

t̂i� = e2i��i � and t̂i�∗ = e−2i��i �∗ (47)

showing that � and �∗ are eigen functions of �t i and form a continuous spectrum, the free-energy density

� of the crystal-amorphous transition containing the invariants ��∗, (��∗)2. By contrast one has:

t̂i

(

��

�xj

)

= e2i��i

(

�

�xj

+ 2i�
��i

�xj

)

� (48)

expressing that the order-parameter derivatives are not eigen functions of t̂i . However, one can use

covariant derivatives, which are invariant under t̂i . One can take here:

Di� =





�

�xi

− i

∑

j

Aji



 � and D∗
i �∗ =





�

�xi

+ i

∑

j

Aji



 �∗ (49)

where 
 is a coupling constant, and the Aji are components of a second-rank tensor transforming as:

t̂i(Aik) = Aik + 2�
��i

�xk

and t̂iAlk = Alk(l �= k) (50)

The physical meaning of the space-dependent (Aji) tensor can be anticipated as representing a

compensating stress-field potential, i.e., a gauge-field potential which ensures the local invariance under

translation of the order-parameter derivatives. One has:

t̂iDi� = e2i��i Di� and t̂∗
i D∗

i �∗ = e−2i�i D∗
i �∗ (51)

Thus, the invariants Di�D∗
i �∗, �D∗

i �∗, �∗ Di� can be included into the free-energy density �, which

is gauge invariant under the phase change � → �e2i��i . From Eq. (50) one finds the quadratic sums
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∑

k �2
ik to be also gauge invariant, where:

�ik =
∑

j ,l

�kj l

�Ail

�xk

(52)

are internal stress-field components, and �kj l is the Levi-Civita tensor. Therefore the free-energy

associated with he crystal-to-amorphous transition has the form: � =
∫

�
(

�, �∗, Di�, D∗
i �∗, �Ail

�xk

)

dV

and can be minimized independently with respect to �, �∗ and Aji . For the purpose of our demonstration

we take:

� = a

2
��∗ +b

4
(��∗)2 + c

2

∑

i

Di�D∗
i �∗ +d

2

∑

k

�2
ik (53)

where a, b, c and d are phenomenological coefficients.

7.2.2 Analogy with Ginzburg-Landau theory of superconductivity

We now refer to the formal analogy existing between the equations describing the deformed states of a

solid and Maxwell’s equations of magnetostatics [60]. In this analogy the internal stress-field potential

(Aji) coincides with the vector potential �A, and the internal stress-field with the magnetic induction �B,

Eq. (52) corresponding to �B = curl �A. It leads to another analogy between: 1) Our description of the

amorphous state resulting from the breaking of the translational symmetry of the parent crystal phase,

where the spatial dependence of the order-parameter gradient is compensated by a stress-field potential,

and 2) the Ginzburg-Landau time independent description of the superconducting state [5], in which the

gauge symmetry of the normal state is broken, and the spatial dependence of the gradient of the wave

function � = |�|ei� is compensated by the vector potential �A. Substituting in Eq. (53) � by �, Di�

by ( �∇ − 4i�
he

�A), and �ik by �B, one gets the free-energy density used in the Ginzburg-Landau model [5].

Accordingly, minimization of � should yield equations, which are analogue to the Ginzburg-Landau

equations, and constitute the equations of state of an amorphous solid. Minimizing � with respect to

Aji gives the analogue of �j = curl �H , relating the current density to the magnetic field. It reads:

�ij =
∑

kl

�jkl

��il

�xk

(54)

which is Kröner equation [60] relating the dislocation density tensor �ij = ��

�Aij
to the distortion tensor

�ij = ��

��ij
, the conservation of the dislocation current

∑

j

��ij

�xj
= 0 corresponding to div �j = 0. The �ij

components depend on the transition order-parameter and stress-field potential as:

�ij = −

c

d
�2





��

�xi

+
∑

j


Aji



 (55)

Minimization of � with respect to � and �∗ gives

− c





�

�xi

+ i

∑

j

Aji





2

� + a� + b�2� = 0 (56)

and a similar equation of state for �∗. Equations (54) to (56) show that the local state of an amorphous

solid phase is stabilized by a stress-field deriving from a stress-field potential coupled to the crystal-

amorphous order-parameter, which compensates the structural distortions and creates a stationary

dislocation flux. In the absence of an internal stress-field the amorphous is unstable. This is in contrast

to the property of the superconducting state to be stable in the absence of an applied magnetic field,
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corresponding to a homogeneous state with constant amplitude and phase of the superconducting

order-parameter. Therefore the amorphous state appears as the analogue of the mixed state of type II

superconductors [61], the amorphous analogue of the Meissner effect consisting of a partial extrusion

of the internal stress-field which lowers the local distortion and preserves a finite density of dislocations.

Within this interpretation the homogeneous state with constant � and � is a superhard crystal phase from

which the stress-field is extruded, i.e., its structure remains undeformed under applied stress except close

to its surface. One can show that:

�ij (x) = �0
ij exp

(

−x

�

)

(57)

where � =
(

− bd2


2ac

)1/2

represents the penetration length of the stress-field inside the superhard crystal

in the direction normal to the surface of the sample. Assuming a = a0(�S − �) (a0 > 0), where � is

an applied stress (or pressure), and �S the critical stress at which the amorphous-to-superhard crystal

transition takes place, Eq. (57) shows that with increasing applied stress � > �S the internal stress-field

decreases exponentially, i. e. the penetration depth is limited to a near surface layer of thickness �(�).

Introducing the correlation length of the order-parameter fluctuations �(�) =
(

− c
2a

)1/2
, the amorphous

analogue of the Ginzburg-Landau parameter is � = �(�)

�(�)
=

(

2 bd2


2c2

)1/2

, which for a type II superconductor

fulfils the condition � > 1/
√

2. It yields the relationship between �S and the critical stress �A at which

the amorphous state occurs:

�S =
√

2��A = 2

(

bd2


2c2

)1/2

�A (58)

where the condition bd2


2c2 > 1
4

is required for the amorphous phase to be stable.

Recrystallization of amorphous phases under pressure has been observed in amorphous �− quartz

[62], which transforms into stishovite at about 60 GPa, and for the high-density amorphous phase of ice

[63], which recovers the ice VII or ice VIII structure at high pressure. Recrystallization under pressure

or stress is also observed in a number of glasses [64]. On the other hand, superhard properties, i.e.

extremely low compressibility of the same order of magnitude as in diamond, have been reported for

cubic boron nitride [65], the tridymite-like phase of carbon dioxide [66], or superhard graphite [67].

The most typical effect characterizing the mixed state of type II superconductors is the existence of

vortices oriented in the direction of the applied magnetic field [61]. Their amorphous elastic analogs

should be formed by defect lines, about which the wave-vector �kc(xi) turns continuously due to the

non-quantization of the stress-flux. At variance with superconducting vortices, amorphous elastic

vortices are non-directional due to the tensorial character of the stress-field, and to the property of

the applied and internal stresses to have different proper systems of coordinates. The defect lines can be

formed, for example, by Somigliana-type dislocations [68], as suggested for glassy polymers [69], or

by screw dislocations with variable Burgers vectors [70].

8. CONCLUSION

In this article the flexibility of the Landau theory for investigating different fields of condensed

matter physics has been illustrated. The initial Landau approach, restricted to continuous phase

transitions between strictly periodic structures, induced by a single irreducible representation of the

parent space-group, has been shown to adapt to the description of first-order transitions, eventually

associated with several order-parameters, or leading to incommensurate or amorphous phases, and to

reconstructive transitions for which the symmetry relationship between the phases is apparently lost.

Each extention requires some modification of the initial Landau model, but preserves the basic concepts

of the model, i.e. the order-parameter and Landau expansion concepts. Symmetry and related group-

theoretical considerations, as well as thermodynamics form the essential ingredients of the Landau
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phenomenological approach, which constitutes and invaluable tool for understanding the physics of

complex systems.
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