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ABSTRACT. In Dahlet al. (2007) we extended and refined some tools
given in O’Hagan (2003) for criticism of Bayesian hierarchical models. Espe-
cially, avoiding double use of data by a data splitting approach was a main
concern. Such tools can be applied at each node of the model, with a view
to diagnosing problems of model fit at any point in the model structure. As
in O’Hagan (2003) a Gaussian model of one-way analysis of variance was
investigated. Through extensive MCMC simulations it was shown that our
method detects model misspecification about as well as the one of O’Hagan,
when this is properly calibrated, while retaining the desired false warning
probability for data generated from the assumed model. In the present pa-
per we suggest some new measures of conflict based on tail probabilities
of the so-called integrated posterior distributions introduced in Dahl et al.
(2007). These new measures are equivalent to the measure applied in the
latter paper in simple Gaussian models, but seem more appropriately ad-
justed to deviations from normality and to conflicts not concerning location
parameters. A general linear normal model with known covariance matrices
is considered in detail.

Key words: double use of data, general linear model, integrated posterior
distributions, Markov chain Monte Carlo simulations, model evaluation, tail
probabilities

1. Introduction

O’Hagan (2003) introduces some tools for criticism of Bayesian hierarchi-
cal models. Such tools can be applied at each node of the model through
analysis of what is called information contributions. The aim is to diagnose
problems of model fit at any point in the model structure. His method relies
on computing the posterior median of a conflict index, typically through
MCMC simulations. In Dahl et al. (2007) we extended and refined the
method of O’Hagan (2003), especially avoiding the double use of data by a
data splitting approach. As in the latter paper a Gaussian model of one-
way analysis of variance was investigated, and it was shown that O’Hagan’s
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approach gives unreliable false warning probabilities. Through extensive nu-
merical experiments, accompanied by theoretical justifications from a non
trivial special case, we showed that our method detects model misspecifica-
tion about as well as the one of O’Hagan, when this is properly calibrated,
while retaining the desired false warning probability for data generated from
the assumed model. This also holds for Student-t and uniform distribution
versions of the model.

In the present paper we suggest some new measures of conflict based
on tail probabilities of the so-called integrated posterior distributions (ipd)
introduced in Dahl et al. (2007). These new measures are equivalent to the
measure applied in the latter paper in simple Gaussian models, but seem
more appropriately adjusted to deviations from normality and to conflicts
not concerning location parameters. This more simple case was treated in
Dahl et al. (2007). In the present paper we also extend our notion of conflict
to cover data nodes in addition to the parameter nodes considered in Dahl
et al. (2007). This establishes a close link to the cross-validatory p-value
discussed in Marshall & Spiegelhalter (2007). It is also shown that there is
a close link between these new measures and the partial posterior predictive
p-value introduced in Bayarri & Berger (2000). The latter is designed to
avoid the double use of data by eliminating the influence of a chosen test
statistic on the posterior distribution. For nodes that are parents to data
nodes, our suggestions are closely related to the conflict measure introduced
in Marshall & Spiegelhalter (2007). Our approach may hence serve as a
unifying framework for these measures. A review of several Bayesian p-
values along with related work is given in Dahl et al. (2007). In Bayarri
& Castellanos (2007) an extensive numerical comparison of such p-values is
given in a simple hierarchical model. As for these measures our aim for the
new measures is that they are pre-experimentally close to be uniformly (0,1)
distributed.

The paper is laid out as follows. In section 2 the new measures of conflict
based on tail probabilities are introduced for data node conflicts. The link
between these measures for data nodes and the partial posterior predictive
p-value of Bayarri & Berger (2000) is discussed in section 3. In section
4 the new measures of conflict for parameter node conflicts are presented
and the link to the conflict measure of Marshall & Spiegelhalter (2007) is
discussed. Such conflicts are not considered by Bayarri & Berger (2000). A
general linear normal model with known covariance matrices is considered in
section 5 leaving the proofs of the theoretical results to an appendix. Some
concluding remarks are given in section 6.

2. New measures of conflict for data nodes

The main purpose of this section is to introduce the new measures of conflict
based on tail probabilities. It is most easy to motivate and discuss alterna-
tive variants of these measures in the context of data node conflicts. Such
conflicts are not treated in Dahl et al. (2007).



In general a Bayesian hierarchical model can be supposed to be expressed
as a directed acyclic graph. We define a child (c¢) node of a specific node as a
node that can be reached by a directed edge from the specific node, including
by definition the specific node itself. A parent (p) node of a specific node is
a node that can reach the specific node by a directed edge.

As a start consider a splitting (y?,y¢) of the data vector y with y¢
scalar. We will consider a conflict at the node y°. We assume Y? and Y*
are independent given the vector of parent nodes 8 of y¢. The information
contribution about y¢ from 3 is the density for Y¢ given 8. The correspond-
ing integrated posterior distribution density g, is defined by integrating the
information contribution about y¢ from 3 over the posterior distribution for
B given yP. This is in the spirit of the predictive densities treated in Gelfand
& Dey (1994). Hence,

Go(4°) = / fre(s°1B)m(BlyP)dB = Ty (s°IyP), (1)

the last equality following from the independence assumption. Denote the
corresponding cumulative distribution function by G,. Motivated by (6) of
Dahl et al. (2007) a corresponding measure of conflict at the node y° is
given by

2yrye _ (B (V) —y)? _ (E(Y°lyP) —y°)?
ve  vard(Ye)  var(Yelyp)

c (2)
having applied (1).

Now the main idea is to measure the conflict at y. in terms of the tail
probabilities of G, rather than in terms of the mean and variance of this
distribution as in (2). We will measure the conflict on a scale ranging from
0 to 1 in terms of 1 minus the tail probabilities of G}, corresponding to
the observed y¢. Hence, a value close to 1 of such a measure indicates an
inconsistency in the model. Let G,(-) = 1 — G,(+). Our first proposal for a
new conflict measure is

e =1 2min(Gy(y"), Gply")) (3)

To see the connection between (2) and (3), note that by (2) czi;yp’yc =c
iff y© = y§(c) = BY|y?) — (evar(Yely?))'/? or y° = yi(c) = E(Y°ly?) +
(cvar(Y°|yP))'/2. By letting Cgc be an abbreviation for cz’cyp’yc, we consider
the tail area (—oo,y§(ci:)] U [yf(cie), 00) corresponding to a measure of
conflict at the node y¢ at least equal to c;.. This leads by (2) to the conflict
measure

P (cie < i) = Gp(yi(che)) — Gpy(cie))
= Gp(BE(Y“|y") + |E(Y|y") —y°|) — Gp(E(Y |y") — [E(Y|y") — y°])

2
Y

When g, is symmetric around E(Y¢|y?), we have Gp(y§(c5)) = Gp(y§(cie)),
and it follows that (4) equals the measure (3).



If in addition g, is unimodal, (3) is equal to our second proposal for a
new conflict measure

c;t’cyp’yc = P%(gp(Y) > gp(y°)) ©)

Now replace the fixed y© on the right hand side of (2) by a random Y*
following the conditional distribution given by (1). If for instance G, is
normal, then c%}?p’yc is x7 distributed. Hence, due to the symmetry and
unimodality of the normal density, we get from (4)

3,y ,y° 4,yP,y°¢ 2 2 2,9yP y°
Cycy Y - Cycy Y - ng(cyc S Cyc) == 1/}1(Cycy Y )7

where 1)1 is the cumulative distribution function of the x3-distribution. Ac-

cordingly, i1 (c?;ﬁ’p’yc) is uniform on (0,1) under G,. In particular the 3.85

level of c?;?p’yc corresponds to 0.95 for the new measures.
Although the new measures given by (3) and (5) equal the tail probability
D ,,C
version of ¢2¥" Y given by (4) under special restrictions on G), our idea is to

yL
. i 4,yP y°
use these new measures without any restrictions on G,. The cycy v

has the disadvantage compared to cz’cyp’yc that it is not invariant under non-
linear transformations of the data. This is not considered a serious problem
since there often is a natural scale for the data. One major advantage of the
former measure is that it is particularly well suited to handle multimodality.
Another major advantage is that it is readily extended to measure conflicts
about vector nodes. Now g, is a multidimensional distribution for Y defined
parallel to (1). We will return to vector node conflicts in sections 4 and 5.

Returning to the scalar case, there may in some situations be of special
interest to consider deviations of ¢ from E(Y¢|yP) in one of the two possible
directions. Hence, it is natural to introduce

measure

Czj,yp,yc = Gp(y°), sz,yp,yc = Gp(y°) (6)

The first of these corresponds to the cross-validatory p-value discussed in
Marshall & Spiegelhalter (2007), focusing on deviations towards the right tail
of the cross-validatory predictive distribution for y¢, which coincides with
Gp. Intuitively, all new measures should be well suited to handle skewness,
an aspect of conflict analysis that may be problematic using the czgyp’yc
measure. Another aspect that could be problematic with this measure, is
the way uncertainty in spread parameters is treated in models based on
separate parameters for location and spread. In the following simple normal
example covering such a case, we show that our new measures are pre-
experimentally uniformly (0,1) distributed as desired. Normal models that
are much more complex, but with fixed variances and covariances are dealt

with in section 5.

Example 1. Let Y7,...,Y; be independent N(u,7%), and let 7(u) = 1,
7(72) = 1/7% be improper, non-informative priors for the unknown param-
eters u and 72. Introduce the data splitting y? = (y1,...,Yk_1),¥¢ = Yk,
and consider the conflict measure czj’yp’yc. Let ¢ be the standard normal



density and v, (z;a,b) = (b%/I'(a))(1/z)*"! exp(—b/x) the inverse gamma
density. Then

m(p, T2 |yP) = m(plr?, yP)w (T3 |yP)
= (72/(k = 1)) 20(( — 57) /(7% (k — 1))y (725 (k — 2) /2, 5%/2),

where 52 = Zf;ll (yi — 7*)%. By (1) it follows that

g (y°) = [ 771 0((y" — p)/T)m(p, 7| yP) dpdr?

= [(k?/(k=1))"20((y° = 5P)/ (k72| (k= 1) 2 )y (725 (K —2) /2, 5 /2)d7?
= (ks?/((k = 1)(k = 2))) "2 hy_o((y° — §7)/ (ks?/ ((k = 1)(k — 2)))*/?),
where hp_o denotes the t-distribution with £ — 2 degrees of freedom. If the

variable Y = (Y7,...,Y}) is distributed according to the assumed model,
we therefore have

Gp(Y*) = Hia(((k = 1)/R)/2 (Y = YP) /(S (k - 2))'/?),

where S? = Zf;ll (Y;—YP)2 and Hj,_5 is the cumulative distribution function
corresponding to hg_o. In the argument for Hy_o, the numerator, if scaled
by the true standard deviation var(Y;)'/? = 79, is standard normal and
independent of the denominator, which similarly scaled is the square root
of 1/(k — 2) times a x;_, variable. Hence, this argument is t-distributed
with k£ — 2 degrees of freedom, and consequently G, (Y ¢) is uniform on [0, 1].
(6) o v

Accordingly, by is pre-experimentally uniform. By symmetry,

this also applies to czc_’yp’yc. It also follows that 1 — 2min(G,(Y ), G,(Y°))
is uniform on [0,1]. Hence, by (4) cz’cyp’yc is pre-experimentally uniform.
Since the ¢ and ¢* measures coincide in this case, due to symmetry and

unimodality of g,, this applies also to cg’cyp’yc.

3. The link to the partial posterior predictive p-
value

Bayarri & Berger (2000) introduces the partial posterior predictive p-value
and the conditional predictive p-value. These Bayesian p-values are identical
in most examples given in their paper. Furthermore, these values are based
on a test statistic, T, which typically is a function of the entire data vector
Y. However, the definitions can equally well be applied to a scalar Y¢ for
which a conflict is considered, as discussed in the previous section. In this
section we will demonstrate the link between the new measures presented in
the previous section and the partial posterior predictive p-value denote by
Pppost -

Consider a splitting (y?, y¢) of the data vector y with y¢ scalar and let 6
be a parameter vector. Bayarri & Berger (2000) defines the partial posterior
distribution for 6

fr(y|6)7(6)

T(0]y\y©) o Fre(]0)

(7)



The partial posterior predictive distribution for Y¢ is then given by

mlyfTy\v) = [ fre(u10)n(6ly\y)do ®)
Finally, pppost is given by
Pppost = pm(ycly\yc)(yc > ) (9)
We now have the following theorem

Theorem 1.
Let (y?,y°) be a data splitting with y° scalar and such that Y? and Y¢ are
independent given the parameter vector 8. Then

) popos = 1
ii) If g, is nonincreasing,
popons = 1 — SV
iii) If gp is symmetric around E%(Y°) and if T = |Y° — E9%(Y°)| is the
test statistic, then
Pppost = 1 — Ci’cyp’yc
If in addition g, is unimodal,

Dppost = 1— C:»Cyf’,yc
Proof. Since Y? and Y¢ are independent given 6, the right hand side of
(7) is proportional to w(@|y?). Hence, from (1), (8), (9) and (6)

Popost = PP (Y > 1) = Gp(y) =1 — SH¥"°

The proof of ii) is very parallel to the one above using (5) instead of (6).
For iii)

Pppost = P#[|Y = E9(YO)| > |y* — B2 (V)]
=1-P%[(Y*~ E%(Y)* < (y° — E”(Y°))?]

iii) now follows by the argument leading to (3) and (5) just replacing vard (Y¢)
in (2) by 1.

Note that the assumption that Y? and Y¢ are independent given 0 provides
the link between the new measures and pppest- This assumption is not made
in Bayarri & Berger (2000). However, they have only demonstrated the nice
uniformity property of their p-values in examples where this assumption
holds. Actually, in our opinion the interpretation of (7) and hence pppost in
(9) is somewhat obscure without this assumption.

Moreover, in all the examples in Bayarri & Berger (2000) demonstrating
the nice uniformity property of their p-values, one may transform the data



in their paper. This can be done in such a way that the transformed data
vector Y can be split into (Y?,Y°), where Y? and Y€ are independent
given 6 and Y° is their test statistic. A conflict analysis as described in the
previous section can then be based on this splitting.

The following example shows how a data transformation can be used to
make the tools of our data node conflict analysis available as an alternative
to the posterior predictive p-value analysis.

Example 2. This is Example 1 in Bayarri & Berger (2000). Let X1,..., X,
be independent N(0,0?), where o2 has the improper prior m(c?) = 1/02.
Let T = t(X) = |X|. Bayarri & Berger (2000) shows that pppost is pre-
experimentally uniformly distributed. In order to analyse this in terms of
data node conflict, we define Y = (Y1,...,Y,) as an orthogonal trans-
formation of X for which Y, = n!/2X. With the data splitting y? =
(Y1, Yn—1),Y¢ = yYn, we have that Y? and Y° are independent given
o2. Moreover, f(y°|o?) is symmetric around 0 for every o2. Hence, g,
is also symmetric around 0. It follows from iii) of theorem 1 and the
pre-experimental uniformity of the partial posterior predictive p-value that
cz’cyp’yc is pre-experimentally uniform. The same applies to c;‘;;yp’yc due to
unimodality.

4. New measures of conflict for parameter nodes

Let as a start A be any scalar parameter of interest given by an interior node
of the network. Let « be the vector of neighbouring nodes of A, possibly
containing data nodes. Let (4P,~¢) be a decomposition of «, where ~¢
contains some or all of the child nodes of A and ~® contains all the parent
nodes of A as well as child nodes not present in v¢. Let 3° be the vector
consisting of ¢ as well as nodes that are coparents with A for the child
nodes in 4¢. Let B be the vector consisting of 4P and the coparents with A
for child nodes in 4P. Such coparents could e.g. be a variance parameter, if
A is a location parameter for the components of «v that are child nodes of A,
or other regression parameters, if A is a coefficient in a vector of regression
parameters. Suppose it is of interest to contrast information contributions
about A from 8P and B°. This set up is more general than the one described
in Dahl et al. (2007) since we now do not necessarily assume that 3 consists
only of the parent nodes of A.

The information contribution about A from B3P(3°) is the density pro-
portional to all the likelihood factors expressing components of 37(3°) as
function of A, and is denoted f(X; B7)(f(\;B°)). Note that O’'Hagan (2003)
based on geometric intuition normalises these functions by scaling them to
have equal height 1. Our idea of instead normalising them to densities is
also used in Scheel et al. (2008) as a basis for a graphical technique for
diagnosing conflicts in hierarchical models. Define a data splitting (y?, y©).
Parallel to (1) the following integrated posterior distribution densities are



defined
Gp(A) = / FO BBy, ge(N) = / O B)m(B4lye)dBe (10)

Denote the corresponding cumulative distribution functions by G, and G..
Let ()\;, A;) be a pair of independent samples from G, and G. respectively.
Define § = Aj — A7 and let G' and g be the cumulative distribution function
and density of §. Parallel to (6), (4) and (5), replacing y© by 0, we suggest

the following conflict measures

STV =G) VY =G(0) (11)
Y =1 — 2min(G(0), G(0)) (12)
GV = PI(g(6) > 9(0)) (13)

We will now show that these measures coincide with (6), (3) and (5)
respectively in the data node case considered in section 2. In this case A,
corresponds to Y¢ A’ is deterministic and corresponds to y°. We define
X =Y¢—y° corresponding to 0. We then have g(z) = g,(x + y¢). Hence,

0 y°
G(0) = / o(x)dz = / ap()dy = Gy(u°),

and accordingly G(0) = G,(y¢). It follows that (6) and (3) are special cases
of (11) and (12). Moreover,

PI(g(X) > g(0)) = PP (gp(Y) > gp(y°)),

showing that (5) is a special case of (13).

Furthermore, this correspondance between the data node conflict mea-
sures of section 2 and the parameter node conflict measures of the present
section can be used to motivate these latter measures. We will treat the
3t measure as an example. Consider again a parameter node \. If \ were
actually observable and known to take the value A\, the data node version
of the ¢3T measure could be used to measure deviations towards the right
tail of G, as

Ae 0

Gox) = [ gir= [ 4,06+ )8
— o0 —0o0

Now since A is in reality not known, we take the expectation of this conflict

with respect to the distribution G., which reflects the uncertainty about A

when influence from data y? are removed. Hence, we are lead to consider

/Oo gc()\)(/io gp(0 + N)dd)d\ = /0 (/OO p(0 + X)ge(X)dN\)dé

—00 - —o00 J—00

— / " g(0)ds = G(0)

—0o0



If for instance G, and G are normal, then also G is normal and it follows
that (6 — E9(6))?/var9(§) is x3-distributed under G. We then have

(0))
= E9<c;>>2 . (Eg(?);}
— vard(d
((E9(5))2> — [<EQP(A> - EQC(A))z}

vardr (A) + varde (\)

having recalled the definition of ci’yp’yc in (6) of Dahl et al. (2007). Hence,
calibrating the latter measure against the cumulative distribution function
of the y3-distribution is equivalent to calibrating the ci’yp’yc measure against
the uniform distribution on [0, 1] in this case. Since in this case g is sym-
metric and unimodal, ci’yp’y = cil\’yp’yc. Accordingly, the same applies to
the ci’yp’yc measure. If ci’yp’yc is in fact pre-experimentally X%—distributed,
as in corollary 1 of Dahl et al. (2007), it follows that the new measures are
pre-experimentally uniformly distributed.

Since these new measures take the functional form of g, and g. into
account, it is our intuition that they reflect the level of conflict in a way
that is better than the c?\’yp’yc measure depending only on expectations and

1 ] 3 ; 3, p’ ¢ 3+, pv ©
variances. Computationally, sample based estimation of c)\y 4 ,c;y 4

and ci_’yp’yc should be straightforward. Estimating ci’yp’yc seems to require
a kernel estimate of g, and is hence somewhat more demanding.

In the special case when X is a location parameter which is a parent
node for one or more data nodes y¢, Marshall & Spiegelhalter (2007) in their
equation (10) defines a conflict measure which is very closely related to c?)’\+.
A distribution similar to G is constructed, based on sample differences for
variables generated from G, and a distribution identical to or similar to
G.. While the prior distributions for 8¢ used in (10) above to compute G,
are derived from the hierarchical model, Marshall & Spiegelhalter (2007)
use specific reference priors for the same purpose. They also mention the

possibility of using measures very close to cif and C?)’\.

The ci’yp’yc measure is very attractive since it can be applied to collec-
tions of nodes. Indeed (13) extends to this case by interpreting A and §
as vectors. Parallel to the results for scalar A and J we have the following
theorem in the multinormal case

Theorem 2.

Assume gp(X) and g.(X) and hence also g(8) = [ gp(6 + X)ge(X)dX are
multinormal densities of dimension n. Let ¢, be the cumulative distribution
function of the x?-distribution. We then have

Y = 0 ((B9(8))T (covi(8))LE9(8)),



where

E9(8) = E%(X) — E%(X)
cov?(8) = cov () + covIe(A)

If E9(8) is pre-experimentally multinormal with mean O and covariance ma-
triz cov9(d), which is assumed non random, then ci’yp’y is pre-experimentally

uniformly distributed.

In the appendix we will prove that this last condition is satisfied for very
general linear normal models as long as the covariance matrices involved
are known and the improper prior 1 for the top vector location parameter
applied. This generalizes corollary 1 of Dahl et al. (2007). Marshall &
Spiegelhalter (2007) consider vectors of location parameters being parents
to data y© and define the conflict for such vectors in terms of a x2-type
expression as the one appearing in theorem 2. This seems to be meant to
be used universally, though with caution outside Gaussian models. This
corresponds to what would be the natural generalization of the ci measure
of Dahl et al. (2007) to the vector case.

Our set up can be adjusted to the case where it is of interest to examine
whether a prior specification of a top vector node 8 at a certain fixed value
0y, is supported by the data. Let 3¢ be the vector consisting of all the child
nodes of 8, and let parallel to (10)

0c(8) = / £(6: 6°)m(B°1)dB°

Here 7(3¢|y) is the posterior distribution for 3¢ given y obtained by replac-
ing the fixed value 6y by a non-informative, possibly improper, prior for the
parent node 8 of 3°. Hence, all data is used in the formation of the density
9c(0). Analogous to (5), by a top-down view rather than a bottom-up one,
this leads e.g. to the conflict measure

co = P%(g.(0) > ge(60))

Example 3. This set up can e.g. be applied to an extension of example
2, with E(X;) =6,i=1,...,n. Using the improper prior 7(6) = 1, a calcu-
lation similar to the one used in example 1 shows that g.(8) = (s?/(n(n —
1) 2ha1((0 = 2)/(s*/(n(n — 1)))/?), where s> = 370 (z; — 7)*. Ar-
guing as in example 1, it follows that all measures cng,cg*,cg and cg are
pre-experimentally uniformly distributed.

5. The general linear normal model

In this section we consider a general linear normal model described by a
directed acyclic graph with a tree structure. All nodes except the bottom
ones represent vectors of location parameters. Each node is multinormal
given its parent node with expectation equal to a linear function of this node.

10



We assume that the matrix representing this function has full rank. The
covariance matrix is assumed known. In this model, a vector of regression
parameters is generally considered as a single node. Since also all covariance
matrices are assumed known, the vector v of the neighbouring nodes of A
coincides with 3, as defined in the general description in the beginning
of section 4. The top node is equipped with the improper prior 1. Hence,
marginally every node has the improper prior 1. The bottom nodes represent
the data y. Many models of practical importance are special cases, as for
instance some Bayesian dynamic models. Under a suitable data splitting
(yP, y¢) we will show that ci’yp’yc for any vector node A is pre-experimentally
uniformly distributed.

We define a descendent node of a specific node as a node that can be
reached by a directed path from the specific node, including by definition
the specific node itself. An ancestor node of a specific node is a node that
can reach the specific node by a directed path. We now have the following
theorem

Theorem 3.

i) Let A be the vector of parent nodes of the data vector y and let (y?,y°)
be a data splitting such that either of the following two conditions are
satisfied

a) YP and Y are independent given A and the linear mapping A —
E(YP|X) has full rank.

b) X can be decomposed as (AP, X°), where y° consists of all child
nodes of components of X°, and where AP and X are independent
given an ancestor parameter node 3 of the components of A°.

Then the conflict measure cz‘,’cyp’yc comparing the information contri-
butions from y¢ on the one side and A or X° on the other about y¢ is

pre-experimentally uniformly distributed.

ii) Let XA be a parameter node where the vector of neighbouring nodes (3
can be decomposed as (BP,3°). Here 3¢ consists of child nodes of
components of X. Furthermore, let (yP,y°) be a data splitting such
that either of the following two conditions are satisfied

a) y° consists of all the data decendent nodes of 3°.
b) y¢ = (yi,y5) with yi = B°.
Then the conflict measure Ci’yp’yc comparing the information contri-
butions from B° and B¢ about A is pre-experimentally uniformly dis-
tributed.

It is tacitly assumed in i) of theorem 3 that the graph is manipulated

such that A or A° is a single node contributing information about y¢. This
gives great flexibility in the choice of data splitting for data node conflicts.

11



Such manipulations are also allowed in ii), but are often less relevant
since conflicts about parameter nodes are primarily of interest in relation to
the original formulation of the model.

If y© of i) of theorem 3 is a scalar y¢, it follows from the proof that the
density ¢ is normal with expectation E(Y¢|y?)—y* and variance var(Y ¢|yP).
Hence,

e U = G(0) = p(—(B(Y¥ly?) — )/ (vax (Y |y"))"/?)

It also follows from this proof that E(Y“|Y?) — Y is normal with expecta-
tion 0 and variance var(Y¢|y?). Hence, also cij’yp’y is pre-experimentally

uniformly distributed.

Example 4. We can apply this to an example considered in section 3.3
of Bayarri & Berger (2000) where Y¢ = T = w’ X. Here X arises from
a standard normal regression model with i.i.d. noise terms. We transform
X to Y = WX, where w” is the last row vector of an orthogonal ma-
trix W, assuming without loss of generality that w has norm 1. By i) of
theorem 1 it follows that the partial posterior predictive p-value of T is pre-
experimentally uniformly distributed. Hence, the result of the mentioned
section of Bayarri & Berger (2000) can be obtained as a special case of
theorem 3.

Let us consider the one-way analysis of variance example in Dahl et al.
(2007) as a special case of the general linear normal model. We assume

yij’A,UQ NindN()\Z',(72>, iZl,...,k; jZl,...,ﬂi
i, 72 ~ind N(p,12), 1=1,...,k, (14)

where A = (\1,...,Ax)T. 02 and 72 are assumed fixed and known and we
choose an improper prior 1 for . Let y; = (Yi1,. .-, ¥in;) %, i = 1,..., k.
Two data splittings are considered. The horizontal splitting is given by

yp:(ylla-"7y1m1a"'7yk17"'aykmk)T (15)
yc = (ylmﬁ-lv e Ylngy s Ykemp+1, - - - ’yknk)Tv

where 1 < m; < n; for i = 1,...,k. The vertical splitting is for 1 < /¢ < k
given by
v=iu) Y= Wi un)T (16)
By manipulating the graph such that A is a single node, (15) is allowed
by a) of i) of theorem 3. By letting A° = (Ap;1,..., \x)T be considered as a
single node, (16) is allowed by b) of i) of theorem 3 noting that 3 = u. Now
consider ii) of theorem 3. In Dahl et al. (2007) the conflict between the
information contributions about Ay from fP = p and B° = y,, is assessed.
The horizontal splitting (15) is not allowed neither by a) nor b), since y¢
does not contain all the data descendent nodes y,. a) is violated by the
vertical splitting (16) unless ¢ = k — 1. However, (16) is allowed by b) by
choosing y{ = y;,. Letting y° = (y{,y$5) enables one to analyse conflicts
about several nodes by a simple data splitting. This saves computational
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efforts, but at the expense of detection power. If instead the conflict between
the information contributions about the single node A° from (P = p and
B¢ = y° is considered, (16) is allowed by a).

Example 5. Consider a Bayesian dynamic model of the form \;=A: 1+
€, Yy = B + ny, where ¢, m¢,t = 1,...,T are independent, normally
distributed noise terms with known variances. Let ¢ > 1 be arbitrary. The
conditions in b) of part i) of theorem 3 are satisfied by choosing

yp = (ylv v 7yt—1)7 yc = (yh ] )yT)a Ap = ()\17 .. ‘7)\75—1)7 AC - ()‘tu .. 'aAT)v
B = At-1.
YPye

Hence, the data node conflict cic is pre-experimentally uniformly dis-
tributed by theorem 3. To exemplify part (ii), we may let y?, y© be as above,

D a,C
and A = A, B = M—1, B° = (y¢, Ade1). We may then conclude that ci’ty Y
is pre-experimentally uniform.

6. Concluding remarks

In this paper we have adopted the idea of O’Hagan (2003) of measuring the
conflict at any node of a graph, representing a Bayesian hierarchical model,
by contrasting local information contributions from neighbouring nodes. At
the same time we have been insisting on avoiding double use of data, and
aiming for correct pre-experimental probabilites for false warnings. Accord-
ingly, we have developed some new measures of internal inconsistencies in
such models. Through the y?-type measure treated in Dahl et al. (2007),
well suited when the local information contributions about the node are
symmetric and unimodal, this has lead to the tail probability based mea-
sures considered in the present paper. It turns out that other measures with
the same ambition of pre-experimental correctness and avoidance of double
use of data, such as the cross validatory p-value, the conflict p-value of Mar-
shall and Spiegelhalter (2007) and the partial posterior predictive p-value of
Bayarri and Berger (2000), to a large extent can be seen as special cases of
our measures. Hence, our methodology may serve as a unifying framework
for these measures.

We have shown theoretically that our conflict measures are pre-experiment-
ally uniformly distributed under the assumed model in some cases. The
empirical results of Dahl et al. (2007) are also quite promising with respect
to having approximate pre-experimental uniformity more generally. How-
ever, further empirical studies are needed, and we plan to return to this
computationally demanding exercise in a future paper.

The main reason for pursuing a correct pre-experimental probability of
false warning, is not to use the conflict measures in a traditional, frequentist
hypothesis testing framework, although one may use the conflict measures
in conjunction with Bonferroni-like adjustments to the significance level to
control the overall false alarm probabilities. Rather, the main purpose is
to standardize the measures for conflict in hierarchical models in such a

13



way that they can be interpreted in the same way at different levels of the
hierarchy, and across different models and distribution types.

With this focus of coming as close as possible to pre-experimental uni-
formity of the conflict measures, we are in this paper not concerned with
the quite heavy computational burden that a comprehensive implementation
of our conflict analysis within a large network would imply. In very com-
plex models with many nodes, it may be necessary to develop approximate
methods that can reduce the computational effort.
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Appendix

Proof of Theorem 8. The proof is based on the assumptions linked to the
general linear model, and is built up through the proofs of four lemmas and
two propositions.

Lemma 1 Let A be a parameter node, and suppose z is a subvector of y
consisting of descendant nodes of A. Then Z can be written in the form

14



Z = AX + €, where € is multinormal with mean 0 and some covariance
matriz X2, and where € is independent of X.

Proof. 1If z is a child node of A, i.e. there is exactly one edge between A and
z, the assertion follows by the assumptions. Note that € is independent of A
since the covariance matrix is assumed known. If there is a single path with
exactly two edges, and hence one node 3, between A and z, we can write the
relation as B8 = AjAt€1, Z = AsB+e€2, and hence Z = Ay Aj A+ (Aszei+€2),
which is of the given form. The lemma follows by induction in the case when
there is a single path from A to z. The general case follows by breaking z
down into components such that each component is arrived at through one
path starting in A.

Lemma 2 Let 0 be the top node. Then 6 given y as well as E(0|Y) are
multinormal, and we have

cov(0|y) = cov(E(0|Y))

Proof. By lemma 1 it follows that Y can be written in the form Y = V@+e,
where € is multinormal with expectation 0 and some covariance matrix 3.
Since the conditional expectation of each node given its parent node is a
full rank linear function, the matrix V' must have full rank equal to dim(8).
There exists a matrix R, the product of a diagonal matrix of scaling factors
and an orthogonal matrix diagonalizing ¥, such that RXRT = I. This
implies that the transformed data vector X = RY has I as covariance
matrix. Obviously, 7(0|y) = m(8|z). Hence, we may assume that ¥ =
cov(€e) = cov(Y — VO) = I. We have

Y —Vo=(1-vVIV) "Wy + V(VIV)"lVTY — V)

The product of the transposed of the first summand and the second sum-
mand is 0. Hence, due to the improper prior for 0, it follows that

m(0ly) o< exp(—(1/2)(0 — (VIV)"'VIy)TVIV(0 — (VIV)~'VTy)),

and hence 6 is multinormal given y, E(8|y) = (VIV)~1VTy and cov(8|y) =
(VTV)~L. It also follows that F(@|Y) is multinormal with expectation 6
and covariance matrix (VIV)~1,

Lemma 3 For any parameter node A and an arbitrary data vector y we
have that X given y as well as E(A|Y') — X are multinormal, and that
cov(Aly) = cov(EA]Y) — A)
Proof. Suppose first that A = 0. Since 6 is deterministic, we get
cov(E(0Y) —0) = cov(E(0]Y)) = cov(f|y)

by lemma 2. Also, 8 given y as well as F(0]Y) — 6 are multinormal. Now
let X be any other node. Let v be the parent node of A, and write A as
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A = Vv +n, where E(n) = 0, cov(n) = R, and 7 is independent of v by
the assumptions. We prove the lemma by induction on the number of edges
between 8 and A. Suppose that, with respect to arbitrary data, the lemma
is true for the node v, which is one edge closer to € than A is. Decompose y
as (x, z), where x consists of the descendant data nodes of X. Assume first
that both & and z are non-empty. Applying lemma 1, we have X = AX+¢,
where FE(€) = 0, cov(e) = 3, and € is independent of A. By induction v
given z is multinormal with cov(v|z) = cov(E(v|Z) —v) = K. Then A
given z is multinormal with expectation F(A|z) = VE(v|z) and covariance
matrix Q = VKVT + R. Tt follows that
T(Aly) o< f(x[A)7(Al2)
x exp((=1/2)([(@ — ANTS ! (& — AN)

+[(A=VE(|2)"Q7 (A - VE(v[2)))) (17)
Hence, A is multinormal given y. Collecting the quadratic terms in (17) we
find that the precision of A given vy is

Ct=coviAly) ' =ATe 1A+ Q7! (18)
Collecting the linear terms we obtain

E\y) = C[ATS 2 + Q WV E(v|2)] (19)
Since by induction E(v|Z)—v is multinormal, it follows by (19) that E(A|Y")
and hence also E(A]Y’) — A are multinormal. By (19) we get
cov(BE(A]Y) = A) = cov(A — CATY"1X — CQ'VE(|Z)) =
cov(CCIN - CATS Y (AN +€) — CQ7VE(v|2))

By (18) and the independence of the noise terms € of A and n of v, this
equals

cov(C[Q™IN - ATY te — Q" WVE(V|Z2)]) =
CATES™LAC + cov(C[Q™ Y (Vv + 1) — QT'VE(|2)]) =
CATSLAC + cov(CQ I+ CQ™ WV (v — E(v|2))) =
CATY'AC + CQ'RQ™'C + CQ™'WWKVTQ~'C =
CIATYS A+ Q71C = C = cov(A|y).

If  is empty, the contribution from @ simply vanishes, and the proof
just simplifies. If z is empty, the full rank assumption assures that ATX 1A
is invertible, and the proof is valid also in this case.

Lemma 4 Let (y?,y°) be a data splitting, and suppose the parameter node
A is such that y© consists of descendant nodes of X, and such that YP and
Y ¢ are independent given X. Then E(Y°|Y?) —Y° is multinormal, and

cov(Y°|yP) = cov(E(YC|YP) — Y°)
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Proof. Using lemma 1, we write Y in the form Y = AX + €, where € is
independent of XA and of Y? and has covariance matrix 3. Then

cov(Y|lyP) = ¥ + Acov(A|yP) AT,
cov(E(Y°|YP)-Y°) = cov(AE(A|]YP)—AX—¢€) = Acov(E(A|]YP)—-A)AT+%

The lemma therefore follows from lemma 3, with y? in place of y.

Note that it is not needed in the proof that the linear mapping A —
E(Y‘|A) has full rank. Hence, the lemma is also valid with Y“ replaced by a
dimension reducing linear transformation of Y°. In particular, if T = ¢(Y©)
is a linear statistic, we obtain

var(T|y?) = var(E(T|Y?) - T)

Proposition 1 Make the assumptions of i) of Theorem 3. Then E(Y ‘|Y?)—
Y ¢ is multinormal and

cov(Y|ly?) = cov(E(Y|Y?) - Y°)

Proof. Consider first a). Applying a slightly extended version of lemma 1
twice, with the pair (A, z) of the lemma replaced by respectively (6, A) and
(X, y?), we obtain an alternative description of the submodel for data y?,
only consisting of the three nodes 8, A, y?, and with only two edges. Since
A — E(YP|A) has full rank, this description is allowed. If now also the
mapping A — E(Y¢|A) has full rank, using the independence of Y and Y°
given A we can extend this to a description of the entire model, with y¢ as
an extra node, and with one extra edge from A to y°. The assertion then
follows directly from lemma 4. If not, the assertion follows nevertheless in
view of the remark after lemma 4. To prove b) we also apply the slightly
extended version of lemma 1 twice, now with (X, z) replaced by respectively
(B,X°) and (A y°). Due to the independence of A? and A° given 3, this
transformation of the graph does not affect the submodel for AP and yP.
Part b) now follows from lemma 4, with A° in place of A.

Proposition 2 Let A be a parameter node, and suppose that the data split-
ting (yP,y°) is such that y© consists of descendant nodes of X, and such
that Y? and Y° are independent given X. Then E(AY?) — E(A|Y°) is
multinormal, and

cov(A|yP) + cov(A|y©) = cov(E(A|Y?) — E(A|]Y€))

Proof. Lemma 3 assures the multinormality of E(A|Y?)—E(A]Y¢). Again
we write Y in the form Y° = AMX + €, using lemma 1. By our stan-
dard assumptions, A has full rank. Since w(A|y®) is invariant under linear
transformations of y¢, we may assume as in the proof of lemma 2 that

cov(e) = I. Due to the improper prior for A, it follows as in that proof that
EAy¢) = (ATA)71ATy¢) and that cov(A|y®) = (ATA)~!. Using these
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facts, and also the independence given A of Y? and Y, and hence of Y?
and €, in addition to the independence of A and €, as well as lemma 3 with
y? in place of y, we get

cov(E(A|]YP) — BE(A]Y©)) = cov(E(A]YP) — (ATA)"LAT(AX +€)) =
cov((E(AYP) — A) — (ATA)1AT€) = cov(A|yP) + (ATA)~! =
cov(A|y?) 4 cov(A|y©)

To prove the first part of theorem 3, we define § = Y° — y¢, where Y°
is gp-distributed. By a multidimensional version of (1) we then have

E9(d) = E%(Y*) —y° = E(Y°|y") — ¢",

which by proposition 1 is pre-experimentally multinormal with expectation
E(EY°|Y?)—-Y¢) =0. Also

covI(d) = covI» (Y ¢) = cov(Y “|yP)

Using proposition 1 again it follows that the pre-experimental covariance
matrix of E9(d) equals cov(E(Y|YP) — Y°) = cov9(d). Hence, part i)
follows from a data node version of theorem 2.

The conditions in a) in the last part of the theorem imply that also
the conditions of proposition 2 are satisfied. Note that under the given
conditions Y ¢ is independent of A given 3¢, and that f(A;3°) = w(A|3°)
due to the improper prior for A. Hence, from a A vector version of (10)
9ge(A) = m(A|y©). Accordingly, g. is multinormal with E9%(X) = E(A|y°)
and cov9(A) = cov(Aly®). A corresponding result is valid for g,. With §
as in theorem 2, it follows that the pre-experimental expectation of E9(9)
is E(E(AY?P) — E(A]Y®)) = 0. By proposition 2 the pre-experimental
covariance matrix is

cov(A|yP) + cov(A|y®) = covI?(X) 4 covie(A)

By proposition 2 it also follows that E9(9) is pre-experimentally multinor-
mal. The last part for the case a) then follows from theorem 2.

For the last part for the case b) consider the reduced data set (y?,y5),
also denoting the splitting. Then the conclusion follows from case a). How-
ever, the full data set with the splitting (y?, y¢) gives rise to the same g,
and g. and the proof is completed.
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