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The fiber bundle model is one of the most important theoretical approaches to
investigate the fracture and breakdown of disordered media extensively used
both by the engineering and physics community. We present the basic con-
struction of the model and provide a brief overview of recent results focusing
mainly on the physics literature. We discuss the limitations of the model to
describe the failure of composite materials and present recent extensions of
the model which overcome these problems making the model more realistic:
we gradually enhance the fiber bundle model by generalizing the failure law,
constitutive behavior, deformation state and way of interaction of fibers. We
show that beyond the understanding of the fracture of fiber reinforced com-
posites, these extensions of the fiber bundle model also address interesting
problems for the statistical physics of fracture.

1 Introduction

The damage and fracture of disordered materials is a very important scientific
and technological problem which has attracted an intensive research over the
past decades. One of the first theoretical approaches to the problem was the
fiber bundle model introduced by Peires in 1927 to understand the strength
of cotton yarns [46]. In his pioneering work, Daniels provided the sound prob-
abilistic formulation of the model and carried out a comprehensive study of
bundles of threads assuming equal load sharing after subsequent failures [12].
In order to capture fatigue and creep effects, Coleman proposed a time de-
pendent formulation of the model [7], assuming that the strength of loaded
fibers is a decreasing function of time. Later on these early works initiated an
intense research in both the engineering [47] and physics [23, 6] communities
making fiber bundle models one of the most important theoretical approaches
to the damage and fracture of disordered materials.
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The development of fiber bundle models encountered two kinds of chal-
lenges: on the one hand it is important to work out realistic models of materials
failure, which have a detailed representation of the microstructure of the ma-
terial, the local stress fields and their complicated introduction. Such models
make possible to clarify the effect of microscopic material parameters on the
macroscopic response of solids. In this context, fiber bundle models served
as a starting point to develop more realistic micromechanical models of the
failure of fiber reinforced composites widely used by the modern aerospace
and automobile industry. Analytical methods and numerical techniques have
been developed making possible realistic treatment of even large scale fibrous
structures. On the other hand, the damage and fracture of disordered mate-
rials addresses several interesting problems also for statistical physics. Em-
bedding the failure and breakdown of materials into the general framework of
statistical physics and clarifying its analogy to phase transitions and critical
phenomena, still keep scientists fascinated. Here fiber bundle models provide
an excellent testing ground of ideas offering also the possibility of analytic
solutions.

Fiber bundle models have been introduced to describe materials’ degrada-
tion and failure, however, due to their simplicity, during the last two decades
they also served as a general model of the breakdown of a broad class of
disordered systems of many interacting elements subject to various types of
external loads. Examples can be mentioned from magnets driven by an ap-
plied field [11, 71] through scale-free networks [38, 10] to earthquakes [63, 67]
and social phenomena [11].

I this paper first we present the basic formulation of the classical fiber
bundle model and briefly summarize the most important recent results ob-
tained on the macroscopic response and microscopic damage process of dis-
ordered materials focusing on the physics literature. We discuss limitations
of the model to describe the fracture of fiber reinforced composites and pro-
pose extensions which make the model more realistic. We gradually improve
components of the model construction by generalizing the damage law, con-
stitutive behavior, deformation state and interaction law of fibers. Finally, we
give an overview of the applications of the extended fiber bundle model.

2 Fiber bundle model of materials failure

The construction of fiber bundle models (FBMs) is based on the following
simplifying assumptions [12, 49, 53, 62, 2, 28]:

Discretization The disordered solid is represented as a discrete set of par-
allel fibers of number N organized on a regular lattice (square, triangular,
. . . ), see Fig. 1. The fibers can solely support longitudinal deformation which
allows to study only loading of the bundle parallel to fibers.

Failure law When the bundle is subjected to an increasing external load,
the fibers are assumed to have perfectly brittle response, i.e. they have linearly
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elastic behavior until they break at a failure load σi
th, i = 1, . . . , N as it is

illustrated in Fig. 2a). The elastic behavior of fibers is characterized by the
Young modulus E, which is identical for all fibers. The failure of fibers is
instantaneous and irreversible such that the load on broken fibers drops down
to zero immediately at the instant of failure (see Fig. 2a)), furthermore, broken
fibers are never restored (no healing).
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Fig. 1. a) Set up of the classical fiber bundle model. Parallel fibers are assembled
on a square lattice of size L × L loaded by an external force F parallel to the fiber
direction. In the limiting case of very localized load sharing the load of a failed fiber
(dark grey) is equally redistributed over its nearest intact neighbors (light grey). b)
Single fibers have linearly elastic behavior up to the failure load σth.

Load sharing rule After a fiber fails its load has to be shared by the re-
maining intact fibers. The range and form of interaction of fibers, also called
load sharing rule, is a crucial components of the model which has a substantial
effect on the micro and macro behavior of the bundle. Most of the studies in
the literature are restricted to two extreme forms of the load sharing rule: (i)
in the case of global load sharing (GLS), also called equal load sharing (ELS),
the load is equally redistributed over all intact fibers in the bundle irrespective
of their distance from the failed one. The GLS rule corresponds to the mean
field approximation of FBM where the topology of the fiber bundle (like the
square lattice structure in Fig. 2a)) becomes irrelevant. Such a loading con-
dition naturally arises when parallel fibers are loaded between perfectly rigid
platens, like for the wire cable of an elevator. FBM with global load sharing is
a usual starting point for more complex investigations since it makes possible
to obtain the most important characteristic quantities of the bundle in closed
analytic forms [28, 22, 54, 53, 62]. (ii) In the other extreme of the local load
sharing (LLS), the entire load of the failed fiber is redistributed equally over
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its local neighborhood (usually nearest neighbors) in the lattice considered
leading to stress concentrations along failed regions (see Fig. 1a)). Due to
the non-trivial spatial correlations, the analytic treatment of LLS bundles has
serious limitations [17, 49, 20], most of the studies here rely on large scale
computer simulations [18, 9, 21, 26]. Such localized load sharing occurs when
a bundle of fibers is loaded between plates of finite compliance [19, 4, 13].

Distribution of failure thresholds The strength of fibers σi
th, i.e. the value

of the local load at which they break, is an independent identically distributed
random variable with the probability density p(σth) and distribution function

P (σth) =
∫ σmax

th

σmin

th

p(x)dx. The randomness of breaking thresholds is assumed to

represent the disorder of heterogeneous materials, and hence, it is practically
the only component of the classical FBM where material dependent features
(e.g. amount of disorder) can be taken into account. For the disordered break-
ing thresholds the uniform distribution between 0 and 1 with the density and
distribution functions

p(σth) = 1, P (σth) = σth, (1)

is a usual starting point in most of the investigations. Another widely used
distribution in FBMs is the Weibull distribution

P (σth) = 1 − exp
[

−
(σth

λ

)m]

, (2)

where m and λ denote the Weibull index and scale parameter, respectively.
Besides its physical ground [23, 6], the Weibull distribution has the advantage
from the viewpoint of modelling that the amount of disorder can be controlled
by varying the Weibull index m.

Time dependence According to the time dependence of the fiber strength,
two classes of FBMs can be distinguished: in static fiber bundles the breaking
thresholds are constant during the entire loading history of the bundle. In or-
der to model a certain type of creep rupture and fatigue behavior of materials,
time dependent strength of fibers have been introduced [7, 65, 34, 35, 42].

In spite of their simplicity, FBMs provided a deeper understanding of the
breakdown of heterogeneous materials revealing important basic features of
the failure process. In the following we briefly summarize the most important
results of FBMs on the microscopic failure process and macroscopic response
of disordered materials under quasistatic loading conditions. Loading of a
parallel bundle of fibers can be performed in two substantially different ways:
when the deformation ε of the bundle is controlled externally the load on single
fibers σi is always determined by the externally imposed deformation ε as
σi = Eε, i.e. no load sharing occurs and consequently the fibers break one-by-
one in the increasing order of their breaking thresholds. At a given deformation
ε the fibers with breaking thresholds σi

th < Eε are broken, furthermore, all
intact fibers keep the equal load Eε. Hence, the macroscopic constitutive
behavior σ(ε) of the FBMs can be cast in the form



Extensions of fiber bundle models 5

σ(ε) = Eε [1 − P (Eε)] , (3)

where [1 − P (Eε)] is the percentage of intact fibers at the deformation ε [62,
11]. A representative example of σ(ε) is presented in Fig. 2b) for the case
of Weibull distributed strength values with m = 2 and λ = 1. Under stress
controlled conditions when the load is gradually increased externally, a more
complex damage process occurs starting with the breaking of the weakest
fiber. After each fiber breaking the load dropped by the broken fiber has to
be redistributed over the surviving intact ones. Assuming global load sharing
(equal load sharing), all intact fibers receive the same load increment which
might cause secondary fiber breakings. The subsequent load redistribution
after consecutive fiber failures can lead to an entire avalanche of breakings
which can stop after a certain number of fibers keeping the integrity of the
bundle, or can be catastrophic resulting in the macroscopic failure of the entire
system. Hence, under stress controlled loading, the constitutive curve Eq. (3)
can only be realized up to the maximum, where a catastrophic avalanche
occurs breaking all the remaining fibers [28, 22, 54, 24]. It has been shown
analytically that for a broad class of disorder distributions P under GLS
conditions the macroscopic constitutive curve σ(ε) of FBMs has a quadratic
maximum whose position and value define the critical strain εc and stress σc of
the bundle [62, 11], respectively (see Fig. 2b)). Increasing the size N of finite
bundles, the global strength σc(N) rapidly converges to the finite non-zero
strength of the infinite bundle [12, 62, 49].
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Fig. 2. a) Macroscopic constitutive behavior of a fiber bundle with global load
sharing Eq. (3) using Weibull distributed strength values σth (m = 2 and λ = 1).
b) Distribution D of burst sizes ∆ obtained by computer simulations of a bundle of
107 fibers. A straight line of slope 2.5 is drawn to guide the eye.
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When the load sharing is localized the macroscopic response of the bundle
becomes more brittle, i.e. the constitutive curve σ(ε) of the LLS bundle follows
its GLS counterpart but the macroscopic failure occurs at a lower critical stress
σLLS

c < σGLS
c , which is preceded by only a weak non-linearity [26]. Large scale

computer simulations revealed that in the thermodynamic limit N → ∞, the
strength of LLS bundles tends to zero as 1/ (lnN).

On the micro-level the spatial and temporal evolution of damage shows
also a strong dependence on the range of load redistribution: when the excess
load of failed fibers is redistributed globally (GLS) no spatial correlations
arise, i.e. fiber breaking proceeds in a completely stochastic manner in space
which results in randomly nucleated clusters of broken fibers analogous to
percolation. Under stress controlled loading conditions, the subsequent load
redistribution results in a bursting activity preceding the macroscopic failure
of the bundle. For equal load sharing it has been proven analytically that
the distribution D(∆) of burst sizes ∆ recorded during the entire course of
loading has a universal power law behavior

D(∆) ∼ ∆−α, (4)

with an exponent α = 5/2 independent of the disorder distribution P
[28, 22, 51]. The power law distribution of bursts prevails also for more com-
plicated long range interactions (like in the fuse model [3, 45]) but localized
load sharing results in a rapid decrease of D(∆) and in a dependence on the
specific form of disorder P [18].

In recent years several novel aspects of breakdown phenomena have been
revealed in the framework of FBMs: It has been shown that thermal noise leads
to the reduction of the strength of materials, furthermore, thermally activated
cracking gives rise to sub-critical crack growth and a finite lifetime of materials
[59, 61]. When avalanches of fiber failures are solely recorded in the vicinity of
the point of macroscopic failure, i.e. the strength distribution of the remaining
intact fibers is close to critical, the avalanche size distribution D(∆) proved
to show a crossover from the power law of exponent 5/2 to another power
law regime with a lower exponent 3/2 [55, 56]. The connectivity properties of
the bundle turned out to play an important role in breakdown processes, i.e.

determining the local interacting partners of fibers in a bundle by a Barabasi-
Albert network instead of a regular lattice, the failure process is substantially
different [10].

FBMs played also a crucial role to clarify the fundamental problem of the
relation of breakdown of disordered materials to critical phenomena [71, 69,
5, 68, 2, 37] and self organized criticality [36]. When fiber bundles with global
load sharing approach the point of macroscopic failure under a quasistatically
increasing load, it was found that microscopic quantities of the bundle such as
the distribution of bursts of fiber breakings show a scaling behavior typical for
continuous phase transitions [19, 28, 22, 37, 5, 53, 52, 51]. Since at the same
time macroscopic quantities like the Young modulus of the bundle proved
to have a finite jump, it was suggested that the macroscopic failure of GLS
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systems occurs analogous to first order phase transitions close to a spinodal
[70, 71, 69, 33]. An interesting mapping of the fracture process of fiber bundles
to Ising-like models widely studied in statistical physics has been suggested
[57, 66, 53], which provides further hint to embed fracture phenomena into
the general framework of statistical physics.

2.1 Why extensions are necessary?

A very important type of materials for which fiber bundle models are of out-
standing importance are the so-called fiber reinforced composites (FRC) which
have two ingredients, i.e. a matrix or carrier material in which thin fibers of
another material are embedded in a certain geometrical arrangement. The
modern automotive and aerospace industry use a large amount of fiber rein-
forced composites due to their very good mass specific properties, i.e. FRCs
provide a very high strength at a relatively low mass and they sustain these
properties also under extreme conditions (high temperature, pressure). The
mechanical performance of FRC can be well controlled by the properties of
the fiber and matrix materials, and by the fabrication of the fiber-matrix in-
terface and the geometrical structure of the composite. This flexibility makes
possible the design and tailoring of special purpose structural materials that
best fit to the demands of applications. Fig. 3a) presents the structure of the
carbon fiber reinforced silicon carbide composite (C/C-SiC) extensively used
by the aerospace industry. It can be observed that parallel bundles of long
carbon fibers (diameter ∼ 10µm) are embedded in the silicon-carbide ceramic
matrix [30]. Reinforcement by fibrous structures can also be found in nature
in various types of plants. The structure of soft-wood of the spices spruce is
shown in Fig. 3b) as a representative example [15]. Theoretical studies of the
fracture of composites encounter various challenges: on the one hand, appli-
cations of materials in construction components require the development of
analytical and numerical models which are able to predict the damage histo-
ries of loaded specimens in terms of the characteristic microscopic parameters
of the constituents. On the other hand, it is important to reveal universal
aspects of the fracture of composites, which are independent of specific mate-
rial properties relevant on the microlevel. Such universal quantities can help
to extract the relevant information from measured data and make possible
to design monitoring techniques of the gradual degradation of composites’
strength and construct methods of forecasting catastrophic failure events.

When fiber composites are subject to an external load parallel to the fiber
direction, most of the load is carried by the fibers, the matrix material and
properties of the fiber-matrix interface mainly determine the interaction (load
transfer) among fibers, which make FBMs the most adequate approach to
describe the fracture process of FRCs [48, 50, 8, 30]. As it has been presented
above, in their basic setup FBMs provide a rather idealized representation
of the behavior of disordered brittle materials. In order to obtain a more
realistic description especially for the failure of composites, FBMs have to be
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a) b)

Fig. 3. a) Structure of a fiber reinforced composite (Carbon fiber reinforced silicon-
carbide). Long parallel fibers are embedded in a matrix material [30]. b) The soft-
wood is an example of natural fibrous materials. The fibers are tubes whose wall
gets thicker with time [15].

enhanced by capturing a more detailed picture of the mechanical behavior
of the constituents, the evolution of the local stress field and its interaction
with the disordered material properties. In the following we outline important
aspects of the mechanical performance of FRCs which cannot be described in
the framework of the classical FBM but call for extensions of the model.

In applications, long fiber composites loaded parallel to the direction of
fibers are often found to undergo a gradual degradation process such that
the macroscopic constitutive curve σ(ε) of the composite develops a plateau
regime and the global failure is preceded by strain hardening. This effect
becomes especially important when the fiber bundle has a hierarchical orga-
nization and the failure mechanisms relevant at the lower length scales (at the
scale of fibers) gradually activate the breaking of higher order substructures
(sub-bundles, bundles, and plies) of the system. When fibers are embedded
in a matrix material, after a fiber breaks, the fiber-matrix interface debonds
in the vicinity of the crack [49]. Due to the frictional contact at the interface,
the load of failed fibers builds up again over a certain stress recovery length so
that the broken fiber can still contribute to the overall load bearing capacity
of the system.

Under high steady stresses, materials may undergo time dependent defor-
mation resulting in failure called creep rupture, which determines the long
time performance and limits the lifetime of construction elements. This com-
plex time dependent macroscopic behavior emerges as the result of the inter-
play of the time dependent deformation of the constituents and the gradual
accumulation of damage.

In applications solid blocks are often joined together by welding or glue-
ing of the interfaces which are expected to sustain various types of exter-



Extensions of fiber bundle models 9

Failure law
Continuous damage Load transfer

Viscoelastic fibers
Creep rupture

Deformation state
Bundle of beams

FBM

Fig. 4. Extensions of fiber bundle models: we gradually enhance FBMs by general-
izing the damage law, the load transfer, the constitutive behavior and deformation
state of the fibers.

nal loads. Interfacial failure also occurs in fiber reinforced composites, where
debonding of the fiber-matrix interface can even be the dominating damage
mechanism when the composite is sheared. When interfaces of solids are sub-
ject to shear the interface elements suffer not only longitudinal deformation
(compression and elongation) but also bending deformation. Such complex
deformation states cannot be captured by discretizing the interface in terms
of fibers which can only support longitudinal deformation.

As it has been discussed in Sec. 2, the range and functional form of load
redistribution of fibers play a crucial role in the failure process of the model. A
realistic description of load transfer following fiber failure should obviously fall
somewhere between the limiting cases of the widely studied global and local
load redistributions. The importance of the accurate description of the load
transfer from broken to intact fibers has already been recognized by Daniels
for cotton yarns [12].

In the following we present extensions of the classical fiber bundle model
gradually improving components of the model construction outlined in Sec.
2: (I) In order to understand the damage mechanism that lead to plateau
formation and strain hardening of the macroscopic response of quasi-brittle
materials, we modify the failure law of fibers in FBMs assuming that individ-
ual fibers undergo a gradual degradation process reducing their Young mod-
ulus in a multiplicative way in consecutive failure events. (II) To describe
the damage enhanced creep of fibrous materials we introduce time depen-
dent deformation behavior for the fibers and combine it with strain controlled
breaking in a global load sharing framework. (III) We show that more com-
plex deformations states (besides the longitudinal deformation) and failure
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processes can be described by FBMs when fibers are substituted by beams,
which can be stretched, compressed and bent at the two ends. We apply the
bundle of beams to investigate the fracture of glued interfaces of solid blocks.
(IV ) Motivated by the results of fracture mechanics on the stress distribu-
tion around cracks, we introduce a one-parameter load transfer function for
fibers, which can interpolate between the limiting cases of global and local
load sharing. The value of the parameter of the load transfer function con-
trols the effective range of interaction of broken and intact fibers. We apply
the variable range of load sharing approach also to clarify universal aspects of
the creep rupture of composites. Fig. 4 gives an overview of the structure of
the remaining part of the paper. We note that since in the framework of the
classical fiber bundle model no effect of the matrix material between fibers is
taken into account, the model is also called dry fiber bundle model (DFBM)
in the literature in order to distinguish it from the improved variants.

3 Gradual degradation of fiber strength

In the following we introduce a so-called continuous damage fiber bundle
model as an extension of the classical FBM by generalizing the damage law
of fibers. We assume that the stiffness of fibers gradually decreases in consec-
utive failure events. We show that varying its parameters, the model provides
a broad spectrum of macroscopic constitutive behaviors from plasticity to
strain hardening in qualitative agreement with experiments. To reveal the mi-
croscopic process of damage we construct a simulation techniques and obtain
the statistics of bursts of fiber breakings. We find that burst distributions
show a power law behavior but surprisingly the exponent can be different
from the well know mean field exponent of FBMs [33, 24].

3.1 Continuous damage fiber bundle model

Based on the classical fiber bundle model, the continuous damage model is
composed of N parallel fibers with identical Young-modulus E and random
failure thresholds σi

th, i = 1, . . . , N of probability density p and distribution
function P (see also Fig. 1 for illustration). The fibers are assumed to have
linear elastic behavior up to breaking (brittle failure). Under uniaxial loading
of the specimen a fiber fails if it experiences a load larger than its breaking
threshold σi

th. We generalize the failure law of DFBM by assuming that at
the failure point the stiffness of the fiber gets reduced by a factor a, where
0 ≤ a < 1, i.e. the stiffness of the fiber after failure is aE. In principle, a
fiber can now fail more than once and the maximum number kmax of failures
allowed for fibers is a parameter of the model. Once a fiber has failed, its
damage threshold σi

th can either be kept constant for the further breakings
(quenched disorder) or new failure thresholds of the same distribution can be
chosen (annealed disorder), which can model some microscopic rearrangement
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of the material after failure. The damage law of the model is illustrated in
Fig. 5 for both types of disorder, which should be compared to Fig. 1. The
characterization of damage by a continuous parameter corresponds to describe
the system on length scales larger than the typical crack size. This can be
interpreted such that the smallest elements of the model are fibers and the
continuous damage is due to cracking inside fibers. However, the model can
also be considered as the discretization of the system on length scales larger
than the size of single fibers, so t hat one element of the model consists
of a collection of fibers with matrix material in between. In this case the
microscopic damage mechanism resulting in multiple failure of the elements is
the gradual cracking of matrix and the breaking of fibers. In the following we
refer to the elements of the continuous damage FBM as fibers, but we have
the above two possible interpretations in mind. After failure the fiber skips a

σi
th3

σi
th1

σi
th2

σi
th

σ σ

εε

b)a)

Fig. 5. The damage law of a single fiber of the continuous damage model when mul-
tiple failure is allowed a) for quenched, and b) for annealed disorder. The horizontal
lines indicate the damage threshold σi

th. See also Ref. [33, 24].

certain amount of load which has to be taken by the other fibers. For the load
redistribution we assume infinite range of interaction among fibers (mean field
approach), furthermore, equal strain condition is imposed which implies that
stiffer fibers of the system carry more load. At a strain ε, the load of fiber i
that has failed k(i) times reads as

fi(ε) = Eak(i)ε, (5)

where Eak(i) is the actual stiffness of fiber i. It is important to note that, in
spite of the infinite interaction range, Eq. (5) is different from the usual global
load sharing (GLS) where all the intact fibers carry always the same amount
of load (see Sec. 2). In the following the initial fiber stiffness E will be set to
unity.

3.2 Macroscopic constitutive behavior

The key quantity to determine the macroscopic constitutive behavior of the
continuous damage fiber bundle model (CDFBM) and to characterize its mi-
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croscopic damage process, is the probability Pk(ε) that during the loading of
a specimen an arbitrarily chosen fiber failed precisely k-times at a strain ε.
Here k = 0, . . . , kmax denotes the failure index, and k = 0 is assigned to the
intact fibers. Pk(ε) can be cast in the following form for annealed disorder

Pk(ε) =
[

1 − P (akε)
]

k−1
∏

j=0

P (ajε), (6)

for 0 ≤ k ≤ kmax − 1,

and Pkmax
(ε) =

kmax−1
∏

j=0

P (ajε),

and for quenched disorder

P0(ε) = 1 − P (ε),

Pk(ε) = P (ak−1ε) − P (akε), for 1 ≤ k ≤ kmax − 1, (7)

and Pkmax
(ε) = P (akmax−1ε).

It can easily be seen that the probabilities Eqs. (6,7) fulfill the normal-

ization condition
∑kmax

k=0 Pk(ε) = 1. Average quantities of the fiber ensemble
during a loading process can be calculated using the probabilities Eqs. (6,7).
For instance, the average load on a fiber F/N at a given strain ε reads as

F

N
= ε

[

kmax
∑

k=0

akPk(ε)

]

, (8)

which provides the macroscopic constitutive behavior of the model. The single
terms in the sum give the load carried by the subset of fibers of failure index
k. The variants of fiber bundle models used widespread in the literature can
be recovered by special choices of the parameters kmax and a of the model.
A micromechanical model of composites [48, 50, 8, 30] can be obtained with
the parameter values kmax = 1, a 6= 0

F

N
= ε [1 − P (ε)] + aεP (ε), (9)

while setting kmax = 1, a = 0, i.e. skipping the second term in Eq. (9)
results in the classical dry bundle model of Daniels [12] with the constitutive
behavior Eq. (3). In Fig. 6 we show the explicit form of the constitutive law
with annealed disorder for different values of kmax in the case of the Weibull
distribution Eq. (2) The parameter values are set to m = 2, λ = 1 in all the
calculations.

Note that in the constitutive equation Eq. (8) the term of the highest fail-
ure index kmax can be conceived such that the fibers have a residual stiffness
of akmax after having failed kmax times. This residual stiffness results in a
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hardening of the material, hence, the F/N curves in Fig. 6(a) asymptotically
tend to straight lines with a slope akmax . Increasing kmax the hardening part
of the constitutive behavior is preceded by a longer and longer plastic plateau,
and in the limiting case of kmax → ∞ the materials behavior becomes com-
pletely plastic. A similar plateau and asymptotic linear hardening has been
observed in brittle matrix composites, where the multiple cracking of matrix
turned to be responsible for the relatively broad plateau of the constitutive
behavior, and the asymptotic linear part is due to the linear elastic behavior
of fibers remained intact after matrix cracking [16].
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Fig. 6. Constitutive behavior of the model of annealed disorder a) with b) without
residual stiffness at a = 0.8 for different values of kmax. In b) the lowest curve
presents the constitutive behavior of the classical dry bundle model for comparison.

In order to describe macroscopic cracking and global failure of a specimen
instead of hardening, the residual stiffness of the fibers has to be set to zero
after a maximum number k∗ of allowed failures [33, 72]. In this case the
constitutive law can be obtained from the general form Eq. (8) by replacing
kmax in the upper limit of the sum by k∗−1. A comparison of the constitutive
laws of the dry and continuous damage FBM with global failure is presented in
Fig. 6(b). One can observe that the dry FBM constitutive law has a relatively
sharp maximum, while the continuous damage FBM curves exhibit a plateau
whose length increases with increasing k∗. Note that the maximum value of
F/N corresponds to the macroscopic strength of the material, furthermore,
in stress controlled experiments the plateau and the decreasing part of the
curves cannot be reached. However, by controlling the strain ε, the plateau
and the decreasing regime can also be realized. The value of the driving stress
σ ≡ F/N corresponding to the plastic plateau, and the length of the plateau
are determined by the damage parameter a, and by kmax, k∗: Decreasing a
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at a fixed kmax, k∗, or increasing kmax, k∗ at a fixed a give rise to an increase
of the plateau’s length.

3.3 Simulation techniques

Due to the difficulties of the analytic treatment, we develop a simulation
technique and explore numerically the properties of bursts of fiber breakings in
our continuous damage fiber bundle model. The interaction of fibers, the way
of load redistribution is crucial for the avalanche activity. A very important
property of CDFBM is that in spite of the infinite range of interaction the load
on intact fibers is not equal, but stiffer fibers carry more load, furthermore,
for quenched disorder damage localization occurs, which might affect also the
avalanche activity [33, 24].

To implement the quasi-static loading of a specimen of N fibers in the
framework of CDFBM, the local load on the fibers fi has to be expressed in
terms of the external driving F . Making use of Eq. (5) it follows that

F =
N

∑

i=1

fi = ε
N

∑

i=1

ak(i), (10)

and hence, the strain and the local load on fibers can be obtained as

ε =
F

∑N
i=1 ak(i)

, fi = F
ak(i)

∑N
i=1 ak(i)

, (11)

when the external load F is controlled. The simulation of the quasi-static
loading proceeds as follows: in a given stable state of the system we determine
the load on the fibers fi from the external load F using Eq. (11). The next
fiber to break can be found as

r =
σi∗

th

fi∗
= min

i

σi
th

fi
, r > 1, (12)

i.e. that fiber breaks for which the ratio σi
th/fi is the smallest. Here i∗ denotes

the index of the fiber to break, σi
th is the damage threshold of fiber i, and fi

is the local load on it. To ensure that the local load of a fiber is proportional
to its stiffness, the external load has to be increased in a multiplicative way,
so that F → rF is imposed, and the failure index of fiber i∗ is increased by
one k(i∗) → k(i∗) + 1. After the breaking of fiber i∗, the load fi carried by
the fibers has to be recalculated making use of Eq. (11), which provides also
the correct load redistribution of the model. If there are fibers in the state
obtained, whose load exceeds the local breaking threshold, they fail, i.e. their
failure index is increased by 1 and the local load is again recalculated until a
stable state is obtained. A fiber cannot break any longer if its failure index k
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has reached k∗ or kmax during the course of the simulations. This dynamics
gives rise to a complex avalanche activity of fiber breaks, which is also affected
by the type of disorder. The size of an avalanche ∆ is defined as the number
of breakings initiated by a single failure due to an external load increment.

3.4 Bursts of fibers breakings

Computer simulations revealed that varying the two parameters of the model
kmax, a, or k∗, a and the type of disorder, the CDFBM shows an interesting va-
riety of avalanche activities, characterized by different shapes of the avalanche
size distributions. In Fig. 7a) the histograms D(∆) of the avalanche sizes ∆ are
shown which were obtained for a system of remaining stiffness and annealed
disorder with Weibull parameters m = 2, λ = 1. Since in the limiting case of
a → 0 the CDFBM recovers the global load sharing dry fiber bundle model,
in Fig. 7a) the curves with small a and kmax = 1 are power laws with an ex-
ponent α = 5/2 in agreement with the analytic results [28, 22, 54]. Increasing
the value of a at a fixed kmax only gives rise to a larger number of avalanches,
i.e. parallel straight lines are obtained on a double logarithmic plot, but the
functional form of D(∆) does not change. However, when a exceeds a critical
value ac (ac ≈ 0.3 was obtained with the Weibull parameters specified above)
the avalanche statistics drastically changes. At a fixed a > ac when kmax is
smaller than a specific value kc(a), the avalanche sizes show exponential dis-
tribution, while above kc(a) the distribution takes a power law form with an
exponent β = 2.12 ± 0.05. Based on the above results of simulations a phase
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Fig. 7. a) Avalanche size distributions for different values of kmax and a when fibers
have remaining stiffness and the disorder is annealed. The number of fibers was
N = 1600 and averages were made over 2000 samples. The number of avalanches D
of size ∆ are shown to demonstrate also how the total number of avalanches changes.
b) Phase diagram for the continuous damage model with remaining stiffness for both
types of disorder. The functional form of the avalanche statistics is given in the
parameter regimes. The location of DFBM in the parameter space is also indicated.
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diagram is constructed which summarizes the properties of avalanches with
respect to the parameters of the model. Fig. 7 demonstrates the existence
of three different regimes. If the damage parameter a is smaller than ac, the
dynamics of avalanches is close to the simple DFBM characterized by a power
law of the mean field exponent α = 5/2. However, for a > ac the avalanche
size distribution depends on the number of failures kmax allowed. The curve
of kc(a) in the phase diagram separates two different regimes. For the pa-
rameter regime below the curve, avalanche distributions with an exponential
shape were obtained. However, the parameter regime above kc(a) is charac-
terized by a power law distribution of avalanches with a constant exponent
β = 2.12 ± 0.05 significantly different from the mean field exponent α = 5/2
[28, 22, 54]. It is important to emphasize that the overall shape of phase
diagram is independent of the type of the disorder (annealed or quenched),
moreover, the specific values ac ≈ 0.3 and kc(a) depend on the details of the
disorder distribution p(σth).

4 Variable range of load sharing

In this section we introduce a one-parameter load transfer function to obtain
a more realistic description of the interaction of fibers. Varying its parame-
ter, the load transfer function interpolates between the two limiting cases of
load redistribution, i.e. the global and the local load sharing schemes widely
studied in the literature. We show that varying the effective range of interac-
tion a crossover occurs from mean field to short range behavior. To explore
the properties of the two regimes and the emergence of the crossover in be-
tween, a comprehensive numerical study of the model is performed. We study
the dependence of the ultimate strength of the material on the system size
and found that the system has only one nonzero critical point in the ther-
modynamic limit. When no critical point exits, the ultimate strength of the
material goes to zero exactly as in local load sharing models as ∼ 1/ ln (N),
with increasing system size N . We also study the distribution of avalanches
and cluster sizes for the two distinct regimes and perform a moments analysis
to accurately obtain the crossover value [26].

4.1 Load transfer function

The fracture of heterogeneous systems is characterized by the highly localized
concentration of stresses at the crack tips that makes possible the nucleation
of new micro-cracks at these regions leading to the growth of the crack and
final failure of the system. In elastic materials, the stress distribution about
cracks follows a power law

σadd ∼ r−γ , (13)
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where σadd is the stress increase on a material element at a distance r from
the crack tip. Motivated by the above result of fracture mechanics we extend
the fiber bundle model introducing a load sharing rule of the form of Eq. (13).

In the model we suppose that, in general, all intact fibers have a nonzero
probability of being affected by the ongoing failure event, and that the addi-
tional load received by an intact fiber i depends on its distance rij from fiber
j which has just been broken. Furthermore, elastic interaction is assumed be-
tween fibers such that the load received by a fiber follows the power law form.
Hence, in our discrete model the stress-transfer function F (rij , γ) takes the
form

F (rij , γ) = Zr−γ
ij , (14)

where γ is an adjustable parameter and rij is the distance of fiber i to the

rupture point (xj , yj), i.e., rij =
√

(xi − xj)2 + (yi − yj)2 in 2D. Z is given

by the normalization condition Z = (
∑

i∈I

r−γ
ij )−1, where the sum runs over the

set I of all intact elements. For simplicity, periodic boundary conditions with
the minimum image convention are used (no Ewald summation is performed

[1]) so that the largest r value is Rmax =
√

2(L−1)
2 , where L is the linear size

of the system. It is easy to see that in the limits γ → 0 and γ → ∞ the load
transfer function Eq. (14) recovers the two extreme cases of load redistribution
of fiber bundle models, i.e. the global and the local load sharing, respectively.
We should note here that, strictly speaking, for all γ different from the two
limits above, the range of interaction covers the whole lattice. However, when
changing the exponent, one moves from a very localized effective interaction
to a truly global one as γ approaches zero. So, we will refer henceforth to a
change in the effective range of interaction.
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Fig. 8. a) Macroscopic strength σc of fiber bundles of different size L as a function
of the exponent γ of the load transfer function Eq. (14). b) Variation of σc with the
number of fibers of the bundle N at different γ values.
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4.2 Macroscopic strength of bundles

We have carried out large scale computer simulations of the model described
above in two dimensions. The fibers with Weibull distributed strength val-
ues Eq. (2) are organized on a square lattice of linear size L using periodic
boundary conditions (see also Fig. 1). Computer simulations were performed
varying the effective range of interaction γ over a broad interval recording
the avalanche size distribution, the cluster size distribution and the ultimate
strength of the bundle for several system sizes L. Each numerical simulation
was repeated over at least 50 different realizations of the disorder distribution
with the parameter values m = 2 and λ = 1 of the Weibull distribution.

Figure 8a) shows the ultimate strength σc of the fiber bundle for different
values of the parameter γ and several system sizes from L = 33 to L = 257.
Clearly, two distinct regimes can be distinguished: For small γ, the strength σc

is independent, within statistical errors, of both the effective range of interac-
tion γ and the system size L. At a given point γ = γc a crossover is observed,
where γc falls in the vicinity of γ = 2. The region γ > γc might eventually
be further divided into two parts, the first region characterized by the depen-
dence of the ultimate strength of the bundle on both the system size and the
effective range of interaction; and a second region where σc only depends on
the system size. This would mean that there might be two transition points
in the model, for which the system displays qualitatively and quantitatively
different behaviors. For γ ≤ γc the ultimate strength of the bundle behaves as
in the limiting case of global load sharing, whereas for γ ≥ γc the local load
sharing behavior seems to prevail. Nevertheless, the most important feature is
that when decreasing the effective range of interaction in the thermodynamic
limit, for γ > γc, the critical load is zero. This observation is further supported
by Fig. 8b), where we have plotted the evolution of σc as a function of 1/ lnN
for different values of the exponent γ. Here, the two limiting cases are again
clearly differentiated. For large γ all curves decreases when N → ∞ as

σc(N) ∼ α

lnN
(15)

This qualifies for a genuine short range behavior as found in LLS models where
the same relation was obtained for the asymptotic strength of the bundle [49].
It is worth noting that in the model we are analyzing, the limiting case of
local load sharing corresponds to models in which short range interactions
are considered to affect the nearest and the next-nearest neighbors. In the
transition region, the maximum load the system can support also decreases
as we approach the thermodynamic limit, but in this case much slower than
for γ ≫ γc. It has been pointed out that for some modalities of stress transfer,
which can be considered as intermediate between GLS and LLS, σc decreases
for large system sizes following the relation σc ∼ 1/ ln(ln N) as in the case of
hierarchical load transfer models [41]. In our case, we have fitted our results
with this relation but we have not obtained a single collapsed curve because
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the slopes continuously vary until the LLS limit is reached. Finally, the re-
gion where the ultimate stress does not depend on the system size shows the
behavior expected for the standard GLS model, where the critical load can
be exactly computed as σc = (me)−1/m for the Weibull distribution. The
numerical values obtained for m = 2 are in good agreement with this later
expression.

4.3 Microstructure of damage

In order to characterize the fracture process under the quasistatically increas-
ing external load we analyzed the cluster structure of broken fibers. The clus-
ters formed during the evolution of the fracture process are sets of spatially
connected broken sites on the square lattice [33, 70, 71]. We consider the clus-
ters just before the global failure and they are defined taking into account
solely nearest neighbor connections. As it has been discussed in Sec. 2, the
case of global load sharing does not assume any spatial structure of fibers
since it corresponds to the mean field approach. However, in our case it is
obtained as a limiting case of a local load sharing model on a square lattice,
which justifies the cluster analysis also for GLS. Fig. 9 illustrates how the
cluster structure just before complete breakdown changes for various values
of γ. In the limit where the long range interaction dominates, the clusters
are randomly distributed on the lattice indicating that there is no correlated
crack growth in the system as well as no stress concentration occurs. The
cluster structure of the limiting case of γ = 0 can be mapped to percolation
clusters on a square lattice generated with the probability 0 < P (σc) < 1,
where σc is the fracture strength of the fiber bundle. However, the value of
P (σc) depends on the Weibull exponent m Eq. (2) and is normally different
from the critical percolation probability pc = 0.592746 of the square lattice.
Equality P (σc) = pc is obtained for m = 1.1132, hence, for physically relevant
m values used in simulations, the system is below pc at complete breakdown.
This picture radically changes when the short range interaction prevails. In
this case, the stress transfer is limited to a neighborhood of the failed ele-
ments and there appear regions where a few isolated cracks drive the rupture
of the material by growth and coalescence. The differences in the structure of
clusters also explain the lack of a critical strength when N goes to infinity in
models with local stress redistribution. Since in the GLS model the clusters
are randomly dispersed across the entire lattice, the system can tolerate a
larger amount of damage and a higher stress, whereas for LLS models a small
increment of the external field may provoke a run away event ending with
the macroscopic breakdown of the material. All the above numerical results
suggest that the crossover between the mean field and the short range regimes
occurs in the vicinity of γ = 2. Further support for the precise value of γc can
be obtained by studying the change in the cluster structure of broken fibers.
The moments of n(sc) defined as
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Fig. 9. Snapshots of the clusters of broken fibers (black dots) just before complete
breakdown occurs. A clear change of the cluster structure can be observed. The
values of γ are: a) γ = 0, b) γc = 2.2, c) γ = 3.0, and d) γ = 9.0.

mk ≡
∫

sk
cn(sc)ds (16)

where mk is the kth moment, describe much of the physics associated with the
breakdown process. We study these moments to quantitatively characterize
the point where the crossover from mean field to short range behavior takes
place. The zero moment nc = mo is the total number of clusters in the system
and is plotted in Fig. 10a) as a function of the parameter γ. Figure 10b)
presents the variation of the first moment of the distribution m1, which is
equal to the total number of broken fibers Nc = m1. It turns out that up to
a certain value of the effective range of interaction γ, Nc remains constant
and then it decreases fast until a second plateau seems to arise. Note that
the constant value of Nc for small γ is in agreement with the value of the
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Fig. 10. Moments mk of the clusters of broken fibers as a function of γ. The 0th and
first moments are equal to the total number of clusters nc = m0 (a) and the total
number of broken fibers Nc = m1 (b), respectively. The average cluster size 〈sc〉 can
be determined as the ratio of the second (c) and first moments 〈sc〉 = m2/m1 (d).

fraction of broken fibers just before the breakdown of the material in mean
field models [62, 33]. This property clearly indicates a change in the evolution
of the failure process and may serve as a criterion to determine the crossover
point. However, a more abrupt change is observed in the average cluster size
〈sc〉 as a function of γ. According to the moments description, the average
cluster size is equal to the second moment of the cluster distribution divided
by the total number of broken sites, i.e. 〈sc〉 = m2/m1. It can be seen in
Fig. 10d) that 〈sc〉 has a sharp maximum at γ = 2.2 ± 0.1, and thus the
average cluster size drastically changes at this point, which again suggests the
crossover point to be in the vicinity of γc = 2.
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5 Damage enhanced creep in fiber bundles

Under high steady stresses, materials may undergo time dependent defor-
mation resulting in failure called creep rupture which limits their lifetime,
and hence, has a high impact on their applicability in construction elements.
Creep failure tests are usually performed under uniaxial tensile loading when
the specimen is subjected to a constant load σ0 and the time evolution of the
damage process is followed by recording the strain ε of the specimen and the
acoustic signals emitted by microscopic failure events. In order to describe
the time dependent macroscopic response and finite lifetime of materials in
the framework of FBMs, we extend the classical fiber bundle model presented
in Sec. 2 by assuming that the fibers are viscoelastic, i.e. they exhibit time
dependent deformation under a constant external load and fail in a strain
controlled manner. In the framework of the viscoelastic fiber bundle model
we show by analytical and numerical calculations that there exists a critical
load above which the deformation of the system monotonically increases in
time resulting in global failure at a finite time tf , while below the critical load
the deformation tends to a constant value giving rise to an infinite lifetime.
Our studies revealed that for global load sharing the transition between the
two regimes occurs analogously to continuous phase transitions, while for lo-
cal load sharing it becomes abrupt, defining two universality classes of creep
rupture [25, 31, 32].

5.1 Viscoelastic fiber bundle

In order to capture time dependent macroscopic response in the framework
of fiber bundle models, we assume that the fibers themselves are viscoelastic.
For simplicity, the pure viscoelastic behavior of fibers is modelled by a Kelvin-
Voigt element which consists of a spring and a dashpot in parallel and results
in the constitutive equation σ0 = βε̇ + Eε, where σ0 is the external load,
β denotes the damping coefficient, and E is the Young modulus of fibers,
respectively (see Fig. 11a)).

In order to capture failure in the model a strain controlled breaking cri-
terion is imposed, i.e. a fiber fails during the time evolution of the system
when its strain exceeds a breaking threshold εi, i = 1, . . . , N drawn from a
probability distribution. For the stress transfer between fibers following fiber
failure we assume that the excess load is equally shared by all the remaining
intact fibers (global load sharing), which provides a satisfactory description of
load redistribution in continuous fiber reinforced composites. For the break-
ing thresholds of fibers a uniform distribution Eq. (1) between 0 and 1, and a
Weibull distribution Eq. (2) were considered. The construction of the model
is illustrated in Fig. 11a). In the framework of global load sharing most of the
quantities describing the behavior of the fiber bundle can be obtained analyt-
ically. In this case the time evolution of the system under a steady external
load σ0 is described by the differential equation
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Fig. 11. a) The viscoelastic fiber bundle model. Intact fibers are modelled by Kelvin-
Voigt elements. b) ε(t) for several different values of the external load σ0 below and
above σc. t0 denotes the characteristic timescale of the system t0 = β/E.

σ0

1 − P (ε)
= βε̇ + Eε, (17)

where the viscoelastic behavior is coupled to the failure of fibers [25, 31, 32].

5.2 Macroscopic response

The viscoelastic fiber bundle model with the equation of motion Eq. (17)
can provide an adequate description of natural fiber composites like wood
subjected to a constant load [15]. For the behavior of the solutions ε(t) of
Eq. (17) two distinct regimes can be distinguished depending on the value
of the external load σ0: when σ0 falls below a critical value σc, Eq. (17)
has a stationary solution εs, which can be obtained by setting ε̇ = 0, i.e.
σ0 = Eεs[1− P (εs)]. It means that as long as this equation can be solved for
εs at a given external load σ0, the solution ε(t) of Eq. (17) converges to εs

when t → ∞, and the system suffers only a partial failure. However, when
σ0 exceeds the critical value σc no stationary solution exists, furthermore,
ε̇ remains always positive, which implies that for σ0 > σc the strain of the
system ε(t) monotonically increases until the system fails globally at a finite
time tf [25, 31, 32].

The behavior of is illustrated in Fig. 11b) for several values of σ0 below
and above σc with uniformly distributed breaking thresholds between 0 and
1. It follows from the above argument that the critical value of the load σc

is the static fracture strength of the bundle. The creep rupture of the vis-
coelastic bundle can be interpreted so that for σ0 ≤ σc the bundle is partially
damaged implying an infinite lifetime tf = ∞ and the emergence of a sta-
tionary macroscopic state, while above the critical load σ0 ≥ σc global failure
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Fig. 12. a) Lifetime tf of the bundle as a function of the distance from the critical
point σ0 − σc for three different disorder distributions, i.e. uniform distribution and
Weibull distribution with m = 2 and m = 7 were considered. b) tf as a function of
the number of fibers N at a fixed value of the external load σ0. Results of computer
simulations (symbols) are in good agreement with the analytic predictions (solid
lines).

occurs at a finite time tf , but in the vicinity of σc the global failure is pre-
ceded by a long lived stationary state. The nature of the transition occurring
at σc can be characterized by analyzing how the creeping system behaves
when approaching the critical load both from below and above. For σ0 ≤ σc,
the fiber bundle relaxes to the stationary deformation εs through a gradually
decreasing breaking activity. It can be shown analytically that ε(t) has an
exponential relaxation to εs with a characteristic time scale τ that depends
on the external load σ0 as

τ ∼ (σc − σ0)
−1/2 , (18)

for σ0 ≤ σc, i.e. when approaching the critical point from below the charac-
teristic time of the relaxation to the stationary state diverges according to
a universal power law with an exponent 1/2 independent on the form of the
disorder distribution P .

Above the critical point the lifetime defines the characteristic time scale
of the system which can be cast in the form

tf ∼ (σ0 − σc)
−1/2 , (19)

for σ0 > σc, so that tf also has a power law divergence at σc with a universal
exponent 1/2 like τ below the critical point, see Fig. 12a). Hence, for global
load sharing the system exhibits scaling behavior on both sides of the critical
point indicating a continuous transition at the critical load σc. It can also
be shown analytically that fixing the external load above the critical point,
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the lifetime tf of the system exhibits a universal scaling with respect to the
number N of fibers of the bundle (Fig. 12b)). The lifetime of finite bundles
tNf decreases to the lifetime of the infinite bundle as tNf − t∞f ∼ 1/N [25, 31].

5.3 Microscopic damage process

The process of fiber breaking on the micro level can easily be monitored
experimentally by means of the acoustic emission techniques. Except for the
primary creep regime, where a large amount of fibers break in a relatively short
time, the time of individual fiber failures can be recorded with a high precision.
In order to characterize the process of fiber breaking in our viscoelastic fiber
bundle model, we calculated numerically the distribution f of waiting times
∆t between consecutive breaks [32]. A detailed analysis revealed that f(∆t)
shows a power law behavior on both sides of the critical point

f(∆t) ∼ ∆t−b (20)

[32]. The value of the exponent b is different on the two sides of the critical
point, i.e. b ≈ 1.5 and b ≈ 2.0 were measured below and above the critical
load; however, b proved to be independent of the disorder distribution of fibers,
see Fig. 13.
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Fig. 13. a) Representative example of waiting times ∆t between consecutive fiber
breakings for a load σ0 < σc plotted at the time t of breakings. b) Distribution f of
∆t below and above the critical load. Simulation results are presented for 107 fibers
with uniformly distributed threshold values between 0 and 1.

5.4 Universality classes of creep rupture

In order to clarify the effect of the range of load sharing on damage enhanced
creep, we carried out computer simulations applying the variable range of load
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sharing approach presented in Sec. 4 in the viscoelastic fiber bundle model
(see also Fig. 11a) for explanation). Simulation were carried out varying the
exponent γ of the load transfer function Eq. (14) in a broad range. Computer
simulations revealed that the behavior described above for global load sharing
prevails in the range 0 ≤ γ < γc, where the value of γc turned to be the same as
the one determined in Sec. 4 for dry fiber bundles. For γ ≥ γc the interaction of
fibers becomes localized which results in an abrupt failure of the viscoelastic
fiber bundle above the critical load σ0 > σc, i.e. when σ0 exceeds σc the
lifetime of the bundle suddenly jumps to a finite value without any scaling
behavior. It is interesting to note, however, that the power law distribution
of waiting times Eq. (20) prevails for localized load sharing. The value of the
exponent b below the critical load σ0 < σc is always b ≈ 2.0 independent of
the effective range of load redistribution γ, while for σ0 > σc the exponent b
increases from ≈ 1.5 to ≈ 2.0 with increasing γ [32].

6 Failure of glued interfaces of solid blocks

Solid blocks are often joined together by welding or glueing of the interfaces
which are expected to sustain various types of external loads. Besides welded
joints, glued interfaces of solids play a crucial role in fiber reinforced compos-
ites where fibers are embedded in a matrix material. The properties of the
fiber-matrix interface are controlled by the fabrication process of the com-
posite and have an important effect on the mechanical performance of the
system.

The classical setup of fiber bundle models have recently been applied to
study the failure of glued interfaces when the external load is applied perpen-
dicular to the interface of a rigid and a compliant block [4]. It was found that
the compliance of one of the solid blocks introduces stress localization and
results in a fractal structure of the failed glue just before macroscopic break-
down [4]. Glued interfaces can be teared apart by applying the external load
locally at one of the ending point of the interface. Such loading conditions
have also been studied in the framework of FBMs considering two stiff plates
[29] and also the combination of a stiff plate and a compliant one [14, 13, 60].

In all the above studies, the external load resulted in a stretching defor-
mation of material elements of the interface so that the classical fiber bundle
model discussed in Sec. 1 provided an adequate framework for the theoretical
description of the failure process. However, under shear loading more complex
deformation states of material elements can arise leading to a more complex
degradation process, which cannot be captured by FBMs. We propose a novel
approach to the shear failure of glued interfaces by extending the classical
fiber bundle model to model interfacial failure [58].
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6.1 The beam model of interface failure under shear

In our model the interface is discretized in terms of elastic beams which can
be elongated and bent when exposed to shear load, see Fig. 14. The beams
are assumed to have identical geometrical extensions (length l and width d)
and linearly elastic behavior characterized by the Young modulus E. In order
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Fig. 14. Illustration of the model construction. The sheared interface is discretized
in terms of beams (left), which suffer stretching and bending deformation (middle)
and fail due to the two deformation modes (right).

to capture the failure of the interface, the beams are assumed to break when
their deformation exceeds a certain threshold value. Under shear loading of the
interface, beams suffer stretching and bending deformation resulting in two
modes of breaking. The stretching and bending deformation of beams can be
expressed in terms of a single variable, i.e. longitudinal strain , which enables
us to map the interface model to the simpler fiber bundle models. The two
breaking modes can be considered to be independent or combined in the form
of a von Mises type breaking criterion. The strength of beams is characterized
by the two threshold values of stretching and bending a beam can withstand.
The breaking thresholds are assumed to be randomly distributed variables of
the joint probability distribution . The randomness of the breaking thresholds
is supposed to represent the disorder of the interface material. After breaking
of a beam the excess load has to be redistributed over the remaining intact
elements. Coupling to the rigid blocks ensures that all the beams have the
same deformation giving rise to global load sharing, i.e. the load is equally
shared by all the elements, stress concentration in the vicinity of failed beams
cannot occur.

6.2 Constitutive behavior

Breaking of the beam is caused by two breaking modes, i.e. stretching and
bending which can be either independent or coupled by an empirical breaking
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criterion. Assuming that the two breaking modes are independent, a beam
breaks if either the longitudinal stress t or the bending moment m exceeds
the corresponding breaking threshold, see Fig. 14. Since the longitudinal stress
t and the bending moment m acting on a beam can easily be expressed as
functions of the longitudinal deformation ε, the breaking conditions can be
formulated in a transparent way in terms of ε. To describe the relative impor-
tance of the breaking modes, we assign to each beam two breaking thresholds
εi
1, ε

i
2, i = 1, . . . , N , where N denotes the number of beams. The threshold val-

ues ε1 and ε2 are randomly distributed according to a joint probability density
function p(ε1, ε2) between lower and upper bounds εmin

1 , εmax
1 and εmin

2 , εmax
2 ,

respectively. The density function needs to obey the normalization condition
∫ εmax

2

εmin

2

d ε2

∫ εmax

1

εmin

1

d ε1 p(ε1, ε2) = 1. (21)

First, we provide a general formulation of the failure of a bundle of beams.
We allow for two independent breaking modes of a beam that are functions
f and g of the longitudinal deformation ε. Later on this case will be called
the OR breaking rule. A single beam breaks if either its stretching or bending
deformation exceed the respective breaking threshold ε1 or ε2, i.e. failure
occurs if

f(ε)

ε1
≥ 1, or (22)

g(ε)

ε2
≥ 1, (23)

where Eqs. (22,23) describe the stretching and bending breaking modes, re-
spectively. The failure functions f(ε) and g(ε) can be determined from the
elasticity equations of beams, but in general the only restriction for them is
that they have to be monotonous. For our specific case of sheared beams they
take the form

f(ε) = ε , g(ε) = a
√

ε, (24)

where a is a constant and the value of the Young modulus E is set to 1. In the
plane of breaking thresholds each point (ε1, ε2) represents a beam. For each
value of ε those beams which survived the externally imposed deformation
are situated in the area f(ε) ≤ ε1 ≤ εmax

1 and g(ε) ≤ ε2 ≤ εmax
2 , as it

is illustrated in Fig. 15a). The constitutive behavior of the interface can be
obtained by integrating the load of single beams over the intact ones in the
plane of breaking thresholds in Fig. 15a). For the OR criterion one gets

σ = ε

∫ εmax

2

g(ε)

d ε2

∫ εmax

1

f(ε)

d ε1 p(ε1, ε2). (25)

Assuming the thresholds of the two breaking modes to be independently
distributed, the disorder distribution factorizes p(ε1, ε2) = p1(ε1)p2(ε2) and
σ(ε) takes the simple form
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Fig. 15. a) The plane of breaking thresholds. Fibers which are intact at a deforma-
tion e fall in the rectangle bounded by and the maximum values of the two thresholds
for the OR criterion (area A+B), and in the area bounded by the curve connecting
a and b and the maximum thresholds for the von Mises type criterion (area A),
respectively. The fibers which break due to the coupling of the two breaking modes
in the von Mises criterion fall in area B. b) Comparison of the constitutive curves
of a simple dry fiber bundle and of the beam model with different breaking criteria
using uniformly distributed breaking thresholds.

σ = ε[1 − P1(f(ε))][1 − P2(g(ε))]. (26)

The terms 1− P1(f(ε)) and 1− P2(g(ε)) provide the fraction of beams failed
under the stretching and bending breaking modes, respectively.

When the two breaking modes are coupled by a von Mises type breaking
criterion, a single beam breaks if its strain ε fulfils the condition

(

f(ε)

ε1

)2

+
g(ε)

ε2
≥ 1. (27)

This algebraic condition can be geometrically represented as it is illustrated
in Fig. 15a). In this case the constitutive integral

σ = ǫ

∫ εmax

1

a

dε1

∫ εmax

2

ε̃2(ε1,ε)

dε2 p(ε1, ε2) (28)

cannot be performed explicitly with the integration limit ε̃2(ε1, ε) = ε2
1g(ε)/(ε2

1−
f2(ε)) in general so that σ(ε) cannot be obtained in a closed analytic form.
The constitutive curves obtained with the OR and von Mises breaking crite-
ria are illustrated in Fig. 15b) for the specific case of a uniform distribution
between εmin

1 = εmin
2 = 0 and εmax

1 = εmax
2 = 1, i.e. P1(ε) = ε and P2(ε) = ε.

It follows from the structure of Eq. (26) and can be seen in Fig. 15b) that
the existence of two breaking modes leads to a reduction of the strength of the
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material, both the critical stress σc and strain εc take smaller values compared
to the case of a single breaking mode applied in simple fiber bundle models
[12, 62, 28, 26, 24, 37, 52, 5]. The coupling of the two breaking modes by
the von Mises form Eq. (27) gives rise to further reduction of the interface
strength. Note that due to the non-linearity of Eq. (27) also the functional
form of σ(ε) changes.

6.3 Simulation techniques

Based on the above equations analytic results can only be obtained for the
simplest forms of disorder like the uniform distribution. In order to determine
the behavior of the system for complicated disorder distributions and explore
the microscopic failure process of the sheared interface, it is necessary to
work out a computer simulation technique. For the simulations we consider an
ensemble of N beams arranged on a square lattice (see Fig. 1). Two breaking
thresholds εi

1, ε
i
2 are assigned to each beam i (i = 1, . . . , N) of the bundle

from the joint probability distribution p(ǫ1, ǫ2). For the OR breaking rule,
the failure of a beam is caused either by stretching or bending depending on
which one of the conditions Eqs. (22,23) is fulfilled at a lower value of the
external load. In this way an effective breaking threshold ǫi

c can be defined
for the beams as

ǫi
c = min(f−1(εi

1), g
−1(εi

2)), i = 1, . . . , N, (29)

where f−1 and g−1 denote the inverse of f, g, respectively. A beam i breaks
during the loading process of the interface when the load on it exceeds its
effective breaking threshold ǫi

c. For the case of the von Mises type breaking
criterion Eq. (27), the effective breaking threshold ǫi

c of beam i can be obtained
as the solution of the algebraic equation

(

f(ǫi
c)

ǫi
1

)2

+
g(ǫi

c)

ǫi
2

= 1, i = 1, . . . , N. (30)

In the case of global load sharing, the load and deformation of beams is
everywhere the same along the interface, which implies that beams break in
increasing order of their effective breaking thresholds. In the simulation, after
determining ǫi

c for each beam, they are sorted in increasing order. Quasi-static
loading of the beam bundle is performed by increasing the external load to
break only a single element. Due to the subsequent load redistribution on
the intact beams, the failure of a beam may trigger an avalanche of breaking
beams. This process has to be iterated until the avalanche stops, or leads to
catastrophic failure at the critical stress and strain.

In Fig. 15b) the analytic results on the constitutive behavior obtained
with uniform distribution of the breaking thresholds are compared to the
corresponding results of computer simulations. As a reference, we also plotted
the constitutive behavior of a bundle of fibers where the fibers fail solely
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Fig. 16. a) Constitutive behavior of a bundle of N = 90000 beams using the OR
criterion for different values of the scale parameter λ2 of the bending mode. The
other parameters were fixed m1 = m2 = 2.0 and λ1 = 1.0. Inset: fraction of beams
broken under the two breaking modes. b) Constitutive behavior of the same bundle
changing the Weibull exponent m1 of the stretching mode with λ1 = λ2 = 1.0 and
m2 = 2.0. Inset: the fraction of beams broken under the bending mode.

due to simple stretching (i.e. DFBM) [12, 62, 28, 26, 24, 37, 52, 5]. It can
be seen in the figure that the simulation results are in perfect agreement
with the analytical predictions. It is important to note that the presence of
two breaking modes substantially reduces the critical stress σc and strain εc

(σc and εc are the value of the maximum of the constitutive curves) with
respect to the case when failure of elements occurs solely under stretching
[12, 62, 28, 26, 24, 37, 52, 5]. Since one of the failure functions is non-linear,
the shape of the constitutive curve also changes, especially in the post-peak
regime. The coupling of the two breaking modes in the form of the von Mises
criterion gives rise to further reduction of the strength of the interface, see
Fig. 15b).

6.4 Microscopic damage process

During the quasi-static loading process of an interface, avalanches of simul-
taneously failing beams occur. Inside an avalanche, however, the beams can
break solely under one of the breaking modes when the OR criterion is consid-
ered, or the breaking can be dominated by one of the breaking modes in the
coupled case of the von Mises type criterion. In order to study the effect of the
disorder distribution of beams on the relative importance of the two breaking
modes and on the progressive failure of the interface, we considered indepen-
dently distributed breaking thresholds both with a Weibull distribution of
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exponents m1 and m2, and scale parameters λ1 and λ2 for the stretching and
bending modes, respectively. It can be seen in Fig. 16a) that increasing λ2

of the bending mode, the beams become more resistant against bending so
that the stretching mode starts to dominate the breaking of beams, which is
indicated by the increasing fraction of stretching failure. In the limiting case
of λ2 >> λ1 the beams solely break under stretching. It is interesting to note
that varying the relative importance of the two failure modes gives also rise
to a change of the macroscopic constitutive behavior of the system. Shifting
the strength distributions of beams, the functional form of the constitutive
behavior remains the same, however, the value of the critical stress and strain
vary in a relatively broad range. Varying the amount of disorder in the break-
ing thresholds, i.e. the Weibull exponents, has a similar strong effect on the
macroscopic response of the system, see Fig. 16b). Applying the von Mises
breaking criterion, the microscopic and macroscopic response of the interface
show similar behavior (Fig. 17a)). Our careful numerical analysis of the mi-
croscopic failure process of the interface revealed that the size of avalanches
of simultaneously failing beams under a stress controlled loading of the inter-
face has a power law distribution (Fig. 17b)). The exponent of the power law
proved to be 5/2, it is equal to the mean field exponent characterizing the
distribution of bursts in simple fiber bundle models [28].
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Fig. 17. a) Constitutive behavior of the interface applying the von Mises breaking
criterion at different values of the scale parameter λ2 of the bending threshold.
b) Comparison of the avalanche size distribution for the classical DFBM, the OR
and the von Mises type breaking criteria. The inset shows that the size of largest
avalanche ∆max is proportional to the size of the bundle N .
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7 Discussion and outlook

We presented an overview of recent extensions of the classical fiber bundle
model in order to provide a more description of the fracture and breakdown
of disordered materials. We gradually improved the model by generalizing the
damage law, constitutive behavior, deformation state and the way of interac-
tion of the fibers. Analytical calculations and computer simulations have been
carried out to explore the macroscopic response and the microscopic damage
process of the extended model, which was then confronted with the classical
FBM intensively studied in the literature.

Recently, several applications of the extended fiber bundle models have
been proposed in a broad range of breakdown phenomena. The continuous
damage fiber bundle model with the gradual degradation of fiber strength
proved to adequately describe the relevant damage mechanism of various types
of materials. CDFBM was successfully applied to understand the strength and
fracture mechanism of nacre [44, 43], where even a quantitative comparison
to experimental findings was possible. CDFBMs have also been considered to
describe node breaking failures in scale free networks [38], and it has been
further generalized considering time dependent fiber strength [34, 35].

An interesting study of the viscoelastic fiber bundle model was performed
in Refs. [40, 39] where the model was further improved considering a more real-
istic time dependent response of single fibers instead of Kelvin-Voigt elements
[40]. The authors carried out creep rupture experiments of fiber composites
with randomly oriented short fibers and found a quantitative agreement of the
model predictions and experimental results on the macro and micro behavior
of the system [39]. The careful analyzes of the accumulation of damage in the
viscoelastic fiber bundle model also helps to construct forecasting methods of
the imminent macroscopic failure [64].

Based on the variable range of load sharing provided by the load trans-
fer function Eq. (14), interesting results have recently been achieved on the
analogy of damage and fracture to phase transitions and critical phenomena.
Analyzing FBMs on scale free networks showed that besides the range of inter-
action also the structure of connectivity of the bundle is crucial to determine
the universality class of the fracture transition [10]. Apart from fiber rein-
forced composites, short range interaction of fibers proved to be important
also for the mechanical behavior and rupture of biological tissues [27].
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