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Abstract. This article is an expansion of G. E. Forsythe's paper "Von Neumann's com-

parison method for random sampling from the normal and other distributions" [5]. It is

shown that Forsythe's method for the normal distribution can be adjusted so that the

average number Ñ of uniform deviates required drops to 2.53947 in spite of a shorter

program. In a further series of algorithms, Ñ is reduced to values close to 1 at the expense

of larger tables. Extensive computational experience is reported which indicates that the

new methods compare extremely well with known sampling algorithms for the normal

distribution.

1. Introduction. This article was originally intended to be a joint paper of

G. E. Forsythe and the authors. It grew out of discussions following a presentation

of [2] and [4] at Stanford in October 1971. The latter paper stimulated Forsythe to

modify J. von Neumann's classical method for the generation of exponential variables

(in [9]). In the resulting Stanford report, a surprisingly general sampling algorithm

was presented whose specialization to the normal distribution was then programmed

by the authors and subsequently modified. Professor Forsythe was enthusiastic about

the alternative versions and proposed to write a comprehensive joint paper. His

untimely death has rendered this project impossible. Instead, the Stanford report

has been submitted separately (as [5]), and the present paper is dedicated to Forsythe's

memory. Its main purpose is to remove all objections to the practical applicability

of the method in [5] which in its original form required too many samples from the

uniform distribution.

The paper starts with a restatement of Forsythe's generalization of von Neumann's

comparison method. A neater proof is given for the validity of the approach. The

calculation of the expected number Ñ of uniform deviates required is also done in a

shorter way. Subsequently, this quantity Ñ is considered in more detail for the special

case of the normal distribution. It is shown that A? may be decreased by means of

suitable subdivisions of the range [0, <» ).

In the central part (Sections 4 and 5), Forsythe's special algorithm for the normal

distribution (called FS) is embedded in a series of sampling procedures which range

from the table-free center-tail method (CT) through an improvement of FS (called FT)

to algorithms that require longer tables (FL). For the transition from FT to FL, a
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928 J.   H.   AHRENS   AND   U.   DIETER

couple of new ideas are added to the basic approach. One of these has recently been

found independently by Richard Brent.

In Section 6 computational experience is reported including a comparison of

CT, FS, FT and the algorithms of type FL with the most efficient previously known

sampling methods for the normal distribution. The new procedures compare very well

in terms of computation times and memory requirements. In the series FL, it is

possible to reduce the number A" of uniform variâtes required to any desired value

above 1 at the expense of longer tables. As a reasonable compromise between speed,

size of Ñ and program length, the special algorithm FL5 may be recommended. It

needs 136 tabulated constants for 14-decimal accuracy—they are all listed in two tables.

The low value of A7 = 1.23156 ensures that it remains a superior method no matter

what procedure is used for the generation of the required uniform variâtes.

2. Forsythe's Method. G. E. Forsythe's generalization of J. von Neumann's

method creates random samples in an interval [a, b) from any probability density

function of the form

(1) f(x) = ae~0M,        0 | G(x) g  1,    a ^ x < b,

where a is a constant. The procedure is defined as follows:

Method FO (Forsythe, sampling from an interval).

1. Generate a sample u from the uniform distribution between zero and one. Set

x <— a + (b — a)u (x is uniformly distributed between a and b).

2. Calculate t «- G(x).

3. Generate a sequence of independent samples w,, u2, ■■■ , uk from the uniform

distribution in [0, 1) where k is determined by the condition t ^ «i è • • • à w*-i < uk.

(Ift < uu then k = 1.) Ifk is even, reject x and go back to 1. Ifk is odd, return x as

a sample from (1).

The validity of FO will follow easily from a simple lemma.

Lemma. Let t be a given number in [0, 1). Generate independent [0, \)-uniform

variâtes «,, • • • , uk. k is determined by the condition í "> m, ~> • • • g «t_, < uk(k = 1

ift < m,). Then
(a) The probability of k being an odd number is P(t) = e~'.

(b) The expected value of k, no matter whether k is odd or even, amounts to E(t) = e''.

Proof of (a).   When u¡ ig t, the event that the sequence terminates with k odd and

the event that u¡ has an odd number of successors (k even) are mutually exclusive.

Hence

P(t)+ [  P(U¡)du, = 1.
•'0

It follows that P(0) = 1 and P'(t) = —P(t) leaving P(t) = e~' as the only possible

solution.

Proof of (b). The expected value of k is equal to 1 plus the expected value E(u,)

if «! g t. Hence,

E(t) = 1 +  [  E(Ul)du,.
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EXTENSIONS OF FORSYTHE'S METHOD FOR RANDOM SAMPLING 929

It follows that £(0) = 1 and E'(t) = E(t), and finally £(/) = e'.
The Lemma is now applied to the sequence t = G(x) £ üi "g • • • è «*-i < «*

where x = a + (b — a)u and all the u and w, are [0, l)-uniformly distributed. Part (a)

yields that the probability of k being odd is

P(k odd) = —— f e-OU) ds.
b — a Ja

P(k odd) "i e~l since G(x) ^ 1; hence the process always terminates. The probability

density function of x is given by (1) where a is determined as a'1 = J* e~au) ds.

Part (b) of the Lemma allows to calculate the expected number Ñ of uniform

random numbers u, u¡ (i = 1,2, • • • ) needed for the generation of one accepted sample

x = a + (b — a)u.

Ñ = P(k odd)E(k + 1, k odd) + P(k even){E(k + 1, k even) + R\

or

„      E(k + 1) _ 1 + E(k)

P(k odd) " P(k odd)'

E(k) was determined in part (b) of the Lemma. Hence

1 + (b - a)'1  f eou) ds      b-a+  f em" ds

(2) Ñ
(b - a)'1 f e-01'' ds f e-°u> ds

3. The Normal Distribution. As in [5], the general algorithm FO is applied to

the normal distribution. After the initial determination of a random sign, it is sufficient

to consider the positive half of the distribution function whose density is

<p(x) = (2/T)W2e-*'/2,       0 ^ x <

The range [0, ») has to be split into finite intervals [a,, a,+1), and the function G(x)

is defined as

(3) G(x) = %(x3 — a2) = (w/2 + ajw   where w = # — a,- for * E [a¡, a, + ,).

The numbers ai+1 are subject to the condition G(x) g 1 which means

(4) a2+1 - a\ g 2.

It is desirable to keep the expected number A^ of uniform variâtes required small.

Ñ is now calculated for a fixed interval [a, a + d) according to (2):

d +   í'+d e{l'-')/2 dx      d +  f e<"/2+0>" dw
_ Ja Jo

(5) N =

•'o Jo

G(jc) is monotonie and attains its maximum at x = a + d, that is w = d. Replacing

the exponential functions by their Taylor series yields
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930 J.  H.   AHRENS  AND  U.   DIETER

N =

1 + d'1   j    {1 + aw + \w2 + %(aw + iw2)2] dw + o(d2)
_^0_.

d'1   i   {1 — aw — \w2 + \(aw + \w2)2} dw + o(d2)
Jo

N

_ 2 + \ad + \(\ + aV + p(d2)

' 1 - \ad - \(\ - a2)d2 + o(d2) '

or

(6) Ñ = 2 + lad + d\\ + TV) + o(d'2).

Consequently, A? will be close to 2 if a" is small.

If d attains its maximum d = —a + (a2 + 2)'/2 äj 1/a which is determined by the

condition 2ad + d' = 2 (see (4)), then ,V = e/(l -<?"') + o(d) = 4.30026 + o(d).

This follows also from Eq. (5):

j    +     f    e(u.-U)dV2e«   du j    +      f    e.   rfH   +   o(rf)
_Jo_ _Jo_

/ -l«'-»KV2   -«      , / -u     , i /   ■■.
le e     du j   e     du + o(d)

J(i Ja

Hence, a large value of d has to be avoided.

4. Existing Algorithms for the Normal Distribution.

Algorithm CT (Center-Tail Method, Dieter/Ahrens). The formal description is

given in [4]. Here it is merely pointed out that the 'center' part of CT is precisely the

general algorithm FO applied to the interval [0, y/2). According to (4), a2 = -\/2

is in fact the maximum interval size for a, = 0 covering 84.27% of the total area

under the normal curve. The 'tail' x 2: \/2 is handled by a totally different approach

that goes back to an idea of G. Marsaglia [7].

The center-tail algorithm is table-free and relatively short. On the other hand,

the expected number A' of uniform variâtes required is rather large: .V = 4.87889

per completed sample.

The second sampling procedure is Forsythe's original method.

Algorithm FS. The formal description is given in [5]. The method is based on the

split of the range 0 S x < °° into the intervals [0, 1), [1, V3), [V3, y/5), ■ ■■ .It

requires three tables: (i) the boundaries 0, 1, y/2, V5, -for the quantity a in step 1

of FO; (ii) the differences 1 — 0, V3 — 1, V5 — V3, • • ■ which are the interval

lengths b — a in step 1; and (iii) the cumulative probabilities

,.(21-1)'/»

(7) /•, =   / (2/ir)U2e-''n dx, i =  1,2, •■■  .
Jo

The r, are needed for the initial determination of the interval ([0, 1) or [(2/ — 1)1/2,

(2/ + 1)1/2), ï "i 1) to which the general method FO is applied.

The authors' test program for a CDC 6400 system contained only the tables

(i) and (iii) (forming the differences of (ii) from the square roots in (i) did not result

in any measurable decrease in speed). The high accuracy (14 digits) of the machine

required 32 entries in both (i) and (iii) (an IBM 360/370 computer would be satisfied

with 16 entries each).
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The expected number Ñ of uniform variâtes per sample as stated in [5] is Ñ =

4.03585. This was verified on the basis of (2).

5. New Algorithms for the Normal Distribution. The remaining two algo-

rithms are improvements on FS. A different choice of intervals is all that is required

both to shorten the computer program and to increase its speed. For this, the con-

secutive intervals [a, b) are determined such that the areas under ¡p(x) belonging to

these intervals become \, \, \, x\, etc. In other words, if

$(*) = |" (2/r)l/Y*'/2 dz

then the interval boundaries are now defined as

a[ = 0, a'2 = $-(i), a', = *"'(*), • • •  , a'i + 1 = $-1(2"),

It has to be shown that this special selection is legitimate by verifying condition (4).

An accurate proof may be based on the asymptotic expansion

(8) *{x)~M/iLe-*-41-±í + k3_u¿+..\
\irl     x \        x x x )

in which the error is always smaller in absolute value than the first neglected term.

The tedious but straightforward precise bounding is left to the reader.

In the following formal description of the new algorithm (FT), it is assumed that

the interval lengths

(9) d, = a'i+i - a'i = $"'(2"') - #_1(2~,+1)

are tabulated. These are the only constants required, they are listed as Table 1 in

this section. In order to achieve the full accuracy of the computer in hand, ; must run

from 1 to B — 1 where B is the number of bits used by the uniform random number

generator (B = 48 for a CDC 6400 computer). (In the description below, 'generate u

(or u*) indicates taking a sample from the uniform distribution in [0, 1); in the case

of several generations, the samples are supposed to be independent.)

Algorithm FT (Forsythe, modified).

1. Generate u. Store the first bit of u as a sign 5 (s = 0 if u < \, s = 1 if u è I).

Left-shift u by 1 bit (u <— 2« — s). Initialize i <— 1 and a <— 0.

2. Left-shift u by 1 bit (u <- 2u). If u ^ 1 go to 4.

3. Set a <— a + d, and then /'<—/+ 1. Go back to 2.

4. Set u <— u — 1. (Now u is again uniformly distributed in [0, 1).)

5. Set w <- ud, and t *- (w/2 + a)w (cf. (3)).

6. Generate u*. If u* > t go to 9 (acceptance).

7. Generate u. If u* < u generate u and go to 5 (rejection).

8. Set t <— u and go to 6 (continue the sequence {i/¿} in step 3 of FO).

9. Set y <— a + w. If s = 0 return x <— y; if s = 1 return x <-y.

According to the final performance table in Section 6, the new algorithm FT

seems to be better than FS in all respects. FS needs one more uniform deviate than

FT for the determination of the interval [a,, a,+1). In FT this is done by the initial

shifting mechanism: note that the probability of w ^ § in step 2 is exactly 2"' as

required.
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Although the determination of the sign s and subsequent shifts deprive the variable

u of two or more of its front bits, this does not constitute a noticeable loss of accuracy.

The information gained (sign and interval) is equal to the number of bits expanded

in steps 1 and 2. Only the one bit which is shifted out in step 4 is really lost.

The relatively smaller intervals in FT further reduce the expected number Ñ of

uniform variâtes per sample which is obviously

(10) Ñ =  ¿2"^,
• -i

where the Ari are the expected numbers of uniform deviates for the individual intervals

[a'i, a'i + di) according to formula (5). The result is Ñ = 2.53947 as the final value

for algorithm FT.

FT is shorter than FS in terms of memory requirements, but for an even faster

algorithm, the program length has to be increased again. The last method (FL) is

an attempt to improve speed and minimize Ar at the expense of relatively long tables

inside the program. It is developed from FT in two steps.

Step I. The subdivision of the range 0 ^ x < °° into intervals is made finer.

A small number m (typically m = 5) is chosen, and the partial areas under the density

function are adjusted to 2~m, 2~m, • • • , 2~m, 2~m~\ 2~m~2, ■ ■ ■ (2™ — 1 times areas of

size 2~m in the 'center', plus decreasing areas as in FT for the 'tail'). For instance, for

m = 5 the interval boundaries a¡ are now al = 0, a2 = <ï>-1(31/32), a3 = <ï>~ '(30/32),

• • • , a32 = $"'(1/32), a'6 = a32, a'7 = $_1(l/64), a>8 = $-'(1/128), • • • .The finer

split increases the probability that acceptance in FO is rapid (that k = 1). However,

no matter how small the intervals, FO still requires at least two uniform deviates

(cf. (6)). In order to decrease Ñ below 2, a second idea is needed:

Step II. If the maximum possible value /majt of t in step 5 of FT is small then

x will usually be accepted as soon as step 6 is used for the first time (case k = 1).

In particular, if u* in step 6 is greater than imax, acceptance does not depend on the

size of w. This allows us to dispense with u* with a probability of 1 — imax by modi-

fying the general method FO as follows:

Method FO* (modified sampling from an interval).

1. Generate u*. Let L« be the maximum of G(x) in [a, b).

2. If u* > fmai return x <— a + (b — a%u* — /max)/(l — imax) and exit. (Given

that u* > /max this x is again uniformly distributed between a and b.)

3. If u* ^ tmiX generate u and set x <— a + (b — a)u and t <— G(x).

4. Set ux <— u* and generate u2, ■ ■ • , uk. k is determined by the condition t ^

«i = u2 ^ • • • ^ wt_! < uk. If k is odd return x.

5. If k is even go back to 1.

The above modification was discovered independently by Richard Brent.

In FO* the expected number A? of uniform variâtes is reduced from (2) to

(b - fl)fm« + f e0M dx

(11) Ñ* = -~b-2-

which is easily verified by repeating the argument that led to (2) and observing that

one uniform deviate is saved in each trial with probability 1 — /max. As a consequence,
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formula (5) for the normal distribution changes to

d(ad

(12) Ñ* =

+ d2/2) +   [ efa/2+a)w dw

_Jo_

r"
I        -{w/2 + a)v>   j
I   e dw

Jo

since ?maii = ad + d2/2. The approximate formula (6) becomes

(13) Ñ* = 1 + 2ad + d2(% + a2) + o(d2)

which tends to 1 if d tends to 0.

It remains to build Step I and Step II into an easily programmable algorithm (FL)

for the standard normal distribution. In the formal description below, it is assumed

that the following quantities are tabulated (the new three types of constants (ii)-(v)

are listed in Table 2 for the special case m = 5):

(i) The (tail) interval lengths d, as defined in (9) for / = m + 1, m + 2, ■ • ■ , B — 1

(they are contained in Table 1).

Table 1

Lengths of Intervals: di — ̂ ~1(2~') $-1(2-i+1)

d.
i

1

2

3

It

5

6

7

8

9

10

11

12

13

14

15

16

O.67448975019607

O.475859630I7993

0.3837711639765^

0.32861132306910

O.29114282663980

0.26368432217502

O.24250845238097

O.22556744380930

O.2II63416577204

0.19992426749317

0.18991075842246

O.I8I225I8IOO69I

O.17360140038056

O.16684190866667

O.I60796729I8053

0.1553^717^7692

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

O.I50409383828I3

O.I4590257684509

O.I4I77003276856

O.I37963I7369537

O.I3444176I5OO74

O.I3II7215026483

O.I28I25965I2583

O.I2527909OO6226

0.12261088288608

O.I20IO35596565I

O.II774170701949

0.11551189226063

O.II340234879II7

0.11140272044119

O.I09503852OI7IO

O.IO769761656476

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

O.I0597677198479

0.10433484129317

O.I0276601206127

O.IOI26505151402

O.09982723448906

0.09844828202068

O.O9712430874765

O.09585177768776

O.09462746II9I86

0.09344840710526

O.0923II90933664

O.09I21548217294

O.09015683778986

O.O8913386650005

0.08814461935364
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Table 2

31 Center Intervals [case m = 5]

Boundaries ¡ Maximal t:

t.
i

(b-a)/(l-t  )¡v  ' 'v  max'

h.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

0.00000000000000

0.03917608550309

0.07841241273311

O.II776987457909

0.15731068461017

O.I9709908429430

O.237202IO932878

O.27769043982I57

O.3I863936396437

O.36OI2989I78957

O.40225006532I72

O.4450965249855I

0.48877641111466

O.53340970624127

O.57913216225555

O.62609901234641

0.67448975019607

0.72451438349236

0.77642176114792

O.83051087820539

O.88714655901887

O.94678I75630104

I.00999016924958

I.07751556704027

1.15034938037600

I.22985875921658

I.3I80IO89730353

I.41779713799625

1.53^12054435253

1.675939722773^

I.86273I86742164

2.15387469406144

O.OOO76738283767

O.O0230687039764

O.0038606I844387

O.00543845406707

O.00705069876857

O.OO870839582019

0.01042356984914

O.OI220953194966

0.0l40812473/*637

0.01605578804548

O.OI8I5290075142

O.02039573175398

O.0228II76732513

O.02543407332319

O.02830295595118

0.03146822492920

O.03499233438388

0.03895^2964836

0.04345878381672

0.04864034918076

0.05468333844273

0.061842223958I6

0.07047982761667

O.08II3194985866

0.09462443534514

O.II230007889456

0.1364979995^975

O.17168856004707

0.22762405488269

O.33049802776911

O.58470309390507

O.03920617164634

O.03932704963665

O.03950999486086

O.03975702679515

O.04007092772490

O.04045532602655

0.04091480886081

O.04145507II5859

0.042083110513^

0.04280748137995

O.04363862733472

O.04458931789605

O.04567522779560

O.04691571371696

0.04833^86978119

O.04996298427702

0.05183858644724

0.05401138183398

0.05654656186515

0.05953130423884

O.06308488965373

O.Q6737503494-905

0.07264543556657

O.07926471414968

O.O8781922325338

O.09930398323927

O.II5559941541I8

O.140434383428I6

0.18361418337460

O.27900163464163

0.70104742502766

(ii) The interval boundaries «i
2, • • • , 2m).

^-\(2m - i + l)/2m) in the center (1 = 1,
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(iii) The maximal values í¡ = tmsx of t in the center intervals. They are calculated

as U = ((ai+l - a,)/2 + a,)(ai+1 - a.) for i = 1, 2, • • • , 2m - 1.

(iv) Factors of the form (b — a)/(l — ¿max) as needed in step 2 of FO*. They are

defined as h\ = (a,+l - «0/(1 - U) for i = 1, 2, • • • , 2™ - 1.
Steps 2-8 below constitute an adaptation of FO* to the 2m~l center intervals.

Steps 9-16 merely copy the old method (FT) for the tail since there the modification

FO* would be too expensive in terms of table space and not very efficient.

Algorithm FL (long-table method).

1. Generate u. Store the first bit of « as a sign 5. Left-shift u by 1 bit (u <— 2u — s).

2. Shift m to the left by m bits (u <— 2mw) and equate i to the integer part of u

(i <- [«]). If i - 0 go to 9.
3. (Start center.) Set u* *— u — i and a <— a¿.

4. If u* > i; set w <— (w* — i.) A, and go to 17.

5. Generate u. Set w <— u(ai+l — a) and calculate t <— (w/2 + a)w.

6. If u* > í go to 17.
7. Generate u. If u* < u generate u* and go to 4.

8. Set t *— m, generate w* and go to 6.

9. (Start tail.) Set i <— m + 1 and a «— a2m.

10. Left-shift u by 1 bit (u «- 2m). If w ̂  1 go to 12.
11. Set a <— a + di, i <— i + 1 and go to 10.

12. Set u <— h — 1.

13. Set w <— wo^ and ? <— (vv/2 -f a)^.

14. Generate u*. Ii u* > t go to 17.

15. Generate u. If u* < « generate « and go to 13.

16. Set t <— m and go to 14.
17. Set y <— a + w. If s = 0 return x <— y, if s = 1 return x <-y.

The expected number Ñ of uniform variâtes in FL is

(14) #= 2-2¿I Ñ*+ ¿2-À7,
i=-l m + 1

where the tail-interval averages A^ are again calculated according to (5) and the

center-interval averages Ñ*{ are determined by (12).

As the number 2m of center intervals increases, the number Ar of uniform deviates

decreases towards 1 (see (13)). The numerical values for the cases m = 4, 5, and 6

are listed in the next section.

6. Comparisons of the Algorithms. The four algorithms of this article are now

compared. All programs were written in CDC 6400 Assembler Code [COMPASS].

The computation times were measured on the basis of 10000 trials using a multi-

plicative congruential method (period 246) for generating uniform variâtes. (For

its properties see [1].)

CT     Center Tail 33 words (no table) 80 ̂ sec        Ñ = 4.87889

FS      Forsythe [5]        87 words (23 + 64 for tables)      71 jusec        Ñ = 4.03585
FT     Areas 2"* 63 words (16 + 47 for tables)       67 ¿isec        ^ = 2.53947

FL„ Long-Table Algorithm: 2m is the number of equal areas in the center.
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FL4    (2m = 16) 117 words (28 + 89 for tables)     50/isec        #=1.38009
FL5    (2m = 32) 164 words (28 + 136 for tables)   47 ¿tsec       Ñ = 1.23156
FL6    (2™ « 64) 259 words (28 + 231 for tables)   46 Msec       Ñ = 1.13644

AU these methods compare well with older procedures. For instance, generating

two normal deviates xu x2, from two independent uniform variâtes uu u2 according

to Xx 4- (-2 In tO"2 sin (2ir«2), and x2 <- (-2 In utf'2 cos (2tu2) (Box-Muller [3])

took 2 X 247 /¿sec on the CDC 6400 computer. The so-called modified polar method,
as defined in [2], needs 56 words and 90 itsec; it is therefore weaker than the center-tail

algorithm and certainly inferior to FT. The three examples of FL compare well with

the Taylor series method in [2] which requires 154 words (53 + 101 for tables) and

56 ttsec.
The only known method which is a little faster than FL5 and FL6 is Marsaglia's

rectangle-wedge-tail algorithm (described in [6], [8], and [2]). It was not programmed

for the CDC 6400 but, on the basis of experience on another machine, an estimate of

44 ± 2 /usée and 300-400 words can be made. Nevertheless FL remains fully com-

petitive for three reasons.

First of all, FL is easier to describe because it is homogeneous. Second, FL does

not suffer from the loss of accuracy (~8 bits) in the main case of Marsaglia's algorithm.

Finally, FL yields a choice of methods and permits to decrease Ñ towards 1, whereas

the rectangle-wedge-tail algorithm could be modified in this direction only at some

further loss of accuracy. Small Ñ are important if in the future more complex (and

therefore slower) generators for uniform variâtes are preferred.

Neither the quantity Ñ nor the observed computation times and memory require-

ments on one particular machine can determine the value of a method completely.

The reader is referred to [2] for a comparison of some competing algorithms for the

normal distribution. There an IBM 360/50 as well as a CDC 6400 computer were

used for the trials. The relative performances proved similar in this case, but there

will still be machines with different preferences on account of different hardware

characteristics. New assessments will certainly be required for future systems which

have large-scale parallel arithmetic.

Nevertheless, it can be said at this time that George E. Forsythe's approach to

sampling from the normal distribution has produced excellent and accurate methods

that range from short medium-speed algorithms to longer and very fast sampling

procedures.
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