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BY RONALD R. COIFMAN AND GUIDO WEISS1 

1. Introduction. It is well known that the theory of functions plays an 
important role in the classical theory of Fourier series. Because of this certain 
function spaces, the Hp spaces, have been studied extensively in harmonic 
analysis. When p > 1, If and Hp are essentially the same; however, when 
p < 1 the space Hp {% much better adapted to problems arising in the theory 
of Fourier series. We shall examine some of the properties of Hp for p < 1 
and describe ways in which these spaces have been characterized recently. 
These characterizations enable us to extend their definition to a very general 
setting that will allow us to unify the study of many extensions of classical 
harmonic analysis. 

The theory of Hp spaces on Rn has recently received an important impetus 
from the work of C. Fefferman and E. M. Stein [29]. Their work resulted in 
many applications involving sharp estimates for convolution operators. It is 
not immediately apparent how much of a role the differential structure of R" 
plays in obtaining these results. Our purpose is to isolate from this theory some 
of the measure theoretic and geometric properties that enable us to obtain in 
a unified form many of these applications as well as other results in harmonic 
analysis. We shall not deal with those questions involving Hp spaces that are 
not relevant to our purpose. Some general references involving harmonic 
analysis and Hp spaces are [23], [64], [27], [62], [57] and [55]. 

The main tool in our development is an extension and a refinement of the 
Calderón-Zygmund decomposition of a function into a "good" and "bad'* 
part. This tool is presented in the proof of Theorem A and is of a somewhat 
technical nature. It is included here in order to make the presentation of the 
theory we develop essentially self-contained. In some examples we give 
applications of this theory that require material not presented here. We do, 
however, give the necessary references. In this sense, we hope that this 
exposition is accessible to a general audience* 

Before beginning our presentation we would like to thank our colleagues 
A. Baernstein, Y. Meyer, R. Rochberg and E. M. Stein who read a large part 
of this manuscript and made many useful suggestions. 

Suppose ƒ is a real-valued integrable function on T, the perimeter of the unit 
disc in the plane (which we identify in the usual way with [-7T, TT)). Suppose ƒ 

1 This paper is based on the material presented by the last-named author in an Invited Address 
to the American Mathematical Society meeting in Saint Louis on April 11-12, 1975. This lecture, 
in turn, was based on results obtained in a collaboration by the two authors of this paper; re-
ceived by the editors January 20, 1976. 
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has the Fourier series 2~oo cke§k$* Let F be the analytic function defined by 
the power series c0 + 2 2?° ckzk> \z\ < !• This association of analytic func-
tions in the disc Z) = { z E C : | z | < l } with real functions on Tis the basis of 
a general technique, known as the use of complex methods, for obtaining results 
in the theory of Fourier series. The essential ingredients of this procedure can 
be described briefly in the following way. Certain basic operations on 
functions ƒ on T (often realized as multiplication of the Fourier coefficients of 
ƒ by specific sequences) can be interpreted as operations on the associated 
analytic functions F. Powerful tools from the theory of functions (such as 
factorization of zeroes, conformai mappings, etc.) can be used to study the 
properties of such operations on the functions F. The properties can then be 
translated as results about functions on T since ƒ can be recovered from F by 
taking the almost everywhere existing radial limits 

( 1 J ) f (9) « lim <&z{F{reiB)}? 
r<\ 

If ƒ E LP(T\ 1 < p < oo, the M. Riesz inequality (see [64] for a proof) is 
satisfied by the analytic function F and the original function ƒ: 

(1-2) (jl\F{rei<>yd9Sj,P <Ap\\f\\p, 

where Ap is independent of ƒ and r, 0 < r < 1. Moreover, the radial limits 
(1.1) can be taken in the LP norm as well. 

In 1915 [33] Hardy considered the means 

h{F;r) = ^\F{rei0)\pd9y, 

0 < p < oo, as functions of r and showed that they behave similarly to the 
"maximum modulus" ^(Fir) = msix{\F(rel9)\; 9 E [~7r,7r)} (among other 
things, he showed that iip(F; r) increases with r and satisfies the conclusion of 
the "three circle theorem"). In 1923 F. Riesz (see [48]) introduced the class of 
functions F, analytic in Z), for which 

(1.3) WF\\HP = SUP Pp{F\r) < <*>> 
V ' 0<r<l y 

where 0 < p < oo, and denoted this class by the symbol Hp in obvious 
homage to Hardy. Since that time these spaces have become known as Hardy 
spaces? 

2 Many examples of this technique can be found in the books of Duren [23], Hoffman [35] and 
Zygmund [64]. 

3 In his 1923 paper F. Riesz established many of the important properties of these spaces (e.g. 
the Blaschke product factorization, the existence of boundary values and other results). His 
brother M. Riesz also made important contributions in this field. Thus, it could be argued fairly 
that the name "Riesz" should also be attached to these spaces. We shall not enter into such an 
argument but would also like to point out that subsequent contributions by Hardy and Littlewood 
were most basic to the development of the theory of Hp spaces. 
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For the next few pages we shall assume that LP(T) consists only of real-
valued functions and, thus, is a vector space over the real numbers. Though 
not essential, this assumption will simplify some of the assertions we are going 
to make. 

An immediate consequence of the M. Riesz inequality is that F 
E Hp whenever ƒ G LP(T), 1 < p < oo. Conversely, if an analytic function 
F belongs to Hp then the limit function ƒ in (1.1) exists (in the LP norm and 
a.e.); moreover, F can be reconstructed from/ (up to an imaginary constant) 
in the manner described above, provided 1 < p < oo (see [64, Chapter VII]). 
Hence, for these values of p9 LP(T) is the space ${£HP consisting of the 
boundary values of the real parts of functions in Hp (in the sense of (l.l)).4 

The situation is completely different when p == 1. In fact, for a nonnegative 
ƒ G Ll(T), F G Hl if and only if JT„ f (I + log*/ ) < oo (see Chapter VII in 
[64]). Characterizations of «31e//1 have been obtained only recently; in a sense, 
this is the origin of this exposition. We shall explain these characterizations in 
great detail later. 

It was observed by Hardy and Littlewood, as well as many others, that there 
are many results in Fourier analysis that hold for LP(T), 1 < p < oo, fail to 
be true for Ll(T) and, yet, remain true for %tHx. Since Lq(T) gj LP(T) 
Ç 9jdHx Ç L)(T) when 1 < p < q < oo we see that ®&HX can be regarded 
as a good "substitute" for L)(T) that is endowed with many of the properties 
enjoyed by the LP spaces for 1 < p < oo and, moreover, contains all these 
spaces. Let us examine some specific examples of this situation. 

Suppose ƒ G LP{T\ 1 < p < 2, has the Fourier series 2-oo ckeik9 - A well~ 
known result of Paley (see [64, Vol. 2. p. Ill]) asserts, in part, that 

(i.4) i'ic*n*r2<°o.5 
- 0 0 

This result is false when p = 1. In fact, there exists an integrable function 
whose Fourier series is 2 ? c o s kO/\og k (see [64, Vol. 1, p. 184]). On the other 
hand, Hardy has shown that if ƒ G 6MHl we have 

°°' lal 
"• 5 > 2 W < M ' 

This last inequality is more striking when we realize that no condition on 
the rate of convergence to 0 can be given for the Fourier coefficients of a 
function in Ll(T) (see [64, Vol. 1, p. 183]); in this sense, the Riemann-
Lebesgue theorem, asserting that these coefficients tend to zero, cannot be 
improved. Another example of this phenomenon is Paley's result: 

(1.6) 2 M 2 < c o 
- o o 

4 It is not hard to show, making use of (1.2), that the space of complex-valued If(T) functions 
and Hp (with norm given by (1.3)) are equivalent Banach spaces when 1 < p < oo (see Boas [1]). 

5 We are adopting the standard notation: 2 ' means that we are summing over all nonzero 
integers k: 
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is satisfied by the Fourier coefficients of a function ƒ in 61e//1 but does not 
hold for an arbitrary function in l)(T). 

Perhaps the most basic difference between L}(T) and 61e//1 that was 
discovered by Hardy and Littlewood involves the Poisson integral of/: 

(J? .ƒ)(*) = ± f . , ! 7 / 2 ,- 2M)d* - ujire"), 
MrJ~it \ -Ir cos(0 — y) + rz J 

0 < r < 1. Let 

(P*/)W - .„ sup |«/w)| 
lw-tfW |<2(l- |w|) 

denote the (nontangential) maximal operator associated with this integral 
Hardy and Littlewood showed that P*f E l)(T) when ƒ G 61e//1, while this 
is not true for a general ƒ E L1 ( r ) . It has been understood for a long time that 
this result represents a basic difference between these two function spaces; 
however, it was only recently shown by Burkholder, Gundy and Silverstein [2] 
that we have here a real-variable characterization of 61e//1: for ƒ E l}{T), 
P*f E Ü(T) if and only iff E 61e//1.6 

If ƒ E 61e//1 then, by definition, ƒ (0) = &eF(e"), where F E /f1. If we 
make the restriction that the imaginary part of F vanishes at 0, the function F 
is unique. We can then put a norm on 61e//1 by letting j|/||#i s ||/1l#i (see 
(1.3)). With this norm 61e//1 is a Banach space. 

The next important step toward an understanding of 61e//1 was taken by C 
Fefferman who characterized the dual, {61e//1}*, of this space as the class of 
functions of Bounded Mean Oscillation (BMO) originally introduced by John 
and Nirenberg [38]: a periodic function / (of period 2TT) is Said to be in the 
class BMO provided it belongs to l)(T) and 

/7l/(»)-«/(/)l^ < c 

for all finite intervals /, where c is independent of / and m7(/) 
= (1/1 ' I) Si 1(0)dB. The space BMO is a Banach space if we let 

WBMO ^fo*l\ + syw\f<ll-mi{l)l 

be its norm. C. Fefferman showed that the mappings 

f-*fWf(0)W)d9, 
J—IT 

induced by the various / E BMO, yield all the bounded linear functional on 
61e//1 and their norms as linear functionals are equivalent to IMUMO* (The 

6 We mentioned before that, for ƒ > 0, being a member of ^tHx is equivalent to the 
integrability of ƒ log"1" ƒ On the other hand, this last condition is equivalent to the integrability of 
P*/( in this connection, and for higher dimensional extensions, see E. M. Stein [53]). 
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integrals flvfl have to be interpreted appropriately; we shall consider this 
point later in §3.)7 

This characterization of {^Le/f1}* is easily seen to be equivalent to the 
following description of the functions belonging to «31e//1. We begin by 
introducing a basic "building block" for the elements of 9&HX : 

DEFINITION. An atom (more precisely, a l-atom) is either the function 
a0(9) s 1/2TT or a function a(9), — IT < 9 < m, satisfying: 

(i) The support of a is contained in an interval / C [-7r,7r);8 

(ii) \a(9)\ < \I\~l for all 9 E [-77,77); 
(m)j$"a(9)d9 = 0. 
The above-mentioned characterization is, then, simply: a function f belongs 

to 61e//1 if and only if 

(1.7) /=JU«/ 
w/tere tfy w an atom, 0 < 7, and 2j2=o l \ l < °°- Moreover, if F is the analytic 
function corresponding to ƒ (in the manner described above) there exist absolute 
constants q and c2 such that 

(1.8) cx\\F\\HX < i n f | | X / . | <c2\\F\\HU 

where the infimum is taken over all decompositions (1.7). 
This characterization of 61e//1 leads us to a corresponding real-variable 

characterization of <${&HP, 0 < p < 1. The example 

F(z) = (1/2TT)[(1 + z)/(l - z)] 

of a function in Hp, 0 < / ? < 1, whose real part converges to 0 as 
z = reM -+ ei9(zsr-+ 1) for 9 e (0,2TT), indicates that ^ile//^ is not a 
function space; rather, it should be defined as a space of distributions (in this 
example, the boundary value is the Dirac measure concentrated at 9 = 0). 
When 1/2 < p < 1 these distributions are obtained by a simple renormaliza-
tion of the atoms we have just introduced: We call a function a(9) dip-atom if 
it satisfies properties (i) and (iii) and, instead of (ii), if it satisfies \a{9)\ 
< \i\~x/p 9 

The characterization of %tHp can be stated as follows (see [10]): 

THEOREM I. A distribution f belongs to<3\£Hp,0 < p < 1, if and only if it can 
be represented in the form ƒ = 2/^o\ 'a /> where a.- is a p-atom, 0 <y', 
and^\Xj\p< 00. 

It is a common practice of modern mathematics to transform a theorem 
characterizing a mathematical notion into a definition of that notion. Doing 

7 This will become evident later on when we discuss the more general setting for the theory of 
Hp spaces. 

8 We are really dealing with functions defined on the perimeter of the unit circle and our 
"intervals" are intervals in this perimeter. Thus, we allow I to have the form {0: -IT < $ < a or b 
< 9 < fir, where a < b}. 

9 For the cases 0 < p < 1/2 we also have to modify condition (iii). We shall discuss this matter 
later. 
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this is particularly fruitful if the characterization has three basic properties: 
(a) Known results follow easily from it. 
(b) New results follow easily from it. 
(c) The notion being characterized can be extended to new situations and 

this leads to a theory as useful and powerful as the original one. 
Theorem I has these features. First of all, it is clear that the defining 

properties of an atom make sense in any topological measure space where a 
basis for open sets (such as the intervals used above) is prescribed. This is one 
of the major points of this presentation. First, however, we shall give some 
illustrations of properties (a) and (b). 

We begin by establishing Hardy's inequality (1.5). Let us first observe that 
it suffices to prove (1.5) for the Fourier coefficients of an atom. In fact, we shall 
show that 

0.9) 2' fe^<4 
k 00 \k\ 

whenever^ = (l/2w) ƒ», a(9)e-'k9d9 are the Fourier coefficients of a 1-atom 
a(9). Hardy's inequality then follows immediately from (1.9) and the represen-
tation (1.7) of functions in ^le//1.10 Thus, let a(9) be a 1-atom whose 
supporting interval, /, in conditions (i) and (ii) is centered at 0 (there is no loss 
in generality since \ak | is unchanged by translations). Using first (iii) and then 
(ii) we have 

kl- 277. 
f{ a{0)[e-M - \}d9\ <±nfi \a{6)\ \k0\d9 

l*ll'l f , „ - ! , , ._ 1*1 M 111 f 
IT JI 

< l ^ . ƒ - ' < / # = 

Moreover, again using (ii) we have 

JL Kp " EC wtde <rJ, I'l"2"" - 5"i"'-
Making use of these two estimates we have 

J y k | = 2 Jftl+ v — 
*=-oo 1*1 |*|<|/|-« 1*1 |t|>|/|-' 1*1 

1/2/ _\I/2 

) ( 2 

|*|<|/|-' -̂°° / Vl>|/|-
and (1.9) is established. In view of (1.8) we obtain 

i / » - A 1 / 2 / \ ' / 2 

<i 2 |/| + (2 kl2) ( 2 *"2) <4 

10 This is an important feature of the use of atoms: many problems can be reduced to 
considerations involving only atoms and, because of this, the resolution of these problems is made 
simpler. 

file:///k0/d9
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(i.io) %lM<4c*m»1 

for any F G Sle//1. 
Our next observation is that we can easily identify the dual spaces of 

?Re/ / / 7 ,0</?< 1, if we know Theorem I. We restrict our attention to the 
case 1/2 < p < 1, since we have defined a/?-atom only for this range of p. If 
L E {SLe//^}* it is easy to show (and we will do so later in a more general 
context) that the action of this linear functional on atoms a(9) is given by an 
integrable function 1(9) as follows: 

La = f* a(9)l(9)d9. 
J—IT 

Moreover, the continuity of L is equivalent to the "boundedness" \La\ < ||L|[. 
We claim that / satisfies 

(!.,,) sup \I\-tof |/(0) - m,{l)U{9) < 2||L||. 
/C[-7T,7r) 

To see this we choose a function ƒ supported in / such that WfW^ < 1. 
Obviously, if xi is the characteristic function of /, 

a(ö) = 2 - ' | / r 1 / p { / W - m / ( / ) X / W } 

is a p-âtom. We thus have 

\ftf(9)[l(9) - m;(/)]^| = 11 [ƒ(#) - mtU)W)d»\ 

= 2| / |1 / / ' | / /a(Ö)/(ö)^|<2| / | , / / ' | |Li | . 

Inequality (1.11) now follows by taking the supremum over all such functions 
ƒ. It is also clear, by retracing our steps, that if the supremum in (1.11) is finite 
then the integral above this inequality defines a bounded linear functional on 

When p = 1 (1.11) is the defining condition for the space BMO. This 
condition has been studied extensively for p < 1 as well (see [7] and [46]). In 
particular, as we shall show later, when 1/2 < p < 1 (1.11) is equivalent to 

(1.12) \l(9) - /(*)| < c | 0 - *|*, a = l / p - l . 

This yields the characterization of the dual of ^Hp given by Duren, 
Romberg and Shields [24]. At this point it is relevant to point out that results 
involving Hp spaces are translated by duality into results on Lipschitz spaces 
(i.e. spaces of functions satisfying inequalities of the type (1.11) or (1.12)). We 
shall return to this point after we have introduced our extensions of the Hardy 
spaces. 

We have encountered many other situations where Theorem I can be used 
directly and efficiently to produce known results in the theory of Hp spaces. 
Let us now illustrate the fact that Theorem I enjoys property (b); that is, new 

file:///I/-tof
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results can be obtained from it. Perhaps the most striking development in this 
direction is that we can obtain a simple and useful characterization of the 
Fourier coefficients of elements in ésH?. It is well known that such a 
characterization exists for L?(T) via the Plancherel theorem; that is, a 
necessary and sufficient condition for a sequence {ak}, k = 0, ±1, ±2, . . . , to 
be the sequence of Fourier coefficients of an ƒ E I?(T) is 2?L-oo \ak\ < °°-
This condition enables us to easily characterize those linear operators com-
muting with translations that are bounded on l?(T). In fact, it is easy to see 
that if A is such an operator then its action is determined by an associated 
sequence {iik} in such a way that if ƒ has Fourier coefficients {ak} then Af has 
Fourier coefficients {fJLkak}.u It is immediate to check that {iikak} is square 
summable for all square summable sequences {ak} if and only if {/x̂ } is 
bounded. The study of convolution operators on è&Hp is not quite so simple; 
however, we shall see that the characterization we will give of the Fourier 
coefficients of the elements of these spaces is very useful for such a study. 

We first observe that, if a(9) is a real-valued (nonconstant) 1-atom whose 
supporting interval is centered at 0, then, making use of (i), (ii) and the 
e s t i m a t e ^ - 1|2 < |0|2, 

(i.i3) (jT |a(ö)|2^)1/2(£ K0)|V - i\2de)l/2 < ±. 

Let 2-oo akeik0 b e t h e Fourier series of a{0) and A{z) = 2 2?° akz
k the 

analytic function associated with a(9) described in the beginning of this 
exposition. It is a well-known fact (see Zygmund's book [64]) that the 
boundary values A{elB) = \\mr_+xA{relB) cannot vanish on a set of positive 
measure. Thus, A(el°) could be an atom, or a multiple of one, only if it were 
bounded by 1/2TT; but simple examples (we can choose a{0) = (2TT)~ sgn 0, 
-m < 0 < IT) show that this cannot be expected. Nevertheless, A{e10) does 

inherit the very basic property (1.13). In fact, using Plancherel's theorem and 
the fact that a_k — ak we have 

-éB\2d9\ 

1/2/ oo „ . \ l / 2 

(£\AV')\2d*) (pA(e^\l-e^d9) 

2 kl2) ( 2 k+.-«*l2 + W2) 
. „ . k=\ / \k—\ / 

/ oo A 1 / 2 / °° A1 /2 

= 4^ 2 k l 2 ) ( 2 k+ i-«*l2) 

= (£ m?dif\jl \a{9f\\ - Wdtf. 

** The property of commuting with translations easily implies that the functions etk9> k = 0, 
±1, ±2, . . . , are proper vectors for the operator A. The sequence {nk} is the corresponding 
sequence of proper values of A. Such operators are called multiplier operators or (more 
appropriately) convolution operators; {iik} is referred to as the sequence of multipliers. 



EXTENSIONS OF HARDY SPACES 577 

More generally, let us consider (possibly complex-valued) functions M 
E L?(T) satisfying 

(£11 Wl2^)1 \fl |M(0)|V " l|2rf»)M < 1, 

C M(9)d9 = 0. 
J—IT 

Such functions can be shown to be sums of atoms centered at 0 that are 
"neatly stacked one on top of the other". We shall return to this point later; 
we mention this now, however, to justify calling such functions molecules}1 It 
turns out that molecules are practically as basic as atoms in the study of Hp-
space theory. 

We first observe for any M in L?(T) 

(1.16) ƒ_* \M(8)\d8 < iJf^ \M(0)\2d$\ (£ |M(0)| V - l\2d9J 

In fact, let M0(9) « |1 - ei9\M(9); then 

1-1(2 j T - f 
-(/>wiV-.i>4%><«-irf! 

1/2 

\M0\\227r(2Q2 9~2d9^ = \\M\\2A + 2TT\\M0\\2A-1 . 

Letting A = (27r||A/0||2 HA/lf1)1'2 we obtain (1.16). Thus, any molecule satisfies 
\\M\\y < 377. Incidentally, (1.16) is a version of an inequality of Carlson [9]. 

It now follows easily that any ƒ satisfying (1.7) does, indeed, belong to 
Ole H!. In order to see this it suffices to consider an atom a(9) and observe that 
the associated analytic function A(z) satisfies \\A\\H\ < \/2(l + n). But this is 
an immediate consequence of (1.13), (1.14), (1.16) and the well-known fact 
that jiij (F; r) = f \ | F(relB)\ d9 is a nondecreasing function of r. Thus, one half 
of Theorem I is established in case/? = 1. 

Similar considerations apply when p < 1. Note that a /?-atom is obtained 
from a 1-atom a{9\ when 1/2 < p < 1, by multiplying the latter by |I\l~Wp) 

< Iklk '• Consequently, we define a ̂ -molecule (centered at 0), to be a 1-
molecule multiplied by its L2-norm to the power 2(1 -/?)/ƒ>• The reader can 
then check that if (1.15) is replaced by 

(1-17) | |M | | ^ - 2 | |A / (1 -^ ) | | 2
2 - "<1 

< 

< A/M + 

12 More precisely» M is a l-molecule centered at the origin; for a molecule centered at 
9Q e (-ir,ir] the defining condition is obtained by replacing \eif - 1|2 in (1.15) by |e" - eig°\2. 
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the above arguments can be easily modified to provide a proof of one of the 
implications in Theorem I when 2/3 < p < 1. 

Let us now return to the study of multiplier operators and the Fourier 
coefficients of H1 functions. We first make the general observation that if B is 
a linear operator mapping 1-atoms into molecules satisfying (1.15) then, by 
(1.16), B clearly has a bounded extension as an operator from Sleifl to L1 (T). 
We can say more, however, by observing that the argument involving the 
identity (1.14) can be applied to M — Ba (a(0) being a 1-atom) to show that 
M E 9ddHx and its associated analytic function belongs to Hx with Hx norm 
not exceeding 2TT (because of (1.16)). Hence, B maps 6MHX boundedly into 
itself. Thus, we see that any linear operator mapping atoms into molecules has 
an extension that is a bounded operator on <3le//*. In §3 we shall show that a 
molecule belongs to Hl in a general setting in which the notion of "analytic 
T/1" is completely absent. 

We are thus led to examine the question: Which operators map atoms into 
molecules? If the operator is a multiplier two basic properties of the Fourier 
coefficients {ak} of atoms centered at 0 are particularly useful in trying to 
resolve this question. The first of these comes from (1.13) and Plancherel's 
theorem: 

0-18) ( i ki2V/2( s h+i-«*i2)<£-

The second one was established in the proof of Hardy's inequality (see the 
argument following (1.9)) and can be restated as follows: 

(1.19) \ak\ < m i n [ l , M ^ £ ! | ; * = 0, ±1, ±2, . . . . 

We shall illustrate the usefulness of these two properties of Fourier coefficients 
of atoms by establishing the following result: 

THEROEM (1.20). Suppose {\ik} is a bounded sequence satisfying \iik+\ — nk\ 
< cjk, k = 0, ±1, ±2, . . . , then the multiplier operator associated with this 
sequence maps <3le//* boundedly into itselfP 

All we have to show is that if a(9) = 2?oo ake'kB ls a n atom then 
M{0) = 2-oo Hakeik° satisfies (1.15) independently of a. We have: 

1Mb II W - l)|b = 2 ^ _ S \likak\
2) ^ 2 lftk+i**+i - M*a*|2) • 

Let 11AX-|loo be the sup^{|/x |̂} and observe that 

/** + !** + ! ~" Hak = (/** + ! ~ /**)** + ! + ftfc(** + l ~ ak)-

13 The condition |/^+1 - fik\ < c0/k implies 2N 2|AM iW+\ - H? + l/*-*+i - M-J2) < c'o 
for all Af > 0. Such a condition is often called a Hörmander condition (see [36]). The proof we give 
can easily be changed to show that the Hörmander condition yields the conclusion of (1.20). 
Similar theorems are also announced in [29, p. 150]. 
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Thus the product involving the two series above is dominated by 

/ oo 2 \ ^ V °° 2 2\1//2 

( ^ \nak\ j y]^ k l k+i - ak\ ) 

( oo 2 \ 1 / / 2 / °° 2 2 \ 1 / / 2 

_2 k**l j ^ k+i -/**| k-fil j . 
By (1.18) we see that the first summand does not exceed -\/2\\IL\\OQ/2IT. Using 
(1.19), on the other hand, we have 

<ll^(ikl2)(4 2 A*2Nf4+ 2 4} 
\-oo / \ i r |/C|<W|2

2/CZ l*|>IWI2
2* / 

But this last expression is clearly less than a constant depending only on H/AIÎ  
and c0 and Theorem (1.20) is proved. 

When p < 1, <${£HP is not naturally converted into a Banach space. 
Nevertheless, we can introduce a "norm" by letting \\f\\HP ss HFH^,, where F 
is the analytic function associated with the distribution ƒ and Im F(0) = 0 
(see (1.13)). This is not a norm; however, dp(f,g) = ||/ - g\\p defines a metric. 
Thus, we can discuss continuity questions concerning operators on <3leHp. In 
particular, a linear operator mapping /7-atoms into ^-molecules is continuous 
on <3\£HP, 1/2 </? < 1. We can translate (1.17) into a condition on the 
Fourier coefficients of a /?-atom that is analogous to (1.18). Condition (1.19) 
also has a simple analog. All this can be stated by saying that the Fourier 
coefficients {ak} of a/?-atom a(0), 1/2 < p < 1, are such that {M£ / ( 2~'Ha*} 
are the Fourier coefficients of a 1-atom. Using these facts one can show that 
the assumptions in Theorem (1.20) imply that the multiplier operator is 
bounded on <3{JQHP as long as 2/3 < p < 1. 

Several examples of multipliers satisfying the hypotheses of Theorem (1.20) 
can be given. The case where \ik = \k\n', y real, has been studied by several 
people. The operator associating to ƒ E 91e//1 the boundary value F of the 
analytic function in Hx such that Sle/7 = ƒ is a multiplier operator given by 
\xk = 0 if k < 0, juo = 1 and ^ = 2 if A: > 0. The fact that Hx is stable 
under the action of certain convolution operators was first pointed out by E. 
M. Stein. (See [54] and [55]; there this situation is discussed in higher 
dimensional settings. We shall do the same later on.) 

Several considerations are in order once the continuity of such operators on 
the spaces %zHp,p < 1, is established. First, we remark that a duality 
argument shows that the corresponding Lipschitz spaces (see (1.12)) are 
preserved. 

Secondly, the question of interpolating the boundedness of these operators 
becomes a natural one. We have already remarked that any such multiplier 
operator is bounded on L?(T). At this point we would like to point out that 
here, again, the atomic characterization of 6MHP is particularly well suited for 
obtaining a variety of results on interpolation of operators. We shall develop 
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this topic later in a more general setting. For the moment, however, we shall 
illustrate the simplicity of some of the methods involved by examining some 
aspects of the following theorem: 

THEOREM (1.21). Fix /?0 < 1. Let B be a bounded linear operator on Û(T) 
satisfying the condition 

(1.22) \\Ba\\po < c 

for all p0-atoms. Then, \\Bf\\p < cp\\f\\HPforpQ < p < 1, and \\Bf\\p < ap\\f\L 
for 1 < p < 2, where cp and ap are independent of f G Hp or f G LP(T) 
(though they do depend on c in (1.22) and /?0). 

To illustrate our point we shall only consider the case 1/2 < p0 < 1 and we 
shall deduce the conclusion f or p = 1. As we have already seen on several 
occasions it suffices to obtain the result for f (9) = a{9) a. 1-atom. Then 
| j\i-{ /Po)a j s a/?0-atom (/ being the supporting interval of a). Thus, by (1.22) 
and the L2-boundedness of B we obtain 

(1.23) \\Ba]\po<c\I\W^-1 and ||BÖ||2 < c ' | / | - , / 2 . 

Using Holder's inequality and (1.23) we obtain the desired conclusion: 

ƒ \Ba\ = ƒ | 5 f l | V(2-ft)|Bfl|(2-2A,)/(2-A,) 

a \V(2-Po)/ , ,,\(l-/>o)/(2-/>o) 
1A,|*) (Jl^l2) 

< cc1/j(1~^o)/(2-/?o)j/|(^o-0/(2-Po) = cc> 

We thus see that the boundedness of many operators on Hp, or merely on 
atoms, for some/? < 1, implies its continuity as an operator on Lq for certain 
q > 1. In particular, the familiar results of Calderón-Zygmund (see [5]) have 
a natural setting in this atomic approach to Hp spaces. In fact, let k(9) be 
integrable for 0 < e < |0| < m for all e > 0 and satisfy the two conditions 

(a) the sequence k(j) = lim^oSz<c\9\^v e~~ijB
%k(9)d9 exists and is bounded 

b y q ; 
(b)/2M<1*|<, !*(+ - *) - W)\<1* < c2-
Let us also assume that the convolution fl^k(9 - (p)f(<p)d(p is suitably 

defined for ƒ E L2(T). We shall show that 

(1.24) ||* * a\[ = r \ r W ~ vWv)*p d9 < q + c2 

for all 1-atoms a. From this it will follow that there exists a constant cp such 
that 

(1.25) | | * * 4 < c,||/l!p 

whenever 1 < p < oo. 
Before doing this we would like to point out that these considerations 
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provide us yet another method for showing that the atomic Ole//1 space is, 
indeed, included in the real part of the classical Hx space. This follows from 
the fact that the kernel k(0) = (1 + eie)/(l - ew) ~ 1 + 2 2 £ i eiJB ob-
viously maps (as a convolution operator) ƒ into the boundary value of the 
analytic function having real part ƒ (for any reasonably "nice" ƒ ) and, 
moreover, the mean value theorem yields the inequality 

\k& - 0) - kW\ < c\6\M\ if |*| > 2\8\, 

which certainly implies (b). 
To establish (1.24) we argue as follows: First observe that condition (a) tells 

us that / -» k * ƒ is a bounded operator on L2(7). Now let a{9) be a 1-atom 
supported in an interval / centered at 0. Since the result is trivial for the 
constant atom, we can assume f \ a ~ 0. Then, 

| | * * 4 - ƒ * ! ( * * û ) ( * ) | r f * 
j-~tt 

-Ji/i<w<J(**^lrf*+£i/i>i*,l<**^l^ 
To estimate the first of these integrals we make use of the fact that a has mean 
0 and, thus, the integral equals 

f2UKwJf->tt ' V ' k^WW </<// 

< / / I^UuKI^J^- 0 ) -^^)^ 
But, by condition (b), J2|/|<|^|<w \k(\p - 9) - k(\p)\d\p < c2 and we obtain the 
inequality 

To estimate the second integral we use Schwarz's inequality and the L2-
boundedness of the convolution operator 

J|*l<2|/|'* * al < llk * " l ^ 7 ! 1 7 2 < c iNbl / | V 2 < ci 

and (1.24) is established. Inequality (1.25) then follows by interpolation and 
duality (since convolution operators are the negative of their adjoints). 

Let us summarize very briefly some of the points we have made favoring the 
study of Hp spaces, p < 1, and, in particular, the atomic approach to this 
study: 

(1) Many results that are valid for Lq{T), 1 < q < oo, fail for Ll(T) but 
remain valid for <3{£H{ (or ®&HP). 

(2) Several estimates on operators (in particular, convolution operators) are 
easily made on atoms and imply corresponding estimates for these operators 
applied to general functions. 
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(3) We can characterize the Fourier coefficients of the distributions ƒ 
E <3{&HP and from this obtain results on multiplier operators.14 

(4) The boundedness of some operator on 6MHp,p < 1, implies (via 
interpolation theorems) the boundedness of this operator on certain Lq(T) 
spaces, 1 < q. Moreover, by duality we see that such an operator must 
preserve certain smoothness properties. Atoms are very useful for obtaining 
such results easily. 

Let us now describe briefly the Hardy spaces associated with the real line R 
and their atomic characterization. The classical definition of these spaces is the 
following one: F G HP(R), 0 < p, if and only if F is an analytic function 
defined on the upper half-plane R+ = (z = x + iy G R2;x E R,y > 0} 
satisfying 

(1.26) sup( [" \F(x + iy)\pdx\ ? m \\F\\HP < oo. 

Their theory was developed by Krylov [44]. In particular, it is known that the 
boundary values 

(1.27) Jhfc F(x + iy) = F(x) 

exist almost everywhere and in the IP norm (p > 0). As was the case in the 
circle, these boundary values should be considered as distributions when 
p < 1 and, in this case, their real parts can be characterized in terms of atoms 
that can be defined in a manner that is completely analogous to the one we 
gave above. This characterization applies to the case p = 1 as well. We shall 
now, however, introduce a variant of the notion of an atom that has the 
advantage of having a completely characterizable Fourier transform: 

DEFINITION. A function a EL2(R) is a (p, 2)-atom, p < 1, if 
(i) it is supported in a finite interval ƒ; 
(ii)(Sj\a(x)\2dx/\I\f2<\I\-^; 
(iii) J^o xka(x)dx = 0 for k = 0, 1, . . . , [\/p] - 1, where [a] denotes the 

largest integer less than or equal to a.15 

With this definition the statement of Theorem I on R remains unchanged 
and the HP(R) analog of (1.8) holds. 

Recall that we had made the assumption that LP(T) consisted of real-valued 
functions and 9o^Hp consisted of the boundary values of the real parts of Hp 

functions on the unit disc. We shall abandon this convention and we allow our 
atoms to be complex-valued. HP(R) will denote the complexification of the 

14 We are aware of the fact that despite announcing a characterization of the Fourier 
coefficients of functions ƒ € ${&Hl we have not yet given a characterization. Actually, for our 
purposes, we needed only to know properties (1.18) and (1.19) for Fourier coefficients of atoms. 
The reader can easily verify that 2 cke'k9 *s a Fourter series of ƒ e ^Rei/1 if and only if 
ck = 2 V a "*4 ' , ) w h e r e 2 \K\ < °°; e a c h sequence a(n) - {... ta%a^\,alÇ\a[n\4n\...} 
satisfies (1.18) and (1.19); the numbers an reflect the fact that we translated the atoms in the 
decomposition (1.7) so that their supporting interval is centered at 0. 

15 That is, as p tends to zero we impose the condition that more moments of a are 0. Similar 
conditions on the p-atoms on T are the ones that are needed for Theorem I when p < 1/2 (see 
[10]). 
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space <3\&HP(R). This space (of distributions) should not be confused with the 
space of boundary values of analytic functions satisfying (1.26). 

Let us now suppose a(t) is a (p, 2)-atom supported on an interval / which is 
centered about the origin. There is no loss in generality if we assume 
\\a\\l = \lfP-2^P. Then the function A(z) - (1/2TT) J ^ e~izta{t)dt is an en-
tire function in the complex plane C. Moreover, \A(z)\ < e'z' '7' \\a\\i ; that is, A 
is of exponential type. The Plancherel theorem and (ii) yield / ! ^ \A(x)\2dx 
< | / | ~^'p , from (iii) we also have the fact that the derivatives A^k\0) 
= 0 for k = 0, 1, . . . , [l/p] — 1. It follows from the Paley-Wiener theorem 
(see (7.2) in Vol. II of [64]) that the converse of all this is also true: If 
A E L2(R) is the restriction of an entire function of exponential type a, is 
normalized by \\A\$ = ol~{2/p) and satisfies A{k)(0) = 0 for k = 0, 1, . . . , 
[l/p] - 1, then A is the Fourier transform of a (/?, 2)-atom. This gives us the 
following characterization of the Fourier transforms of the elements of HP(R): 

THEOREM II. f is the Fourier transform of a member of HP(R), p < 1, if and 
only if 

/ = i v,ayH'W' 
y-o J J 

where 2 \\\P < oo, aj are real numbers and A Ax) are the restrictions of entire 
functions of exponential type Oj such that \\Aj\^ = aj''Wd; moreover, 
- OforO < k < [l/p]- 1. 

In complete analogy with (1.13) any (1, 2)-atom a(t) satisfies Iklbll^Wlb 
< 1. Since the Fourier transform of ta{t) is —iA'{x) it follows from Plancher-
el's theorem that MH2MII2 < 1- We are led, as before, to introduce the 
notions of a molecule and of a Fourier-molecule centered at 0. We define the 
latter to be a function Wl on R satisfying 

(i-28) (i) ||a»yaR'lb < i, 00 W*)\ < M/IWb2-

We leave it to the reader to verify that A = â satisfies (ii) when a is a (2, 1)-
atom centered at 0, that $? + /(sgn Tï) E Ü with uniformly bounded i) 
norm (thus, Wl is in H{(R)) and, finally, that Theorem II holds if we replace 
the functions Aj by Fourier-molecules. 

For 2/3 < p < 1 we say that 3D? is a Fourier-molecule for HP(R) (centered 
at 0) if al'Wp)m is a Fourier-molecule for H{(R), where ||a»|g = oWp)~l. 
Again, it can be easily verified that Theorem II can be restated in terms of 
Fourier-molecules (similar definitions can be given for/? < 2/3). 

Theorem (1.20) has the following analog: 

THEOREM (1.29). The multiplier operator mapping ƒ E HP(R) into (ixf )" is 
bounded on HP(R) when 2/3</>, provided \i E L°°(R) satisfies 
sup/?>0^/*<M<2/? I ^ W I 2 ^ < oo. 

This result follows immediately from the observation that the conditions we 
just imposed on /x are necessary and sufficient for the multiplier to preserve the 
defining properties (1.28) of the Fourier-molecules in question (the slight 
alteration of the inequalities (i) and (ii) by fixed constants depending only on 
]Lt are of minor importance). 
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Another application of Theorem II stated in terms of Fourier-molecules 
follows from the simple general inequality | |2tt|'| < |SW'| valid for any 
differentiable function 30?. Since this inequality implies that |90?| is a Fourier-
molecule whenever 90? is one we have 

THEOREM (1.30). Suppose f E Hl(R). Then there exists g E H1 (R) such that 
I ƒ | < g and \\g\\Hi < c|Lf||#i, where c is independent off 

(See p. 287 of Vol. I of [64] for the version of this result on T) We shall 
restrict ourselves to these remarks concerning HP(R). It will become clear in 
the sequel that the atomic approach plays an important role here as well: 
duality, the study of other operators commuting with translations, maximal 
operators and other subjects can be studied from this point of view. 

We shall now extend these notions so that we can see how they apply to the 
study of convolution operators on «-dimensional Euclidean space Rn. Let us 
begin by describing an extension of the theory of Hardy spaces to Rn 

developed in [59]. The first observation that motivated this extension is that 
the Cauchy-Riemann equations admit the following natural generalization to 
higher dimensions: A vector-valued function F(x,y) = (u0(x,y\ux(x,y),..., 
un(x,y)) defined on the upper half-space R++1 = {(x,y) E Rn+l: x E Rn,y 
> 0} is called a generalized analytic function or a Riesz system if and only if 
Uj9j = 0, 1, . . . , n, are harmonic functions satisfying: 

(1.3,) ig-0 and £-£ . 
ƒ=() OXt VXfc OX: 

where d/dx0 is defined to be d/dy. 
Such a generalized analytic function F is said to belong to Hp(Rn), p > 0, 

provided 

\\F\\m = sup(fKjF(x,y)\pdxy 

(1.32) " > 0 

|P/2 \l/p 
_ < 00. 

y>0' 

/ /• r * n~\Pli V' 

It can be shown that if p > (n - l)/n then limy_>0 F(x,y) = (f0(x\ fx(x\ ..., 
fn(x)) = F(x) exists a.e. and in the //-norm. As is the case in one dimen-
sion,when p < 1 one should consider these boundary values in the sense of 
distributions. When p = 1, however, F(x) is a bona fide vector-valued 
function in l)(Rn) and its components are related by the Riesz transforms. In 
terms of the Fourier transform these relations can be expressed in the 
following way: 

Ato = €n(xj/\x\)}0(xl / = l , 2 , . . . , n . 

Moreover, 

(P*F)(x)~ sup \F(i9y)\ 
\t-x\<y 

belongs to W ) whenever F E /f^(Rw), (n - \)/n<p (see [59] for all 
these results). 
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C Fefferman and E. M. Stein [29] recently proved that this property 
actually characterizes the distributions that are boundary values of functions 
in Hp(Rn). More precisely, a distribution ƒ is the boundary value of the first 
component of a Riesz system F G Hp if and only if 

(133) ( / " " ƒ ) « = sup \{P;f)(t)\ 

belongs to LP(Rn), where Py*f is the Poisson integral of/: 

We shall call such an ƒ a boundary distribution of Hp(Rn). Other maximal 
operators, besides the maximal Poisson integral (1.33) can be used for this 
characterization. For example, if <p > 0 is a C00 function with compact 
support and <p£(x) = e~ncp(e~lx) then supe>0 |(/ * %)(x)\ belongs to IP if and 
only if ƒ is a boundary distribution of Hp(Rn). The discovery of this "maximal 
function" characterization of Hp(Rn) was an important breakthrough in the 
real-variable understanding of these spaces as well as in the study of operators 
on them. 

An interesting application of the Fefferman-Stein results is the observation 
made by L. Carleson [8] that Hp(Rn) can also be defined in terms of 
holomorphic functions of several complex variables. In fact, let Ç,y = 1, 2, 
. . . , « + 1, be open convex cones with vertex at the origin such that their 
union covers R", except for the origin. Assume that none of the Ç contains an 
entire straight line. Then ƒ is a boundary distribution for Hp(Rn) if and only if 

(1.34) / = / i + / 2 + "•+ƒ*+! 

where each fj is a boundary distribution of a holomorphic function Fj in the 
Hp space associated with the tube domain 7J* .16 

Briefly, we obtain this representation in the following way: Suppose ƒ is a 
boundary distribution of Hp(Rn). We can construct n + 1 functions <fy that 
are homogeneous of degree 0 such that 2/Li <Pj(x) ss 1 (x # 0), the support 
of (pj lies in T* and each <py> belongs to the class C°°(RW - {0}). It follows from 
the Fefferman-Stein theory that fj = (cpjf )v is also a boundary distribution of 
Hp(Rn). The integral representation of Fj in terms of fj (see footnote 16) is then 
in Hp(T^*). Conversely, if fj is the boundary value of a function in HP(TT*) it 
follows from the theory of Hardy spaces on tubes that a Poisson-type maximal 
function of fj belongs to LP(Rn). This, in turn, forces fj to be a boundary 
distribution of Hp(Rn) because of the Fefferman-Stein theory. 

There are several other extensions of Hardy spaces in terms of generalized 
Cauchy-Riemann equations (see [6] and [60]).17 Fefferman and Stein have 

16 These are yet another extension of Hardy spaces to the «-dimensional case. We shall not 
consider them further in this paper. For their définition and properties see Chapter III of [57]. In 
this case Ç* is the cone dual to Ç and TT* = {z = x -f iy 6 C : x G R" and y € Ç*}.̂ . and Fj 
are related as follows: the support of ƒ lies in Ç» 

Fj(z) - ƒ eh'%t)dt and sup ƒ \F(x + iy)\pdx < oo. 
J JTJ v e r * * 7 * 
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shown that their maximal function characterization remains valid for these 
extensions. Moreover, they show that the dual of Hl(Rn) is the space 
BMO(Rn) of functions of bounded mean oscillation on Rn (the definition of 
this space is the same as in the one dimensional case except that intervals are 
replaced by solid spheres). Atoms on Rn can also be introduced as before 
(using solid spheres instead of intervals). Thus, the atomic &(Rn) space is well 
defined on R": it consists of all functions ƒ = 2/11 \tfy-, where 2 Ifyl < <*> 
and each aj is an atom (either a 1-atom, defined similarly to those introduced 
when discussing T, or a (1, 2)-atom. We shall show later that this makes no 
difference). If we define the norm of/, ll/||$i(Rn) = ll/ll$i> to be the infimum 
of all the sums 2 l \ l for which ƒ = 2 fy#/ w e obtain a Banach space. 
Similarly the atomic §p(Rn) space can be introduced by making use of /?-
atoms. We shall do all this carefully in a much more general setting. We end 
this section by making some observations concerning these spaces. The first 
one is that the elements of $p(Rn) are always boundary distributions of Hp(Rn) 
when n/(n + 1) </? < 1. This follows easily from the general theory of 
Hp(Rn) spaces developed in [59] once the following inequality is established: 

(1.35) If a is ap-atom, n/(n + 1) < p < 1, then \\Rja\\p < cPtn, 

where Rj is theyth Riesz transform of a and cpn is a constant independent of 
the atom a. This is as easy to show as was (1.24): Rj is the integral operator 
with kernel kj(x) = Xj/\x\n+ ,j = 1, 2, . . . , n (up to a multiplicative con-
stant). (Rjà)(x) is, then, the principal value integral 

lim I, . k;(x — y)a(y)dy = P.V. \ kXx — y)a(y)dy. 

An immediate calculation using the mean value theorem yields 

(1.36) \kj(x - ƒ) - kj(x)\ < (n + 2 ) 2 " - ^ if 2\y\ < \x\. 

Because of the translation invariance of the convolution operator Rj there is 
no loss in generality if we assume a is supported in the sphere Sr about the 
origin of radius r > 0 and \a(x)\ < \Sr\~ 'p = cr"n^p (from here on let us 
agree that c denotes a constant, not always the same one, that is independent 
of the atom a). We have 

\\RJ<=L\VN-L<rkJ{X-y)a{y)dy\P dx 

p 

= Ui<2,+i,>2,)lp-v-ii<,^^->')ö(>')^ dx = I + I I . 

We estimate I by using Holder's inequality and the L2-boundedness of /?•: 

< crn(2-p)/2uaup < crn(2-p)/2rn(p-2)/2 = c 

I 

17 In fact, this approach can be carried out even in the setting of compact Lie groups [16]. 
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We estimate II by making use of the fact that a has mean 0 and property 
(1.36): 

1 1 " Xc|>2r \f\y\<r [k{x ~ ^ " * t o W ^ | dx 

< cf™ sn~x~P(n+xUs(f \y\r~n/pdyY < Crn^n^r"n^n^ « c. 

This establishes (1.35). 
Let us examine some of the consequences of (1.35) when/? = 1. By a simple 

extension of the reasoning used to establish (1.11) it follows that BMO(Rn) 
represents the dual of & (Rn). In particular, ||/||$i(Rn) is equivalent to the norm 
obtained by considering the maximum of all values Lf where L is a bounded 
linear functional on !gl(Rn) represented by a BMO function having BMO 
norm 1. But, as we stated above, Fefferman and Stein showed that this last 
norm is equivalent to that of Hl(Rn). Thus, (1.35) shows that &(Rn) is not 
only contained in Hl(Rn) but the two norms are equivalent. Moreover, it 
follows from the work of Fefferman and Stein that BMO represents (Hl (Rn))* 
in the same manner it represents (^(R*))* (see §3). The Hahn-Banach 
theorem can be invoked to argue that !gl(Rn) = Hl(Rn). 

For p < 1 the identification of $p with Hp cannot be done using duality. 
The decomposition theorem obtained in [10] has recently been extended by 
R. Latter to Rn and provides a direct proof that any ƒ G Hp admits an atomic 
decomposition; that is, $p = Hp}* 

2. Hardy spaces associated with spaces of homogeneous type. In [17] we 
introduced certain topological measure spaces having properties that permit-
ted us to extend the Calderón-Zygmund theory of singular integrals to these 
spaces. It turns out that these properties can also be used to obtain a very 
useful theory if we employ Theorem I in order to define Hardy spaces. As can 
be seen from §1, by doing this we completely avoid the problem of finding an 
appropriate system of partial differential equations generalizing the Cauchy-
Riemann equations. Nevertheless, we shall see that in certain examples, where 
the structure of the space allows us to introduce natural extensions of the 
Cauchy-Riemann equations, the spaces introduced here are closely related to 
Hardy spaces that could be defined in terms of such partial differential 
equations. 

We begin by introducing the notion of a space of homogeneous type: this is 
a topological space X endowed with a Borel measure \i and a quasi-metric {or 
quasi-distance) d. The latter is a mapping d: X X X -» R+ = {/ G R: / > 0} 
satisfying (a) d{x,y) = d{y,x), (b) d{x,y) > 0 if and only if x # y and (c) 
there exists a constant K such that d(x,y) < K[d{x,z) + d{z,y)] for all x, y, z 
in X. We postulate that the spheres Br{x) = {y G X: d{x,y) < r) centered at 

18 Latter's proof was communicated to us by a letter from J. Garnett while this manuscript was 
still being written. 
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x and of radius r > 0 form a basis of open neighborhoods of the point x and, 
also, ti(Br(x)) > 0 whenever r > 0. Our basic assumption relating the meas-
ure and the quasi-distance is the existence of a constant A such that 

(2.1) i*Br(x)) < Aii(Br/2(x)). 

Before developing the theory of Hardy spaces in this setting we shall give 
several examples of spaces of homogeneous type. 

(1) X = R", d(x,y) = \x -y\ = (2jLi (*, -yj)2)X/1 and /x equals Le-
besgue measure; 

(2) X = R", d(x,y) = 2jl=i \xj - ^|tty, where <xl9 <X2, •. •, a„ are positive 
numbers, not all equal, and /x is Lebesgue measure (we shall refer to such 
distances as nonisotropic); 

(3) Example (1) can be further generalized by letting X and d be as in (2) 
and JU a measure for which (2.1) holds. An important class of such measures is 
obtained by letting dii(x) = [d(x,0)]^dx9 (5 > 0, where dx is the element of 
Lebesgue measure; 

(4) X = [0,1), /x is Lebesgue measure and d(x,y) is the length of the smallest 
dyadic interval containing x and y (we consider the intervals to be closed on 
the left and open on the right); 

(5) X = [-1,1], /x is Lebesgue measure and d\i{x) = (1 - x)a{\ + x)° dx, 
where a, /? > — 1 (this space is associated with the study of Jacobi polynomi-
als); 

(6)Z = R+ = { r E R ; r ) 0}, dfi(r) = rn~xdr, dis the usual distance (this 
space is important for the study of radial functions in Rn); 

(7) Compact Riemannian manifolds with natural distances and measures 
furnish us with a wide variety of these spaces. Particular examples are compact 
Lie groups G and the homogeneous spaces G/K obtained from the closed 
subgroups of G. We shall study in detail the case of the surface 2„_] of the 
unit sphere in R" (which can be identified with SO(n)/SO(n - 1)). The special 
case when n = 4 is especially interesting since 2 3 can be identified with SU(2) 
(see [17]). For 2^-1, d(x,y) = \x - y\ and JU, is the Lebesgue measure; 

(8) X is the boundary of a Lipschitz domain in Rw, JU, is harmonic measure 
and d is Euclidean distance; 

(9) When X is the boundary of a smooth and bounded pseudo-convex 
domain in Cn one can introduce a nonisotropic quasi-distance that is related 
to the complex structure (see [42], [56] and example (13)) in such a way that 
we obtain a space of homogeneous type by using the Lebesgue surface 
measure. A concrete example that will be studied here is the surface of the unit 
sphere 22„_i == {z E Cn: z • z = 2j*=i zjJs = 1). The nonisotropic distance 
is given by d(z,w) = |1 - z • wy1 — |1 - JE/Li ZjWjy (this is not equivalent 
to the distance given in the seventh example); 

(10) Similarly, a quasi-distance can be introduced on the closure of a 
bounded, smooth pseudo-convex domain in order to obtain an example of one 
of our spaces (again, see [56] and example (13)). In the solid unit ball 
B2n = {z E C": \z\2 = z • z < 1} the quasi-distance can be expressed in the 
form 
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when z and w are close (in the Euclidean sense) to the boundary. We shall 
consider this situation in greater detail later when we discuss the Bergman 
kernel associated with B2n ; 

(11) Other nonisotropic distances, besides those given in the second 
example, arise naturally on Euclidean spaces. For each x = (xx,x2,x3) E R3 

consider the matrix 

/ l xx x3 + (x{x2/2)\ 
0 1 x2 

\ 0 0 I / 

which we shall also denote by x. Matrix multiplication gives us a group 
structure on R3 and Haar measure coincides with Lebesgue measure. The 
reader can verify that the product of x = (xi,x2,x3) and j> = (y\,y2^y^) *s 

the point (xj + y\,x2 + y2,x$ + j>3 4- (xxy2 — x2yx)/2). The dilations Txx 
= (\xx,\x2,)?x3\ À G R + , obviously preserve this operation; in fact they 
are automorphisms of this group of 3 X 3 matrices. In studying operators that 
commute with these automorphisms it is useful to employ the quasi-distance 
induced by the "norm" ||JC|| = \x\\ + |JC2| + 1*31 • That is, 

d(x,y) = \\xy~l\\ = l*i - yx\ + \x2-y2\ + 1*3 - J ^ + (^1*2 - xxy2)/2\x/2. 

This usefulness stems from the fact that d is homogeneous with respect to Tx; 
that is, d(Txx, Txy) = Xd(x,y) for all R+. This is just a special case of a class 
of groups having such dilations (see [40]). This group is an example of a 
Heisenberg group. It can also be identified with the boundary of a "general-
ized half-space" that is the image of the ball B4 C C2 under an appropriate 
Cayley transform (see [42]). 

(12) Another class of examples is obtained if A" is a locally compact group 
for which there exists a countable base {Uj) of open neighborhoods of the 
identity \J = 0, ±1, ±2, . . . (if G is compact we consider only the indices 
j < 0) satisfying (a) Uj = Uf\ (b) UJUJ C UJ+U (c) 0 < ix(UJ+l) < c^Uj)9 

where \i is Haar measure and c is a constant independent of7, (d) UJUJ = X. 
We can then introduce a quasi-distance having the property that the solid 
spheres of radius r > 0 have a measure that is essentially r. This is done in the 
following way: We first define a distance m from 1 by letting m(x) 
= mf{fi(Uj): x G Uj); the desired quasi-distance is then dm(x,y) = m(xy~l) 
(see [17, p. 78], for a proof of this fact). If X is the group of 3 X 3 matrices we 
considered in example (11) we obtain a countable base of open neighborhoods 
of the identity by letting Uj = T2JB°J = 0, ±1, ±2, . . . , where B° is the 
interior of the ordinary solid sphere of radius 1 in R3. The distance dm is then 
equivalent to the distance d introduced in the previous example. Another 
interesting special case is furnished by the integers (or, more generally, by the 
group Zn of lattice points in Rn). Observe that in this case we have no 
differentiable structure. A similar situation arises when X is the field of /?-adic 
numbers. For example, we discuss briefly the 3-adic field g3. Formally the 
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nonzero elements of Q3 are represented by the sums x = 2 / 1 * tf/3', where 
ai = 0, 1 or 2, with a* # 0. In this case the norm of x is denoted by ||x|| and 
is equal to 3~k. A neighborhood system for the origin is given by the 
"fractional ideals" Pk = {x E Q3: \\x\\ < 3"*}. P° = R is the ring of inte-
gers in Qy If Haar measure (with respect to addition) JU, is normalized so that 
lx(R) = 1 then it can be shown that \i{Pk) = 3~k. It follows that Uj = P~~j 

satisfy properties (a), (b), (c) and (d). 
(13) In most of the examples we have given X was either a group or had 

associated with it a natural group acting on it. A general method for obtaining 
spaces of homogeneous type that does not involve a group structure is the 
following. (Actually we can define the concept of a space of homogeneous 
type by this method.) Let X be a topological space on which there is defined 
a Borel measure p. Suppose that at each point x E X there exists a basis of 
open neighborhoods {!#}, a E 91, such that (a) [J Uf = X> fl>) ^a

Ux 
= {*}, (c) either: U" C £/ƒ or t// C t/x

a, (d) there exists a constant c such 
that if y E t// then there exists p E 31 such that U? C C// and ]bt((//) 
< c\x(U£). It is easy to see that the spheres of a space of homogeneous type 
satisfy these properties. An appropriate quasi-distance d is obtained by letting 

d(x9y) = mî{ix(U?): y E Uf) + inf{/x(t//): * E f//} 

for all x,y EX. If, for r > 0, there exist neighborhoods [/ƒ C £/ƒ such that 
cxr < /x((/x

a) < //,([/ƒ) < C2A", where q, c2 are independent of x and r, then 
the spheres Br(x) defined by the quasi-distance d have measure comparable to 
r. This situation occurs often and provides a technically convenient fact 
enabling one to obtain certain normalizations independent of the dimension. 

When X is the boundary of a smooth and bounded strongly pseudo-convex 
domain in Cn one can construct a quasi-distance by this method. A system of 
open neighborhoods at a point x can be obtained by considering the surface 
of the osculating sphere 2 at x: The distance introduced in example (9) gives 
us a natural basis of open neighborhoods of x as a point of 2. These 
neighborhoods can then be projected onto X and they, in turn, can be used to 
define a quasi-distance by the method we have just described. 

If ^ is a bounded_domain in Cn with smooth boundary 3^ define a smooth 
mapping x -» x of <$ to 3^ with the property that whenever x is close to 3°D 
then x is the normal projection of x to 9<>D. Let v^ be the unit vector in the 
direction of the outward normal to 3^ at x. Denote by T^ the 1-dimensional 
complex vector space generated by v^. Let Tj be the orthogonal complement 
of T*. The sets 

(/; = {z E <%:z = x + z{ +z2,zx E Tx\z2 E T ; 2 , ! ^ ! 2 * \Z2\ < r), 

r > 0, form a system of neighborhoods at x satisfying (a), (b), (c) and (d).19 

19 The pseudo-convexity assumption is not necessary when we consider boundaries of smooth 
domains in Cn. In fact, if we restrict the quasi-metric just defined on 3) to 9^ we obtain a distance 
that is equivalent to the one defined in the previous paragraph. We can make use of pseudo-
convexity if we wish to avail ourselves of certain estimates for Szegö and Bergman kernels in order 
to study the operators they define on Hp spaces and LP spaces associated with these domains (see 
[31],[56]). 
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Before discussing the Z/^-space theory associated with a space of homoge-
neous type we make some additional bibliographical comments. As we 
mentioned at the beginning of this section, spaces of homogeneous type were 
introduced in [12], [17] as a geometric setting for the basic real variable theory 
of singular integrals; at the same time Korânyi and Vagi [42] and N. Rivière 
[49] independently introduced this theory in the setting of example (12). The 
basic motivating examples were (9) and (11). The quasi-distances for pseudo-
convex domains in Cn were given by Stein [56] who also proved that they give 
a space of homogeneous type. Various generalizations of these distances are 
in Rothschild and Stein [50]. 

The example discussed in the last part of (12) is a particular case of the 
martingale setup for Hp. It is in this setting that the atomic characterization 
of the Hp space was obtained first by C. Herz [34]. For a discussion of BMO 
and H] for martingales see Garsia's book Martingale inequalities, Benjamin, 
1973. 

We are now ready to introduce the Hardy spaces associated with a space of 
homogeneous type X. If 0 < p < q, p < 1 < q < oo, we say that a function 
a(x) is a (p, q)-atom if 

(i) the support of a is contained in a sphere Br(x0); 
(ii){[lM*r(*<>))] ƒ labWdtix)?* < {itBr(x0))r

Vp; 
(in) f a(x)dix(x) = 0. 

In case ji(X) < oo the constant function having value \p(X)] ,p is also 
considered to be an atom. (In order to simplify certain calculations we shall 
henceforth assume ii(X) = 1 whenever X has finite measure.) Observe that a 
(p, #)-atom is in I}{X,\L) and is normalized in such a way that its LP(X,ii) 
norm does not exceed 1. 

Recall that when we discussed Hp spaces associated with T or R, when 
p < 1, we pointed out that these were not spaces of functions defined on T or 
R. In fact we considered the elements of Hp to be distributions. In the present 
setting we are, again, forced to introduce an appropriate space of linear 
functionals in order to define the Hardy spaces. In order to do this we 
introduce the Lipschitz (or Holder) spaces £a, a > 0, consisting of those 
functions I on X for which 

(2.2) | / W - / ( ƒ ) ! < CWS)]tt, 

where S is any sphere containing both x and y and C depends only on /.20 Let 
9i(a)(0 be the infimum of all C for which (2.2) holds. If we define 

20 Unless a is sufficiently small it can happen that the only functions satisfying (2.2) are the 
constants. This is true for T and R if a > 1. On the other hand if X is the space described in 
example (4) (or is a/?-adic field) any finite sum 2 aiXs^ where the xs's are characteristic functions 
of disjoint spheres, belongs to ta for all a > 0. In any case, for each of our examples, there is an 
interval of positive a's where ta is nontrivial. Condition (2.2) can also be written in the more 
familiar form \l(x) - /(>>)| < Cm(x,y)a if m is a quasi-distance such that the spheres of radius r 
have measure comparable to r (this can be done quite generally; see p. 78 of [17]). When 
n(X) = oo, ta really consists of equivalence classes of such functions: lx and l2 are equivalent if 
lx - l2 is constant. We will consider this point in greater detail in §3. 
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|(«) 
(9ï(a)(/X if ii(X) = oo, 

if/*(*) = 1, 

then If-II is a norm. A straightforward argument shows that £a, so normed, is 
a Banach space. 

If a is a (/?, #)-atom, 0 < p < 1 and a = 1//? - 1, then using (i), (iii), (2.2) 
and (ii), in this order, we have 

jxald[i\ = ƒ a/rfj = \fB{xQ)a(x)[l(x) - l(x0)]d(i(x) 

< \{%(Br(x0))f?-1 fBM \a(x)\ditx) < ||/||W. 

That is, the mapping / -» fx aldfx is a bounded linear functional on £a with 
norm not exceeding 1. 

We now define the space HM, for 0 < p < 1 < q, to be the subspace of 
the dual £* of £a, where a = \/p - 1, consisting of those linear functional 
admitting an atomic decomposition 

(2.3) 
00 

7=0 J J 

where the o/s are (p, #)-atoms, 2(f |Ay|p < oo. (This last inequality implies 
that the series in (2.3) converges in the norms of £* and we consider h to be 
the limit, in this norm, of the partial sums of this series.) The infimum of the 
numbers 2o° \h\P taken over all such representations of h will be denoted by 
the symbol \\h\\p^. The mapping h -» ||A|L^ is clearly not a norm (it is 
homogeneous of order p < 1); But dpq(h,g) = \\h — g\\pq is a metric. When 
p = 1 < q < oo the sums (2.3) are convergent in the i) norm whenever 

< oo and the ^'s are (1, #)-atoms; hence, they define a subspace 2? I\l < 
H^ of Ù (A"). In this case the mapping h -» \h\q is a norm. 

A straightforward argument shows that HM is complete. In particular Hl>q 

is a Banach space. It also follows easily from the above definitions that 

(2.4) Hpc0 C H™> C Hp«* 

whenever 1 < qx < q2 < oo and 0 < p < 1 (^ may equal 1 when/? < 1). A 
basic result concerning these spaces is that the converses of the set-theoretic 
inclusions (2.4) hold: 

THEOREM A. HM = Hpo° whenever p < q < oo. Moreover, the metrics 
dpq and dpoo are equivalent; that is, there exists a constant c (depending on p and 
q) such that 

d
Pyq < dPtQO < cdM. 

The proof of this theorem is rather technical. In order not to disrupt the flow 
of this presentation we shall give it later. 



EXTENSIONS OF HARDY SPACES 593 

Theorem A enables us to define the space Hp = HP(X) for p < 1 to be 
any one of the spaces HM for p < q < oo, 1 < q. Any one of the metrics dpq 

can be used in order to turn Hp into a topological space. It is often useful to 
choose the space Hp'2 and the metric dp2 to work with when the space X has 
a "Fourier transform" associated with it, since the (/?, 2)-atoms are L2* 
functions» 

In order to characterize the dual of H] (X) we introduce the function spaces 
BMOq

l : a function / on X is said to belong to BMOq provided it is locally in 
L*(*)and 

(2.5) \Js)L |/W " msW\'dtfx)j[ " < C 
for all spheres S, where 

1 
msW--rfS)fs'(y)dl*y) 

and C is independent of S. Let 9?^(/) denote the infimum of all constants C 
for which (2.5) holds. We can then introduce a "norm" on BMOq by defining 

||/]|(?) = II/life).- = 
WBMO 

M), i W ) = °o. 

9W + jxl{x)d\i{x) if/xpf) = 1. 

When the measure of X is finite, BMOq9 together with this norm, is a Banach 
space. If yiX) — oo then we consider the set of equivalence classes of 
functions defined by the relation "/j and l2 in BMOq are equivalent if and only 
if /j — l2 is constant". If lx and l2 are equivalent then, clearly, ||/j \yq' = ||/2|| . 
Thus, we can define the norm of each equivalence class to be the norm of any 
of its members and we obtain a Banach space which we also denote by BMOq 

(as is usually done when dealing with Lp-spaces we call the members of BMOq 

"functions" even when we really are talking about equivalence classes). 
We shall show (in §3) 

THEOREM B. Ifp < 1 and a = (l/p) - 1 then ta is the dual of HP{X). That 
is, each continuous linear functional on Hp is a mapping of the form h 
-* 2 \jfajldfr where I Etaandh = 2 V ; <= Hp {see (2.3)). Ifp « 1 then 
BMO is the dual of Hl(X). More precisely, if h — 2 \#y £ Hx then 

(2.6) lim 2 \ f MM 

M a well-defined continuous linear functional h -» {/?, /) , /or eac/i / E BMOf 

whose norm is equivalent to \\1\\BMO> moreover, each continuous linear functional 
on Hx has this form. 

In the proof of Theorem B it will be shown that BMOqxànd BMOq29 

21 "BMO" stands for bounded mean oscillation. These functions were introduced by John and 
Nirenberg [38]. We shall often write BMO instead of BMOl. 

file:///jfajldfr
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1 < Q\> #2 < °°> a r e equal as vector spaces and the norms || ||tei)and|| ||fa2> 
are equivalent.22 This will follow from the fact that BMOq> characterizes 

We introduced the notion of a molecule in the first section and showed how 
molecules can be used in order to obtain multiplier theorems. This notion 
extends to spaces of homogeneous type and, as we shall see, is quite useful for 
studying operators associated with some of the particular spaces we have 
described above. Let e > 0. We say that M is an ^molecule for Hx = Hl(X) 
centered at x0 if and only if 

(2.7) [fx \M(x)\2<Hx)}{fx | M ( * ) | W ^ r ^ w } 1 8 < 1, 

where m{x,x0) is the infimum of the measures of the spheres containing both 
x and x0, and 

(2.7) fxM(x)dix(x) = 0. 

The function m(x,x0), defined on X X X, will be called the measure distance. 
It can be shown quite generally that it is, indeed, a quasi-metric such that, if 
we consider it together with X and /x, we have a space of homogeneous type 
that is "equivalent" to {X,\i,d) in particular, the spaces HP(X) defined in 
terms of d are the same as those defined in terms of m. Assuming this to be 
the case we shall now show 

THEOREM C. If M is a molecule for Hx centered at x0 then M E Hx. 
Moreover, ||Af||^i depends only on the constant e in (2.7). 

The proof of this result illustrates again the importance of Theorem A since 
we shall show that M is decomposable into a sum of (1, 2)- and (1, oo)-atoms. 
To fix our ideas let us assume X has infinite measure and that if Brm(x0) 
« {x: m(x,x0) < r) then ii(Brm(x0)) is between Cxr and C2r, where 0 < C\ 
< Ci are constants independent of x0 and r. We write n(Brm(x0)) ~ r to 
denote this relation between the radius of a sphere and its measure.23 

Set a = ||M|£2, let Xo denote the characteristic function of Bo(x0) 
s Bam(x0) and, for i > 1, let Xi be the characteristic function of {x: oll"x 

< m(x,x0) < a2'}. Define Mt to be the function Mx, - (0/J Xi) S MXidy>) for 
i = 0, 1, 2, We shall show that (up to an unimportant multiplicative 
constant) 2l^1)Mi is a (1, 2)-atom. Clearly, ƒ M{d\y, = 0 for / > 0. Moreover, 

(;Mi'+r < (;/*w 1MUT + 0/*w |A"*) < ï-
22 This last assertion extends only part of a result of John and Nirenberg [38]. They show that 

BMO is equivalent to "exponential BMO" as well. Their proof can be adapted to spaces of 
homogeneous type. 

23 It can be shown that, in general, ix(Brm(x0)) is of the same order of magnitude as r provided 
we take into account certain obvious nonessential difficulties (if it(X) < oo, we cannot allow r to 
be too large; if /A({JC0}) > 0 we cannot allow r to be too small). These are technical points that we 
do not wish to elaborate on at the present time. 
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Thus, (l/2)Af0 is a (1, 2)-atom. If / > 1 we make the following estimate in 
which (2.7) is used: 

a vl/2 / v 1/2 

\M,\*4i) < 2 ( / | A / | 2
X / ) a \ l / 2 

| M (x)\2[m(x, x0)]
l+e[m(x, ^0)]"'"'Xi W *(*) ) 

< (02'-1)~( ,+e)/2Ce/2o£/2 = C'(2'a)-1/2(2'Er , /2. 

It follows that 

( / ' ^ ; r a f <(cons,,r'°r'"/2 

and, thus, 2l^2Mt is a constant multiple of an (1, 2)-atom. We have 
M = 2 £ o Mi + 2 £ o miX/> where mi =/Mx/rf/A and x/ = Xi/fXi- T h e 

argument we just gave shows that 2/*Lo M/ E 7/1 and the Z/1 norm of this 
function is, up to a constant, less than or equal to 2e/2/(28y/2 — 1). Let 
Nj = 2 /^ / w/« Then, summing by parts and using 2o° mi ^ ƒ Md\i = 0 we 
have 

2 «/xî - 2 (ty - NJ+l)xj « 2 ty+iOtf+i - x/)-

Since ƒ xĵ M = 1 f° r all y we have ƒ (xj+i ~ X/)̂ M ~ 0- Moreover, the 
support of xj-fi — Xj lies within i?2./+ia which has measure ~ 2y+1a. From the 
definition of x} we also have |xj+i - Xj\ < VS X/+i + VT X, < 2/f X/- s i n c e 

M^yyfro)) ~°1J it follows that ƒ xj ~ l^B2jo(x0)) - /x(52;-.a(xo)) — Vo 
- 2j la = 2y *a = 27a/2.24 This shows that, up to a multiplicative constant 
XJ+i ~ XJ is a (I» oo)-atom. Furthermore, making use of (2.7) again we have 

\Nj\ < | ƒ |M X / k/x< 2 ( ƒ |M| 2
X /) (a2^*)1/2 

< C 2 (a2/)""1/22-/£/2(a2/)1/2 = Ce(2~£/2)y". 

This shows that 2S=o m/X/ belongs to Hx (= 7/1,00) and, up to a multiplica-
tive constant, its norm does not exceed 2e/'2/(2e/'2 — 1). This establishes 
Theorem C. 

Before developing the general theory further let us make three observations. 
First, recall that immediately following (1.17) we pointed out that any linear 
operator mapping atoms into molecules satisfying (1.15) has a bounded 
extension mapping Hx into itself. The argument we gave, however, used the 
fact that the conjugate function operator maps Hl boundedly into itself. 

24 Recall that the notation n(Br(x0)) ~ r meant that for appropriate constants 0 < C, < C2 

we have Cxr < ii(Br(x0)) < C2r. We are tacitly assuming that 2Cj > C2. If this were not the 
case then qC\ > C2 would hold for a sufficiently large q. The argument we are giving would still 
be valid if qJ is used when 2J occurs. 
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Theorem C shows that this was not necessary and that, in general, a linear 
operator mapping atoms into molecules satisfying (2.7) and (2.7') has a 
bounded extension mapping Hl into itself. 

Secondly, it should be remarked that any (l,oo)- (or (1, 2)-) atom is a 
molecule for 7/1. If we define such an atom in terms of the measure distance 
this follows from a straightforward computation. 

Thirdly, when we introduced inequality (1.17) we did so in order to indicate 
the role played by molecules for Hp for some values of p less than 1. This can 
be done in general. We leave it for the reader to verify that appropriate 
molecules for Hp can be defined and that the values of p for which this can 
be done depend on e. 

We shall now discuss two interpolation theorems for operators acting on 
HP{X) and Lg(X). The first result is a Marcinkiewicz-type interpolation 
theorem (see [64]). In order to state it we need to introduce the notion of weak-
type operators. Suppose B is a map from a vector space into measurable 
functions on a measure space {Y,v)\ we say that B is sublinear provided 
\B(f + g)\ < \Bf\ + \Bg\ and \Baf\ = |<r| \Bf\ a.e. whenever ƒ and g belong 
to the domain of B and a is a scalar. If B is defined on HP(X ), for some p < 1, 
we say that it is of weak-type (Hp,p) provided v({y E Y: \{Bf ){y)\ > À}) 
< {M/X)p\\f\\Hp for all ƒ E Hp, where \\f\\HP denotes any one of the "norms" 
H/lip^.25 If B is defined on LP(X\ 0 < p < oo, we say that it is of weak-type 
(p, p) provided K{ y £ Y: \(Bf)(y)\ > À}) < {M\\f\\p/\)

p for all ƒ E IP; we 
define weak-type (oo, oo) to be the same as boundedness: WBfW^ < Mll/I^ for 
all ƒ E L00 (X). Forp fixed, the infimum of all constants M for which any one 
of these inequalities hold (independently of J) is called the weak-type norm of 
B. 

We can now announce the first interpolation theorem: 

THEOREM D. Suppose 0 < p{ < 1 < p2 < oo, px < Pi, and B is a sublinear 
operator of weak-types {H^ ,p{ ) and {pi.Pi) having weak-type norms Mx and A/2. 
If \ < p < p2 then B is defined on LP(X) and 

w\\p < MUI, 

where M depends on Ml9 M2,P\ andp2 but is independent of ƒ E LP. If 
Pi < P ^ 1 then B is defined on HP{X) and 

where M depends on Mj, M2, p\ and p2 but is independent off E Hp. 

This result is proved in the Ph.D. thesis of one of our students, R. Macias 
{45]. It was obtained in the classical situation by Igari [37] (for Riesz-systems 
when px, p2 > 1) and C. Fefferman, Rivière and Sagher [30]. 

The original theorem of Marcinkiewicz dealt only with //-spaces and was 
proved by truncating the function ƒ at heights À E (0, oo) and making 

25 Of course, when we vary q the constant M changes accordingly. The important fact is that 
|| \\Mx and || \\M2 are equivalent. We could have defined the notion of weak type (HPl,p2) with 
P\ ^ Pi as well. For simplicity we restrict ourselves to the case/?| = /?2. 
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appropriate estimates. In our case a substitute for these truncations is obtained 
by a variant of the Calderón-Zygmund decomposition. We shall give more 
details about this proof in the next section. 

The second interpolation theorem involves an adaptation of what is known 
as the "complex method" and extends a result on interpolation of analytic 
families of operators on classical Hp spaces (see [58]). Before stating this 
theorem we need to make some definitions. Let D=={z : =x + / > G C : 0 
< x < 1}. A complex-valued function F defined on Z) is said to be of 
admissible growth if there exists a constant a < m such that e~a^ log \F(z)\, z 
= x + iy, is uniformly bounded from above in the strip D. Let us first 
consider a space of homogeneous type X such that ti(X) = oo. Suppose that, 
for each z G ZT, Bz is a linear operator defined on L00 (A')-f unctions having 
bounded support and mean 0 (we shall denote this class of functions by 
Lo°(A")); we assume that the range of Bz consists of measurable functions on 
a measure space (Y,v) and that (Bzf)g G Ll(Y) whenever ƒ G Lffty) and g 
is a simple function on Y. The family {7̂ } is called an analytic family of 
operators on D provided F(z) = fY (TJ)gdv is continuous on D, analytic in D 
and of admissible growth whenever ƒ G Lff(X) and g is a simple function on 
Y. If X has finite measure we replace Lg0 (X ) by L00 (A" ) in the definitions 
above. 

THEOREM E. Suppose {Bz} is an analytic family of operators satisfying 

\\Biyf\\Po<A0(y)\\f\\^ and \\Bl+iyf\\P] < A^yW^ 

for all y £ (-00,00) and ƒ G Lfî(X) (ƒ G L°°(X) if n(X) < 00), where 
log Aj{y) < Cj«4M, Cj > 0, m > d} > 0,j = 1, 2, andp0 < \ </», . /ƒ l//> 
- t/p0 + (1 - >)/ƒ>, < 1 (0 < / < 1) /ten 

(2,8) ||*,/l!p < M\\f\\p, 

while, if \/p = t/Po + (1 - f)/Pi > 1 (0 < t < 1), 

(2-9) | |Vl j , < M\\f\\% 

where M depends on C0, Cj, do> dx,p§,P\ but is independent of ƒ 
EL$(X)(L«>(X)ifix(X)<n). 

The proof of this theorem (to be found in the thesis of R. Macias [45]) uses 
techniques developed by Stein and Fefferman (see [29]) in order to obtain 
inequality (2.8), and a modification of an argument found in [58] in order to 
obtain inequality (2.9). We shall give details of this proof in §3. 

We shall now illustrate how these results involving the atomic Hp spaces we 
have introduced can be applied to problems in harmonic analysis associated 
with the spaces of homogeneous type we described above. 

Let us begin with example (1) where X = RM, /x is Lebesgue measure and d 
is Euclidean distance. In §1 we discussed the Riesz transforms and some of 
their properties. These operators are particular examples of the convolution 
operator 
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(2.10) ƒ(*) = Jim JT<W<Vf k{y)f{x -y)dy = {k* f)(x), 

where 

k(y) = Q(/)/\y\n, ^#0 , / - > / H , Ö 6 L'ft-l) 

and 

X Û(/V/ = O 

(here *// denotes the element of Lebesgue surface measure). If £2 satisfies the 
Lipschitz condition |Q(x') - Q( / ) | < C'\x' - / | then the kernel k satisfies 
inequality (1.36) 

(2.H) \k(x-y)-k(x)\<C\y\/\x\tt+l 

for an appropriate constant C whenever 2\y\ < | JC|. But we showed above that 
this property and L2-boundedness was all that we need in order to conclude 
that the operator defined by (2.10) is bounded from Hl into L1 (or, for that 
matter, from Hp for n/(n + 1) < p to Z/'-see (1.35)). Theorem D can now be 
used to conclude that this operator is bounded on LP(Rn) for 1 < p < 2 
(since the adjoint of this operator is its negative, this operator is bounded on 
U for 1 < p < oo).26 

It is not hard to show ƒ -» k * ƒ maps Hl boundedly into itself. Because of 
Theorem C it suffices to show that a = k * a is a constant multiple of a 
molecule whenever a is an atom. To see this let a(x) be a (1, 2)-atom supported 
in a sphere of radius r about x0 G Rn. It is clear that a has mean 0. Since a 
has mean 0 we have 

a(x) = fo$fe<\ \<l/e
 k(x - y)a(y)dy = fRn l

k(x - J>) - *(* - x0)]a(y)dy. 

Thus, using (2.11), we have, for \x — x0\ > 2r, 

< : ^—-r I lfl(y)|dy < /l«WI^ 
J X X Q I I X XQ J 

It follows immediately from property (ii) of a (1, 2)-atom that ƒ \a(x)\ dx 
< (const)r~n. Making use of these estimates on a(x) and ||#||2 as well as the 
L2-boundedness of the operator a -» a we have that a constant multiple of 

( ƒ latol2^) ( ƒ \a(x)\2\x - x0\
n+l dxj 

26 The L2-boundedness of such operators can be established easily by calculating the Fourier 
transform of k * ƒ (see [57]). In other situations where the Fourier-transform is not available one 
can use a general method developed by Cotlar, Knapp and Stein that is adaptable to spaces of 
homogeneous type (see [40]). 
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is less than or equal to 

'-"[(i-,0,<2>"«i!i*-*or,t'<fa)" 

< , - ( r - M g r + r - ^ ^ ( j^rh - -o'"*'̂ )" 
< ( c o n s . V - ( r - ' |W|)« + r"r-(l_^ ~^)" 

< (const)[r""r" + r"r~"]. 

This shows that, up to a multiplicative constant independent of a, 

( ƒ |à(*)|2 </*)(ƒ\à(x)\2(\x - x0\"f+^dxj 

satisfies condition (2.7) with e = \/n (observe that m(x,x0) = \x — x0\
n is a 

measure distance in this case). 
Inequality (2.11) implies the weaker condition 

(2.12) fM>2M \k(x -y)- k{x)\dx < C. 

In establishing (1.24) we gave an argument that is easily modified to show that 
this condition, together with the boundedness of k, implies that the operator 
f-*k*f maps Hx boundedly into L1. Both (2.11) and (2.12) have natural 
extensions to spaces of homogeneous type. In fact, it is easy to see that the 
argument we have just given shows that if an integral operator 

(Bf)(x)-=fxf(y)k(x,y)dli(y) 

is bounded on L?(X), Bf has mean 0 when ƒ is an atom and has a kernel 
satisfying, for m(x,y0) > Cm(y,y0), 

(2.B) I ^ - ^ K C ^ ] * ^ 

then it maps Hl(X) boundedly into itself. (In fact it maps Hp into itself for/? 
close enough to 1.) If the kernel satisfies 

<2-14) LXo)>cldM ^ y ) - k^xo)\Mx) < C2 

and B is bounded on L?(X) then B maps Hl boundedly into l)(X) with a 
norm that depends on the constants Cx, C2 and the L2-operator norm of B. 
This follows from a simple modification of the argument used to establish 
(1.24). 
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We remark that molecules can be defined in terms of other norms besides 
the I? norm. For example, a function M E L1+ô, 8 > 0, satisfying 

JMdii^O and (flMl^dix) (f \M(x)\M[m(x,x0)f
+edii(x)Y < 1 

can easily be shown to belong to Hx (or, with a change in normalization, to 
Hp, for some/? < 1). Suppose 

(Bf)(x)=fk(x9y)f(y)dlx(y) 

is a bounded operator on I?, then a sufficient condition on &(x,j>) that implies 
that atoms are mapped by B onto these (more general) molecules (and, thus, 
B is a bounded transformation of Hp into itself for some/? < 1) is 

(2 l^o)>C(„o) f * M ~ ^-^0)|1+0K-^0)]8+e^W 

< C[m(7,Jo)]e-

This condition holds whenever (2.13) is valid and reduces to (2.14) if 

These observations illustrate how the atomic theory of H ̂ -spaces can be 
used to study certain Calderón-Zygmund singular integrals. In order to obtain 
the boundedness of these operators on Lp(Rn), 1 < p < oo, much less 
stringent conditions are needed. In fact, if ti is an odd function in l}Ç2n__x) 
one obtains this boundedness (see [57]). When Ü is even we need to know 
more; Calderón-Zygmund [4] show that if fi E LlogLÇEn_x) then B is 
bounded on LP(Rn). 

If n = 2 then this boundedness follows from the assumption that Q 
E 7/!(2i) = Hl(T) (see p. 160 of [21]). We shall now show that this class of 
operators together with the identity forms an algebra. Let us begin by 
characterizing the Fourier transforms of the operators having a kernel 
k(y) = Q(/)/|,y|2 with £2 E Hl(T). In terms of polar coordinates any such 
operator has the form 

(Bf)(x) = lim f1A f2* ^ / ( x - regarde. w e->0+ Je Jo r J v ' 

If we write y — re1^ then it can be shown (see p. 162 of [57]) that if 
kj(reie) = tij(9)/r2 = tP'/r1 then 

L{y) = lim fV' C -e-*"*d0 = £eWrW. 
j K " e->QJe JO T \j\ 

It follows from Hardy's inequality (1.5) that if 

belongs to H](T) then 

7#0 J 
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i -w* 
yV=0 \J\ 

and this last series converges absolutely. Let 

Q = ti0 + fie where [2(9 + IT) + fi(0)]/2 = S2e(0) 

(S2e and S0 are the even and odd parts of Ü as a function on R2). Then the 
function /c(e1^) = k(y) has the property 

{(d/dtfkW*) = 2TT[20(^ - V2) 4- Öc(* - V2)], 

where fie is the conjugate function of S2e (if we consider the imaginary part 
g(0) of the kernel (1 + elB)/{\ — elB) discussed in the paragraph following 
(1.25), then Be is the generalized convolution S2e * (?). It follows that (d/d\p)k 
E HX(T). Conversely, if k(y) is a function on R2 that is homogeneous of 
degree 0 and satisfies 

^kEHx and fT&tf*)d* = 0 

then there exists a function k on R2 of the form Q(9)/r2 with 2 EL Hx such 
that £ is the Fourier transform of L 

We shall now show that the vector space generated bŷ  these operators 
together with the identity form an algebra by showing that kh has a derivative 
(with respect to \p) in Hx whenever h and k are homogeneous of degree 0 and 
have derivatives in Hx. Suppose, then, that h(e1^) = 2 \ ^ / ( ^ ) a n d k(e1^) 
— 2 M/̂ /Ort where>lj, fijare atoms, 2 Ifyl < oo and 2 l/tyl < <*>• Obvious-
ly» 2/,/ l\/A/l < °° a n d we only have to show that (\/2)(AB)f is an atom 
whenever A' and B' are nonconstant atoms. Suppose A has a supporting 
interval / and B has a supporting interval / (since the atoms have mean zero 
A and A' have the same supporting interval). The support of AB is contained 
in ƒ H / . Moreover, \(AB)'\ = lA'B + AP] < 1/|/| + l/\J\ (the absolute 
value of the integral of an atom is always less than or equal to 1). Thus, 
1(i4/*)'1 < 2/ | I n J\ and our claim is established. 

It is not hard to show that in dimension n > 2 the condition 2 E Hx (2„_i ) 
implies the boundedness of the associated singular integral operator on 
LP(Rn), 1 < p < oo. It is natural to raise the question whether such operators, 
together with the identity, generate an algebra. 

Let us now turn to example (2) in which we introduced nonisotropic 
distances on R". We shall show how the theory we have described, applied to 
this situation, can be used in order to obtain a priori estimates for certain 
partial differential equations. Let us consider the special case of the heat 
equation 

3w/3x2 — d2u/dx2 = g(xj,x2), 

where x = (xi,x2) £ R2» It will become clear that the arguments presented 
here apply to a wide variety of equations. Suppose g E If(R2), for an 
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appropriate p9 can we find a solution w, such that du/dx2 and 92W/9A:2 also 
belong to If(R2) ? By applying (formally) the Fourier transform we see that 
our equation is equivalent to 

(2.16) {y\ + iy2)û(yuy2) = g(y\,y2); 

thus, 

(ëù to'») - •pff^iï*'») and 

w) 
We are, therefore, led to consider the operator assigning to g the function 

-JT + V2 L Vf + IV-. J 

(as well as the operator induced by the multiplier y\/(y\ + iy2)). M is 
obviously a bounded operator on L2(R2). We claim that by choosing an 
appropriate distance on R2 we will find it easy to show that M preserves the 
Hp spaces associated with this distance, for certain values of/?; consequently, 
M is bounded on the corresponding Lipschitz spaces and the 13 spaces for 
\ < q < 00. 

A natural way for introducing this distance is obtained by considering the 
family of "dilations" on R2 mapping x into Txx = (Aly/3Xj,A2/3x2), A > 0. Let 
us also write (Txg)(x) = g(Txx). It is then clear that M(Txg) = Tx(Mg) for all 
A > 0. That is, the operators M and 2̂  commute. 

We now introduce the "norm" \\x\\ = \xx\
3 4- |x2l in order to obtain 

families of spheres in R2 that are invariant under the action of these dilations. 
Observe that 

(2.17) \\Txx\\ = X\\x\\ 

for all A > 0. By letting Bx = {x G R2: ||*|| < A}, A > 0, we obtain the 
family of spheres about the origin associated with this norm. Since the 
Jacobian of the transformation 7̂  is A we see that Bx = Tx Bx has measure cA, 
where c is an absolute constant. 

Suppose that M is an operator given (formally) by g -* Mg = {mg ) , where 
the multiplier m is bounded and satisfies 

m(Txy) = m{y\ (&hm)(y) s m(y + A) - 2m(y) + m(y - h) 

for A > 0 and y9 d G R 2 , We claim that M is a bounded operator on Hl as 
well as on Hp tip is close to but less than 1. (Using the fact that \h\2 < c\\h\\2^ 
for \h\ < 1 we see that condition (2.18) is satisfied by the two multipliers 
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iyjiy2 + iyi) and ƒ?/(ƒ? + iyi) we are considering here.) This claim follows 
from 

LEMMA (2.19). Suppose a is a \-atom supported in the sphere Bx, then 
Ma = (ma)" is a molecule centered at 0. More precisely, ƒ Ma = 0 and 

(j\{Ma){xfdx^j\{Md){xf\\x\^dx^ " < c„, 

where 0 < -q < 1/3 awrf c^ w independent of a. 

Once this lemma is established we see from Theorem C that Ma belongs to 
Hl. The fact that the operator M commutes with the translations of R2 and 
the dilations Tx shows that it is well defined and is bounded on H!. 

In order to establish (2.19) we shall need the following result: 

LEMMA (2.20). Suppose f G L2(R2) satisfies 

fR2 \Kx + A) - 2f(x) + K* ~ hfdx » JR2 \(4f)(x)\2dx < C\\h\\2a 

for 2a > 1 then fR2 \f(x)\2 \\xfdx < oo when 0 < /? < 2a. 

PROOF. Suppose R > 1 and h = Tx/Rh' where |A'| = *\f(h\)2 + (h'2)
2 = 1. 

If fl/2 < ||JC|| < R then 1/2 < \\Tl/Rx\\ < 1. It follows that \eie - 2 + e"i9\ 
> Co0

2 for an appropriate constant C0, where 0 = (Tx/Rhf) - x — h- x 
= (T^*) • h'. Thus, by Plancherel's theorem and the assumption made in this 
lemma 

^U<u^lx • h^î{xfdx < im<MKR ^ ~ 2 + «^fl/MI2* 
< C\\h\\2a = CR-2a\\h'\\. 

We can now integrate both sides of this inequality with respect to h over the 
unit circle in R2. Keeping in mind that x • h = (Tx,Rx) • A' is (essentially) the 
inner product of two unit vectors we obtain 

Thus, 

/<|W[ l/(x)l2!l-ll^x < 1 2 ^ J2^I<|W|<2, | / ( . ) | 2 ^ 

< (const) 2 2k^-2a) < oo. 
l 

Since f\\x\\<\ l/(*)l \\x\fdx is finite (since ƒ G L2(R2)) the lemma is estab-
lished. 

Lemma (2.19) is a consequence of the result we have just obtained if we can 
establish that ƒ == ma satisfies the hypothesis of Lemma (2.20) with a = 2/3. 
In fact, 

file:///-atom
file:////xfdx
file:////x/fdx
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($mâ)(y) = m(y + h)(à2
hâ)(y) + ^)(Ajm)(^) 

+[m(>> + h) - m(/ - //)][*(ƒ) - <?(>> - A)]. 

To estimate the first term we use the fact that a has support in B{ and m is 
bounded* Thus, 

ƒ \m(y + A)(A2<*)G0| 2# < NIL ƒ |e** - 2 + e-**|2k*)l2«& 

< (const)]/î|4< (const)||/i||4/3 

when \h\ < 1 (this is clearly the only case we need to consider since ||tf||2 < 1). 
In order to estimate the second term we first observe that \â(y)\ < (const) 

• min{l, l^]}. Thus, 

(const)/ \â(yt\^lm)(yfdy 

< (const) | |hf\ 

Finally, in order to estimate the last term we observe that the assumption 
on the second difference A^m in (2.18) implies 

}m(y + h)- m{y)\ = 0[(1W|/|M|),/3]. 

This last estimate follows from the argument preceding (3.5) on p. 44 of [64] 
applied to each variable separately. Secondly, we observe that 

}â(y + h)- â(y)\ = 0(|A|) and ƒ \â(y + h) - â{yfdy = 0{\h\2). 

Thus, 

ƒ \m(y + h)- m(y - h)\2\â(y) - â{y - hf dy 

< «2/3(llK. j $ 5 * + lll» W» - *> ~ *»'*} 
Using, again, the fact that \h\ is dominated by a constant times ||A|| ' when \h\ 
< 1, we see that the last expression is 0(\\h\\ ' 3 ) when \\h\\ < 1. Lemma (2.19) 
is thus established. 

Recall the question we raised originally when we introduced the heat 
equation: given g E LP(R2) can we find a solution u such that 
du/dx2 and d2u/dx2 belong to LP(R2) ? We then proceeded formally and 
exhibited a solution by means of equality (2.16). It is not clear, however, that 
such a solution is a function belonging to some natural function space 
associated with If(R2), nor is it clear that the multiplier operators we 
considered act naturally on LP(R2). Another useful feature of the atomic 
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theory of Hp spaces is that if g G H1 (H1 = Hl(R2, || ||) being defined with 
respect to the quasi-distance induced by || ||) then the solution 

(2.21) u~[(l/(rf + iy2))à(yi,y2)f 

belongs to L3(R2). This is easily seen in the following way: Suppose a is an 
atom supported in By Then from the estimates \â{x)\ < (const)min{1,U|} 
< (const)min(l, ||JC||1/3} we obtain 

1/2 
(const) ƒ i f | U < fu<i n,rV 3* + w t ^ iwr2*) 

where C depends only on the dimension. Since 

f\â(Txx)\^=f\â(x)\^<C f o r a l U > 0 

it follows that we have a nonisotropic version of Hardy's inequality 

( 2 - 2 2> Ljidx<«> 
whenever g E Hl(R2

9\\ ||). Since \â(x)\ < 1 whenever a is an atom in 
Hl(R2, II ||) we must have, if 1 < p, 

jmf.dx<jmdx<c. 
J \\x\\ J \\x\\ 

Thus, if g = 2 «,Ö,- e Hl(R2, Il II) then 

Consequently, 

(2.23) ( J R 2 Uto l ' f lD" ' < C||g||ff, 

whenever g £ /^(RMl II). 
Equation (2.16) gives us a solution M satisfying 

\<Ky)\ -
g(.y) 

JT + »>2 
< ( c o n s t ) M . 

IW|2/3 

Applying (2.23) with/» = 3/2 we see that w G L3/2(R2). It now follows from 
the Hausdorff-Young theorem that u G L3(R2). Furthermore, we have shown 
that the derivatives 3»/3x2 and 32t//3x2 (which certainly exist in the sense of 
distributions) belong to Hl. The fact that the operator defined by (2.21) maps 
Hx into L3(R2) implies, by duality, that it maps L3/2(R2) into BMO(R2, || ||). 
By applying an appropriate interpolation argument it can be shown that this 
operator maps Lp into Lq, where \/p - \/q = 2/3 and 1 < p < 3/2. 



606 R. R. COIFMAN AND GUIDO WEISS 

Singular integrals associated with the heat equation were studied first by 
Jones [39] and later by Fabes and Rivière [26], Perhaps some of the results 
described here for Hp spaces are new. Multipliers that are homogeneous 
relative to generalized dilations were studied by Rivière [49] and Krée [43]. 

In example (3) we considered other measures on R", besides Lebesgue 
measure, which, together with the Euclidean distance, satisfied the basic 
inequality (2.1). Such measures arise naturally in several ways. For example 
radial functions in L^R") give rise to the study of the integrable functions on 
(0, oo) with respect to the measure rn~xdr. The study of central functions on 
certain Lie groups also gives rise to measures co(x)dx satisfying (2.1), where co 
is an appropriate weight function. The case co(x) = eb(<x\ where b is a BMO 
function, arises in factorization problems we shall discuss later. In all these 
cases we are dealing with weights belonging to the class A00 of Muckenhoupt 
(see [13]) characterized by the inequality 

(2 24) »(EnQ) (\EnQ\\8 

( } "(e) < c v iel ; • 
where C and 8 are constants depending only on co, | £ | denotes the Lebesgue 
measure of £ C R", co(£) = fE u(x)dx and Q is a cube with sides parallel to 
the axes. 

It is an immediate consequence of (2.24) that co(<2) < Cco(<2) whenever Q 
is the cube concentric with Q having sides twice the length of the latter (we 
shall use the letter C to denote a constant, not always the same, that depends 
only on the dimension n and the weight co). Thus, (R",co), together with the 
Euclidean distance, is an example of a space of homogeneous type. Let 
Hl(Rn, co dx) denote the corresponding atomic Hardy space. 

A basic general result relating these spaces to the more classical space 
Hl(Rn, dx) is the following: 

THEOREM (2.25). Hl(Rn, udx) = {/to"1 : ƒ e Hl(Rn, dx)}. 

In other words, the map ƒ -* /co is an isomorphism between the "weighted" 
Hardy space Hl(R", udx) and the "ordinary" Hardy space Hl(Rn, dx). 

In order to prove this theorem we make use of the following properties of 
weights satisfying the A00 condition (2.24) (see [13]): 

(2.26) 

(a) there exists % C > 0 such that 

\\Q\h" dx) < c i e r 
(b) there exists p > 1 and C > 0 such that 

P-\ 
< C 

\Q\ \\Q\JQU dX) 

for all cubes Q. Suppose, now, that a is a (1, oo)-atom in Hl(Rn,o)dx); that is, 
a is supported in a cube Q, \a(x)\ < l/co(Ô) and ƒ a(x)u(x) dx = 0. We claim 
that A = aco is (up to a multiplicative constant independent of a) a (1,1 + T])-
atom in Hl (Rn,dx). The fact that A has mean zero is obvious; moreover, from 
(2.26) (a) we have 

file:////Q/h
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(là ƒ MMr*f+,) < ;s5(; i ^ r l P ' < a-
Conversely, (2.26) (b) shows that if A is a (l,oo)-atom in Hl(Rn,dx) then 
a = A/o) is a (l,/?)-atom in Hl(Rn,oodx). Theorem (2.25) now follows from 
Theorem A. 

A consequence of (2.25) is the following characterization of radial functions 
belonging to Hl(Rn,dx): 

COROLLARY (2.27). Suppose/is defined on [0, oo) then x -* f{\x\) is a function 
in Hl(Rn,dx) if and only if r -* f(\r\)\r\n~l is a function in Hl(Rl,dr). 

In order to show this result let us first assume that /( |x|) = 2 a/fl/M» 
where a{ is a (1, oo)-atom on R" (not necessarily radial) and 2 l«/l < oo. We 
claim that 

AM) - [x^MAdo{x\ 

where do(x) is the element of surface measure on the unit sphere in Rw, is an 
atom in H1 (R1, \r\n" dr) times a constant that depends only on the dimension. 
If the support of a = at contains the origin this is obviously true.27 If the 
support of a is at a distance R > 0 from the origin and d is the diameter of 
this support, then there are N > C[R/d]n~~l rotations p{, p2, . . . , pN such that 
a(Pjx)J — 1, . . . , N, have disjoint supports. Hence, 

is bounded by (l/N)(l/dn) < C{\/dRn~x) (since the supports of the functions 
appearing in the sum are disjoint). But the last expression is dominated by a 
constant times 

In order to obtain the converse we start out with a (1, oo)-atom A in 
Hl(R}9\r\n~ dr) and observe that if its support contains 0 then the radial 
function it defines is (essentially) an atom in Hl(Rn,dx). If the support of A 
is the interval (R,R + d), R > 0, we can "reverse" the construction we just 
gave in order to obtain an appropriate atomic decomposition in Rn of the 
radial function defined by A. More generally, many results concerning 
weighted Hp spaces on Rn were developed in the thesis of one of our Ph.D. 
students, J. Garcia-Cuerva [32]. The class of weights considered here on Rn 

admits a useful straightforward extension to spaces of homogeneous type. 
The notion of weighted Hl spaces has interesting applications in the 

compact case as well. The following result, as we shall see, can be obtained by 
using this notion: 

27 We remark, once and for all, that when we talk about the support of an atom we really mean 
the smallest sphere containing the support of an atom. 
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THEOREM (2.28). Suppose f E L1 (R) has mean 0 and is supported in the 
interval [-1,1]. Then ƒ = 2 «/#/> where 2 k l < <*> and the a/s are (1, oo)-
atoms supported in [-1,1], if and only ifflx \J(X)\ dx < oo, where 

f(x)~?.V.±(^-dt. 
Jy ' vJ x - t 

Since the Hilbert transform a of a (1, oo)-atom satisfies Jü^ \â(x)\ dx = \\a\\ 
< C9 C independent of a (see the argument following (2.12)), we have 

COROLLARY (2.29). Iff E l)(R) is supported in an interval I and has mean 
zero then J E l)(I) implies f E L*(R). 

Using Theorem (2.28) and the same argument we gave to establish Theorem 
(2.25) we obtain a characterization of an Z/1 space associated with the space 
of homogeneous type we introduced in example (5). In order to state this result 
let us write o)atP(x) = (1 - x)a(l + x)^9 - 1 < x < 1, - 1 < a, ft 

and let Hl([-l, l],o)ap(t)dt) be the atomic Hardy space generated by the 
(1, oo)-atoms defined in terms of the measure o)ap(t)dt. We then have 

COROLLARY (2.30). ƒ E Hl([-l, lW)i8(f)<#) if and only iffand HaSf belong 
toLl(u>a^(t)dt). 

We now pass to the proof of (2.28). Let ƒ satisfy the hypotheses of this 
theorem; then, fe(0) = /(cos 0)|sin 0\ is a function in L!([—ir,ir],rf0). If 
x = cos $ then 

fa) = _J_ p.v. I jfVfr) f* ad9 
JX ' sin \p irJo JeV ' c o s ^ — cos 0 

s _ I p.V. I f / e W COt ^ r f o . 
2 sin \p 7rJ-irJQX ' 2 

But 

/e%) = ^ - V . / _ > e W c o t V ^ 

is the conjugate function of/e. That is, fe + /ƒ£ is the boundary value of the 
analytic function associated with / 0 we described at the beginning of §1. 
Moreover, it follows from the change of variables we made above (and the fact 
that f I is an odd function) that / i , \f(x)\dx = C ƒ_?„ \f^)\d^ Consequent-
ly, fQ belongs to Hl(T) (= <3l£Hl(T)) and, therefore, has an atomic decom-
position 

(2.31) MO) = 2 ajaj(9)9 

where 2 Wj\ < °° a n ^ dj is a (1, oo)-atom of mean 0 supported in the interval 
Ij. We now claim that it can be assumed that if 0 < 0 < m the sum in (2.31) 
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involves only atoms ÜJ whose support Ij lies in [0, TT]. TO see this we first observe 
that since / e is even 

If 0 G / then a){0) = {aj{9) + aj(-0))/2 is supported in ƒ} = (0: 0 G Ij or 
- 0 G ^ } . We also have J ^ a'j = 0 and, since a'j is even, JJf aj = 0. Moreover, 
\aj(9)\ < 1/1 Ij\ < 2/|[0,TT) O I'j\. Thus, aj/2, restricted to [0,TT] is a (1, oo)-
atom. A similar argument applies to the case m G Ij (see footnote 8). If neither 
0 nor IT belong to Ij then either aj(0) or aj(-0) is 0 for 0 < 0 < m and there 
is nothing to prove. 

Having made this restriction of the representation (2.31) to [0,7r] we shall 
now show that Aj, defined on [—1,1] by 

,4,(cos 0) sin 0 ** 0,(0) 

is a (l,/?)-atom in the space Hl([-l, \\dt) for certain values of p > 1 (up to 
an inessential multiplicative constant). In fact, let Jj be the image of Ij under 
the map 0 -» cos 0 = t. Then Aj is supported by Jj, \Jj\ = Si si*1 Od0 and 
JV Aj(t)dt — ƒ/. aX0)d0 = 0. Thus, we need only show that 

j j j j 

We can rewrite this inequality in the form: 

{Jk My(cos 0)sin ^P^^-dif' < |^f. 

Since |^y(cos 0)sin 0| = |a^(0)| < \/\Ij\ the desired inequality follows from 
the easily derived condition 

( ^ J ^ sin 0d0j {^-j^ (sin 0 ) 1 "^0 j < C, 

for 1 < /? < 2. (In fact, this is the Aq condition of Muckenhoupt [13] for the 
weight sin 0 valid for q > 2, where 1//? + l/q = 1.) Theorem (2.28) now 
follows from Theorem A. 

It would be of interest to obtain higher dimensional extensions of Theorem 
(2.28) and Corollary (2.29). 

Corollary (2.30) is relevant to the study of Jacobi polynomial expansions. 
These are polynomials, Pn

a^, of order n that are eigenf unctions of the 
differential operator 

4,,/J = (1 " x1)^. + ( / ? - « " ( « + /? + 2)x)£ 

corresponding to the eigenvalue — n(n + a + fi + 1), a, (5 > — 1. The Jacobi 
functions, Q%&9 of the second kind are also eigenf unctions of this differential 
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operator corresponding to the same eigenvalue; moreover (see p. 171 of [25]), 
they are related to the Jacobi polynomials by the formula 

Thus, expansions in terms of Jacobi polynomials are transformed into 
expansions in terms of Jacobi functions of the second kind. Corollary (2.30) 
gives us some information about these expansions when the former represents 

When a = /? the Pn
aA are the ultraspherical polynomials. Muckenhoupt and 

Stein [47] have developed a theory of Hp spaces involving expansions in terms 
of these polynomials. When a = (n - 2)/2, n an integer, it is well known that 
these expansions arise from the study of spherical harmonics. Using this 
geometrical interpretation and the techniques used to establish Theorem (2.25) 
one can see that the space Hl([—l9 l],cott,a (*)*#) introduced here and the Hl 

space studied by Muckenhoupt and Stein are identical when a = (« — 2)/2. 
It would be of interest to see what is the relation between these two spaces for 
other indices a. The analogous problem involving Hankel transforms has been 
studied by J. Garcia-Cuerva [32]. 

An important topic involving expansions in terms of Jacobi polynomials is 
the study of the multiplier operators associated with these expansions. These 
operators can be defined in a manner completely analogous to the way they 
are defined in the theory of Fourier series. We recall that the polynomials Pn

a^ 
can be obtained by the Gram-Schmidt orthonormahzation process from the 
monomials (relative to the natural inner product defined by the weight coai8). 
Thus, if ƒ E L2([-l, l],o)afp(x)dx) then 

ƒ- ÎUM\ 
where fn = f!\f(x)Pn

a,P(x)œap(x)dx. Hence, if {mn} is a bounded sequence 
the operator M mapping ƒ into the function having expansion 2£LQ

 mnfn^na^ 
is well defined and maps into L2([-~l, l],uatp(x)dx). These are the operators 
commuting with the differential operator Dap. As is the case in the study of 
Fourier series and integrals it is natural to inquire what properties of ƒ are 
preserved under the action of M. Since [—1,1], together with the measure 
induced by the weight œap, is a space of homogeneous type, the theory of 
singular integrals connected with these spaces can be applied to obtain 
sufficient conditions under which M is a bounded operator on 

U>([-\Mua^{x)dx\ \<p<oo 

(see [17] and [20]). A careful reading of these results and the methods used will 
show that these conditions also imply the boundedness of M on the corre-
sponding atomic Hp spaces when p (< 1) is close to 1 (compare with the 
discussion preceding and following conditions (2.14) and (2.15)). Because of 
Corollary B it then follows that M preserves the "natural" Lipschitz condition 
associated with this space of homogeneous type: 
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I ƒ to-/OOK c [ (l-t)a(l + tfdt\ 
J X I 

Specifically, one can establish the following extension of a multiplier theorem 
of Connett and Schwartz [20]: 

THEOREM (2.32). Suppose a > /? > —1/2 and k is the largest integer not 
exceeding a + 2, then if{mn) is a bounded sequence satisfying 

2 |A*m„|2 < cRl~2k, 
R<n<2R 

where ùt is the kth difference operator, the multiplier operator M associated with 
{rn„} is bounded on Lp([— 1, \\uap(x)dx) for 1 < / ? < O O and on 

#fa-ui««,/K*)<&). 
Let us now pass to the situation encountered when X = [0,1), \i is Lebesgue 

measure and the quasi-distance is given in terms of dyadic intervals as 
described in example (4). We shall refer to this situation as "the dyadic case". 
Many aspects of harmonic analysis become particularly simple and elegant in 
this dyadic case. In particular, the atomic Hx space can easily be seen to 
coincide with the space of all Ù functions whose Hardy-Littlewood maximal 
function/* is integrable. That is, if we let/*(x) = sup7(l/|I\)\fj ƒ |, where the 
supremum is taken over all dyadic intervals I containing x, then ƒ is in atomic 
Hl if and only if/* G L1.28 

In order to establish this equivalence we first observe that it is easy to see 
that ||a*||| < 1 whenever a is a (l,oo)-atom. In fact, if I and J are two 
nondisjoint dyadic intervals in [0,1) then either I C J or I D J. From this it 
follows immediately that if a is supported in I then a* is also supported in ƒ 
and satisfies a*{x) < 1/(|/|); therefore, ||a* ||} < 1 and we see that 

iiniKii/iitf. 
whenever ƒ is in atomic Hx. Conversely, i f /and/* are in Û we shall show that 
ƒ has an atomic decomposition 2 OLJÜJ with 2 |«/l < 8||/* \\x. Without loss of 
generality we can assume /J ƒ = 0. We shall now obtain the desired represen-
tation of ƒ by means of the Calderón-Zygmund decomposition of ƒ. We first 
consider U'k = {x G [0,1): ƒ*(*) > 2k} for k an integer and we let U'k 

= U/4' where the 4'*s are maximal dyadic open subintervals of U'k (and, thus, 
for k fixed, they are disjoint). Now, each 4' is contained in a (unique) dyadic 
interval, Jk9 of twice its length. Since each 4' is maximal, Jk contains a point 
outside U'k and, thus, my/(/) = (l/|Jfc'|) ƒ//ƒ has absolute value less than or 
equal to 2k. Let Uk = U/Jfc'; we may assume that Jk, for k fixed, are mutally 
disjoint (recall that two intersecting dyadic intervals have the property that 
one must contain the other). The Calderón-Zygmund decomposition is then, 
ƒ = gk + bk, where gk = (1 - Xuk)f + 2 / ™j{U)Xjj- Clearly, \gk\ < 2k and 
the bks are supported in Uk and satisfy fJk bk — 0. As k -* oo we have gk-+ ƒ 
(trivially in the a.e. sense and, also, in tke L1-sense since the convergence is 

28 ƒ * is the natural analog of the nontangential maximal operator P* we introduced in the 
beginning of § 1 (see [2]). 



612 R. R. COIFMAN AND GUIDO WEISS 

dominated by 2/*). Also, l i m ^ _ J | g J i = 0. Thus, ƒ = 2-«, (&+i ~ fit) 
= 2-oo (h - bk+i). Moreover, \bk - bk+l\ = \gk+i - gk\ < 2*+1. Since 
C/jt+i C Uk and each interval $ + 1 must be a subinterval of some j£ we have 
ƒ lh - bk+i)Xji = 0. Therefore, a'k = (l/2*+1 |^' |)[6 t - bk+x\xj>is a(1, oo)-
atom and ƒ = 2 ? — » 2 2;1-4'14- Furthermore, 

l!rili = r i { ^ [ 0 , l ) : / * W > X } | J X > 2 \U'k+{\l
k 

> 2 |t4|2*2~2= 2 2*+ ,2-32l^|. 

But this shows that \\f\\H\ < 8l|/* ||j and the claim is established. 
Let us now pass to some illustrations of how these methods apply to the 

study of harmonic analysis on homogeneous spaces (example (7)). We begin 
with an extension of Hardy's inequality associated with the surface 2„_! of the 
unit sphere in Rn, n > 3. Let t\ x\ ƒ , . . . denote points of 2w_j, dt', dx\ dy\ 
« • • the elements of Lebesgue surface measure on 2„_j (which is normalized 
so that £„_! has measure 1). Hk denotes the space of homogeneous harmonic 
polynomials of degree k restricted to 2n_l and Z^ the zonal harmonic of 
degree k with pole x'. The defining property of Z^ is that it is the (unique) 
element of Hk such that 

(2.33) YV)=L Y(t')Z{
x*\t')dt' 

whenever Y E Hk . Z^ is also determined (up to a multiplicative constant) 
by the property that it is a member of Hk that is invariant under the action of 
all rotations p of R" that leave x' fixed (see pp. 146-147 of [57]). From this and 
the fact that Z$\x') = dk = dimension of Hk we obtain the following simple 
expression for zonal harmonics: 

Z^\t') = dJ [t'-{iy' + x')]kdy\ 

where 2„_2 is being identified with all those vectors/ G 2„_j orthogonal to 
x'. From this we see that 

2 

< 2dkk(k- 1). —z{k)(t') (2.34) 

Now let us consider 

Z ^ V ) - zf{x') = ( V z f )(*') • (f - x') + E^(x',t'). 

The error term involves the second derivatives of Z^ (evaluated at some 
point on the segment joining x' and t') and products of the type (x) - /'/) 
-(x'j-tj). Because of (2.34), therefore, we have \E^(x,

9t
,)\ < cdkk

2 

• \xf — t'\ . Moreover, it follows from the integral representation of Z^ that 

(VZ^)(x') = kdkx\ 
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Consequently, V Z ^ V ) • (f - x') = kdk(x' -1' - 1) « -{kdj2)\xf - tf. 
It follows that 

(2.35) |Z«*V) - rfj = |Z#V) - Z<*V)I < «/** V - ,f. 
If ƒ G L 1 ^ , ^ ) its projection onto //^ is 

ƒ * ( * ' ) = / ! f(t')Z$\t')dt' 

(this follows from the defining property of the zonal harmonics). We thus have 
the orthogonal development of ƒ in terms of spherical harmonics (see [57, 
Chapter 4, §2]): ƒ ~ 2 A-We shall now derive the following extension of 
Hardy's inequality: 

THEOREM (2.36). Iff G / ^ ( V - i ) then 

J, $1 " J, k'"'2(L tó^l^f < «M... 
In order to establish (2.36) we choose a (1, oo)-atom supported in a "sphere" 

of radius R about x'. Then, by the "mean 0" property of a: 

ak(y') = / 2 n i a{t')Z$\t')dt> = J V i o( / ' ) [zJ*y ) - Z$X*)\dt'. 

Thus, by Minkowski's integral inequality 

Wb < J2ni M'')l{/Vi |z>*V) - z>*V)lV} «*'• 

Since Z^\u') - z £ * V ) (see p. 143 of [57]) we have 

JL |z/)(''> - z /V) lV 

= JC «^(y)! 2 + [zj?>(/)]2 - 2zfk/yz<?X/)W 
J2tn-\ 

= Z?V ) + Z$\x>) - 2Z**V ) = 2[dk - zJ?V )]• 

Hence, we can use (2.35) to obtain the estimate 

H\\z<ci \a(t')\k^d~k\x' - t'\dt\ 

Since dk < ckn~2 (see [57, p. 145]) and |x' - /'| < R for /' in the support of 
a we have 

\\ak\\2<cRk-k(n~2V2~cRkn/2. 

Making use of this inequality and the obvious estimate for the I? norm of an 
atom we finally obtain 
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*=1 k"/2 k<l/R k"/2 k>\/R k"'2 

/ °° 7 \1 / 2 / \ , / 2 

< 2 cR + ( 2 WI2) ( 2 *"") 
k<l/R \k=l / \A:>l/fl / 

< c'(l + l|«M("-1)/2) < c". 

Theorem (2.36) is an immediate consequence of this inequality. 
The version of Hardy's inequality we have just discussed assumes a special 

form on the sphere 23. This sphere can be identified in a natural way with the 
group SU(2) of unitary 2 x 2 matrices with determinant 1. This group is the 
simplest noncommutative semisimple compact Lie group to analyze and is 
particularly useful for obtaining insight into problems in harmonic analysis 
associated with more general Lie groups. We shall need to introduce some 
notation in order to illustrate some of these features. 

We write z = (zj,z2) = (^ + ix2,x3 + ix4) (E C2)iorx = ( x j , ^ , ^ , ^ ) 
E R4. To x (or z) we can associate the 2 X 2 matrix 

\ z\ z2> zx zlt 

Clearly, det u = \zx\ + |z2| = x\ + x\ + x\ + x\ and, hence, 2 3 corre-
sponds to SU(2) and normalized Lebesgue measure on 23 corresponds to 
Haar measure on 5(7(2). The irreducible representations of SU(2) can be 
realized explicitly on the spaces <3)/ of homogeneous polynomials of degree 
2/, / = 0, 1/2, 1, 3/2, 2, . . . , in (w1,co2) = co E C2. That is, ¥ consists of all 
the polynomials of the form p(<S) = 2/=-/^Wi~7^2+7 anc* ^ e capping of 
u E SU(2) into the transformation Tj defined by 

where u' is the transpose of w, is a representation. Moreover, Tj is unitary with 
respect to an appropriate inner product for which 

; = - / , - / + 1, . . . , /, form an orthonormal basis (see [17] for further details). 
The matrix entries of Tl relative to this basis are usually denoted by 
tkj(u)> ~~l ^ kyj < h and are defined by the relation 

V y/{i-j)\Q+j)i 

= J,^»iPiTf 
It follows that tlj{u(z)) = tl

kj{u(x)) are homogeneous polynomials in * of 
degree 2/. Moreover, their restrictions to 2 3 form an orthogonal basis for the 
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space H11 of spherical harmonics of degree 21. The expansion of functions on 
2 3 in terms of spherical harmonics turns out to be equivalent to the Peter-
Weyl expansion of functions on SU(2). The latter can be expressed in the 
following way: if ƒ G I?(SU(2)) then 

ƒ ( " ) = 2 (2/+1) * (ƒ ( / )# ) , 
2/=0 

where 

M ~ fsutz)'<*>&*> JSUQ)0 

and the convergence of this series to f(u) is valid in the L2-norm. Moreover, 

(2.37) f\f(u)\2du= 2 (2/+l)| | | /(/) | | |2 , 

where |||/(/)||| denotes the Hilbert-Schmidt norm of ƒ(/). It follows from these 
considerations and, in particular, (2.37), that the projection,/2/, of/onto H2i 

satisfies H/^lg = (21+ l)|||/(/)|||2. Thus, Hardy's inequality (2.36) when n 
= 4 is equivalent to 

inflow 
2/to (2/ + l)3/2 

(2.38) 2 '"•" ' "',, < c||/l|g, 

whenever/ G HX(SU(2)). By using the interpolation Theorem D and the two 
inequalities (2.37) and (2.38) we obtain the following generalization of Paley's 
inequality: 

(2.39) § (2/+l) (5 / , / 2 )-4 | | lA/)lil<c / , | | / |^ 
2/=0 F y 

whenever/ G lf{SU{2)\ 1 </? < 2. 
As is the case in R" and T, the study of the behavior of multiplier operators 

is enhanced by appropriate use of properties of Hp spaces. We first remark 
that bounded operators M on I?(SU(2)) that commute with left translations 
correspond to matrix multiplier operators; that is, if ƒ G L2(SU(2)) then Mf 
has the Peter-Weyl expansion 

(M/)(w)= I (2/+l)trace[M(/)/(/)rM
/], 

2/=0 

where lti(l) is a (21 + 1) X (2/ + 1) matrix whose operator norm ||M(/)|| does 
not exceed a constant C independently of /. It turns out that the space 
7/1(23) == Hl(SU(2)), defined in terms of atoms associated with the usual 
Euclidean distance on 23,29 can be characterized by certain "Riesz" trans-
forms that correspond to the following matrix multiplier operators: 

29 On SU(2) this distance is more naturally written in terms of the Hilbert-Schmidt norm: 
d(u,v) = \\\u - v\\\ when M, V G SU{2). 
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W±\J)\kj * 2/TT J+l>k' lH±"mj ^ 2/TT°k*j' 

where 5^- is the Kronecker delta. These operators are related to certain 
generalized Cauchy-Riemann equations in R4 in a manner similar to the way 
the conjugate function operator on the circle T is related to the Cauchy-
Riemann equations in R2 (again, see [17] for further details and motivation). 

The use of the atomic Hardy spaces in the study of multiplier operators is 
somewhat complicated by the fact that the multipliers consist of sequences of 
matrices. As in the previous cases, one can characterize the matricial Fourier 
transform of a molecule centered at the identity. In order to show that a 
multiplier preserves Z/1 it is enough to show that it maps atoms into molecules 
(this follows from Theorem C). Let us discuss this situation in greater detail. 
Let us write p(w) = \\\u — 1||| where 1 is the identity element of SU(2). Then 
a molecule centered at 1 is a function a (u) satisfying 

< 1. (2.40) ƒ a(u) du = 0 and ( ƒ |a(w)|2du) (f \a(u)\2[p(u)]l+€) 

If we let e = 1/3 we obtain a weighted Plancherel theorem (see p. 114 of [17]) 
which, applied to a, takes the form 

f \a(u)\2\\\u-l\\\4du= 2 (2/+l)|||A2â(/)|||2, 
JSU(2) 2/=0 

where 

â 2 â ( / ) = / « ( « ) | | | M - i | | | 2 r „ / - , ^ 

is a certain second order "difference" operator defined on sequences of 
matrices a(/). It can be shown that 

[à2â(l)]kJ = 2[â(l)]kJ - 2 4(y,S)4(T,ô)[a(/ + y ) ] W + 5 
Y,««±l/2 

where 

4M) = yj + y(l + 40k) 
21+1 ' 

Thus, with c = l / 3 (2.40) can be expressed by 

â(0) = 0 and 

( 2 (2/+l)|||â(/)|||2)( 2 (2/+l)|||A2â(/)|||2) 
\2/=0 / \2/=0 / 

< L 

The direct method for checking whether the matrices a(l) = M(l)â(l) are 
the coefficients of a molecule when a is an atom centered at 0 can be used here. 
This procedure, however, is technically complicated since it involves estimates 
on A2 (M(/)#(/)). Fortunately, it can be shown that, if the inequality 
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2 (2/-hl)p2(M(/)a(/))|||2<c 2 (2/+l)p2o(/)||p 
2/=0 21=0 

holds for some special central atoms a, then M maps Hl boundedly into itself 
(a careful reading of the proof of Theorem (3.1) on p. 81 of [17] shows that M 
is a convolution operator with a kernel satisfying condition (2.15)). Conditions 
on M(l) that insure the validity of the last inequality can be stated in a 
relatively simple manner; we thus obtain the following result: 

THEOREM (2.42). Let {M{1)} be a sequence of (21 + 1) X (2/ 4- 1) matrices 
satisfying \\àJM(l)\\ < crJ+l/2J = 0, 1, 2, where 

ù!>M(l) = Af(l) and àlM(l) = 2 eAl
k(e,8)A*(e98)[M(l + e)]k+Sj+$f 

e,6=±l/2 

then M is a bounded multiplier operator on LP(SU(2)% 1 < p < oo, and on Hp 

for p sufficiently close to, but not exceeding, 1» 

Two remarks are in order: (a) the conditions on AyM(/) are quite easy to 
check for the Riesz transforms M± and H± (see pp. 134 and 135 of [17]); (b) 
If the matrices M(l) are diagonal, Theorem (2.42) assumes a more familiar 
form: Let \il

m, — I < m < /, be the entries of the diagonal matrix M(l)\ if 
lb and /2(2/J4 - / i£$2 » ^ 2 ) are 0{\)for 8 = -1/2, 1/2 then M is bound-
ed on Lp(SU(2))for 1 < p < oo and on H\ 

The analysis of the Fourier transform described here for SU(2) can, in 
principle, be extended to other classical compact groups. The main difficulties 
involve the choice of a special basis in each representation space and the 
calculation of certain Clebsch-Gordan coefficients that lead to formulae for 
operators corresponding to A1 and A2. The spaces Hp for compact semisimple 
Lie groups were introduced in [16] using generalized Cauchy-Riemann equa-
tions. The basic subharmonicity result obtained there permits one to establish 
the duality of Hx and BMO by the methods of Fefferman and Stein. This 
duality result, in turn, shows that the Hx defined in terms of the Cauchy-
Riemann equations is the atomic Hl space» 

We now discuss example (9) and its connection with the theory of analytic 
functions of several complex variables. If 

fi„ = {z e C": \z\2 = | ^ 1 2 + \z2\
2 + . . . + \zn\

2 < 1} 

then dBn = 2>2n-\-
A function F(z) holomorphic in Bn is said to belong to %p(dBn) if 

I I * = sup ƒ \F(rz>)\pdz> < *>, 

where dz' is normalized Lebesgue measure on S2„_]. The space %2 is of 
particular interest. It can be identified with the closed subspace of L2(dBn) 
consisting of boundary functions of holomorphic functions. 

The projection operator P from L2(dBn) onto %2 is given in terms of the 
Szegö kernel (1 - z • <ö)~w. We first define the transformation S: 
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w , w - J5*(T^W* r torUI<l-
We now observe that d(z9 co) = 11 - z • ü|1/2 is a distance on 3J5„ which is 
particularly well adapted to the study of this kernel. In fact, m(z9co) 
•* |1 — z • zs\n is a quasi-distance equivalent to the measure of the smallest df-
sphere containing z and to, \z\ = |co| = 1, and the basic inequality (2.14) is 
verified for the Szegö kernel: for \z\ = |co| = |co0| = 1 

(2.43) 
'w(co,<o0)-l'/2w CY 

I (1 - z • w)n (1 - z • <ö5)" | ^ lm(z,w0) J m(z,w0) 

if m(r,w0) > C2m(w,w0). 
It can also be shown (see [42]) that for 2 E 35„, and ƒ E L2(dBn) 

(Pf)(z) = lim(5/)(«) = \f{z) + lim ƒ - i M — ^ 

It now follows from the general theory developed previously that the 
projection operator can be defined as a bounded operator on If, 1 < /> < oo, 
and T/^, 1 - J\ < /? < 1, and it preserves the Lipschitz character of ƒ (with 
respect to d). Using the methods of Fefferman and Stein [29] it can be shown 
that the dual of %l(dB,n) is P(BMO) (see [14]). This result is equivalent to: 

THEOREM (2.44). Let F E %l(dBn). Then there exist atoms a} such that 

F(z) - 2 \j(Paj)(z) - 2 \jAj(z) 

with 

2 |A; | <c\\F%0; 

thus,P(H]) = 9C1. 

The functions ^-(z) = (Paj)(z), called holomorphic atoms, are easily seen to 
be molecules. A related fact (see [14]) is that any holomorphic atom A can be 
written in the form 

(2.45) A(z) - 2 B,(z)Ct(z) 

with Bh Ci E X2 satisfying 2/11 ll^/MlQlbc2 < c> w h e r e N a n d c depend 
only on the dimension n. From this follows the factorization result: 

THEOREM (2.46). Let F E %\dBn). Then there are functions Gj9 Hj E %2 

such that F = 2y Gy/^ fl«</ 

Sll^ll^ll^ll^^cllFll^. 
j 

Let us indicate briefly how (2.45) is proved. We may assume without loss of 
generality that an atom a is supported in a sphere S centered at 1 
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= (0 ,0 , . . . , / ) (the "North pole"). We let <p5 = (l/\S\)xs a n d wr ite 

1 - S • 2 * - 1 % • z0 + (1 + izn)(iZ5n) + (1 - mn) 

forz = (z1,22,...,2 / I), (o = (co1,w2,...)ww) G 3£„, wherez0 = ( z ^ , . . . , 
V-1,0) and co0 = (o)\,co2,.•.,(0,^,0). We have 

(1 - © • z)" - 2 rf/jyBtfO - ^ ) ^ ^ o ( l + /*„)', 

where/ = Q\, • • • Jn-iX W s i i +72 + ' " + Â-1 a n d 4 = */'*£ ' ' ' ̂ r f • 
We write 

where 

Thus, 

wo-*„j[t*fi^P^ 

A{z) = 2 4 ( 1 + izn)
lDw(z)A(z). 

We now claim that each summand can be split into a product of the form 
B(z)C(z) with 112*11̂ 21|CIIÇK? < C. This is achieved by using inequality (2.43) in 
order to estimate A(z) and by making rough estimates for DJkl{z) when z is 
far from S (see [14] for details). 

Other spaces %p of holomorphic functions for which this theory can be used 
are the spaces of functions F that are holomorphic in Bn and satisfy 

f \F{z)\p{\ - \z\2)mdv{z) < oo. 

where dv(z) is the element of Lebesgue measure on Cn. The case m = 0 is of 
particular interest. Here the projection, P, of L2(Bn) onto %2(Bn) is given in 
terms of the Bergman kernel: 

w / w irnJBn(i -z-J3)n+l 

o - z • cor 
Unlike the preceding case, this projection is not a singular integral transform; 
however, P is unbounded on l)(Bn). If we introduce the quasi-distance d of 
example (10), Bn becomes a space of homogeneous type and P maps (atomic) 
Hl into itself. As was the case for dBn, PHl = %l(Bn) and factorizations 
analogous to the ones in Theorem (2.46) are obtainable. 

In this connection we point out that when n = 1 the dual space of %l (Bl ) 
can be represented by the class A* of smooth functions of Zygmund (see [14]). 
The fact that PHX = SK^C î) allows us also to represent this dual space by 
holomorphic BMO functions on the solid disc Bx. From this it follows easily 
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that smooth functions are characterized by the property that the derivatives of 
their analytic extensions to the interior of the disc belongs to the class 
BMO{B{ ). It would be of interest to extend this relation to higher dimensions. 

The methods we have just described extend to more general strictly pseudo-
convex domains (see [56]). It would be interesting to obtain similar factoriza-
tion results in this more general setting. Another important related study 
involves the polydisc and its distinguished boundary Tn. In this situation the 
possibility of obtaining corresponding results is completely open. 

We have considered 22w_i = dBn as a point set that furnished us two 
different examples of a space of homogeneous type. We did this by first 
employing the ordinary Euclidean metric and, then, the nonisotropic distance 
d(z, <o) = 11 — z • <ö| ' (in both cases Lebesgue measure was used). It is 
natural to compare the Hardy spaces that arise in these two situations and one 
does find basic differences. At this point, however, we would like to point out 
that when dealing with holomorphic functions many results are easily reduced 
to the case of the 1-dimensional torus (where n = 1). Let us illustrate this 
point by considering a version of Hardy's inequality associated with %x (dBn). 

Let F{z) = 2o° tfc(z) be holomorphic in Bn9 where Fk(z) = 2|al=* caz<x *s 

the projection of F onto the polynomials in z = (z l 9z2 , . . . ,zJ) that are 
homogeneous of degree k. Let gz(e

ie) = F(ei9z) = 2o° W<? • By (1.10) 
we then have 

Integrating z G dBn (we now assume F G %l(dBn)) we obtain 

(2.47) | M < c | | f 1 | | . 

Since \\Fk\\2 < ^ (w~1) /2 | |^|li, (2.47) implies the following result involving the 
Taylor coefficients of F: 

00 1 / A1//2 

2 , ^ n t ( , 2 «i»«2»-«,»kJ2) < « . -
*=i yk"*l(n + k — 1)1 \|«H* / 

Other results on %p(dBn) that are reducible to the 1-dimensional case by 
similar arguments can be found in [51]. 

Consider a function B(z) on Bn for which bz(e
w) — B{ei9z) satisfies 

sup| |^(^)| |B M a ( 9 j B i ) = c< oo. 

From the previous argument we then obtain 

\k F H = ML w*iïM <c L w°-
Consequently, B G BMO(dBn). There are, however, functions B in 
BMO(dB) for which supz\\b2(e

w)\\BM0{BBi) = oo. For example, B(zl9z2) 
== 2o° z\ furnishes us an example when n = 2. For such a function the last 
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inequality cannot be obtained by a reduction to the 1-dimensional case. 
In these last few examples the spaces of homogeneous type involved were 

compact. There exists a noncompact space that is closely connected to 
Bn and dBn. Let us give some details about this situation when n = 2. In this 
case we shall consider the generalized half-plane 

D = D2 = {(zl9z2) E C2: Imz, > |z2|2} 

which is the image of B2 under the Caley transform 

This mapping of (col9(o2) onto (zx,z2) extends to the boundary dB2 which is 
mapped onto dD = {(zj,z2): Im zx = \z2\ } = {(t + i\z\ ,z): t E R,z 
E C}. There is a group G that acts in a simply transitive fashion on 3£>. The 
elements of G can be identified with the set R X C; the image of (t + i\z\ ,z) 
E dD under the action on (T,£) E G is 

(t + T + 2 Imzf + /|z + | | 2 ,z + | ) . 

If we write (T,£) = (x3,(xj + ix2)/2) and make the correspondence of (T,£) 
with the matrix 

1 xx x3-¥(xlx2/2)\ 

(see example (11)) we obtain an isomorphism between the group of transfor-
mations G and the group H of such matrices (under matrix multiplication). 
The latter group is an example of a Heisenberg group. This gives us a natural 
identification of the spaces 3D, G, and H in each of which we can introduce 
ordinary Lebesgue measure; it is easy to check that the latter is a Haar 
measure for G and //. 

The Cauchy-Szegö kernel associated with D has the form 

k(Z, W) = /:((z1,z2),(co1,co2)) = <{i{G\ - zx) - 2z2cö2)"
2. 

Using this kernel we obtain the projection operator of L2(dD) onto the 
subspace consisting of boundary values of holomorphic functions (the method 
is the same as that used in the study of Bn). Observe that if Z = (^\,z2) 
= (/ + /|z|2,z) E dD then k(Z,0) = c(|z|2 - it)'2. We see, thus, that the 
"measure norm" m(Z) = (t2 + \z\ ) is particularly well adapted to the study 
of this kernel. Moreover, m(Z) is homogeneous with respect to the dilations 
8X, A > 0, given by 8XZ = (Xl/2t + /|A1/4z|2,\1/4z). We obtain a space of 
homogeneous type whose point set is 3Z) (or G, or H). The kernel k(Z,W) 
satisfies inequality (2.14) and, thus, preserves the associated space Hx (or Hp 

for p near but less than 1). 
These Hp spaces are also useful for the study of partial differential operators 

commuting with the dilations 8X (these generalize homogeneous differential 
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operators). An interesting example, studied by Folland and Stein [31], is the 
operator 

32 i i2 32 . 3 / 3 _ 3 \ . 3 
e« - "3Ï5Ï " |z | â? + lTt\2d2 " Hi) + ' aa? 

when a is not an odd integer. The fundamental solutions for ta turn out to be 

/ \z\2 + it \a/2 1 
e'\\z\2-li) (|z|4 + / 2 ) 1 / 2 ' 

Folland and Stein were able to use this, together with the theory of singular 
integrals, in order to obtain sharp estimates for solutions of the equation 
£«ƒ ^ 8- Singular integrals, Hp spaces and their maximal characterizations for 
the Heisenberg group are also treated by D. Geiler in his forthcoming thesis 
at Princeton University under the direction of E. M. Stein. The theory of 
Hardy spaces developed here, and its uses in the study of singular integrals, 
can also be used for this purpose and provides corresponding estimates in Hp 

and BMO. 
The Heisenberg group H we have considered is an example of a class of Lie 

groups considered by Rothschild and Stein [50]: the free nilpotent Lie groups of 
step r. Briefly, these groups arise in the following important construction. Let 
M be a manifold and Xx, . , . , Xn vector fields which, together with their 
commutators up to order r, span the tangent space at each point of M. Let us 
assume that these vector fields are free up to step r; that is, at each point of M 
the dimension of the space spanned by {X\,..., Xn) and their commutators up 
to order r is equal to the dimension of the free nilpotent Lie algebra of step r. 
As was shown by Rothschild and Stein, this is not a handicap in the study of 
the general situation. Then, there exists, at each point of M, a local coordinate 
system with respect to which the Xjs are (essentially) the generators of a free 
nilpotent Lie algebra. The homogeneous norm function on the Lie algebra can 
be used in order to define a quasi-distance on M that is well adapted for the 
study of differential operators involving the vector fields Xj. (In the above 
example, M = 9Z>, the XJs can be chosen as a real basis for the holomorphic 
vector fields on 3D.) This program is carried out in general in [50] for 
generalizations of the operators £a. A priori estimates are then obtained by 
studying singular integrals, first on the corresponding group and then on the 
space of homogeneous type M. It would be of interest to characterize the 
spaces HX{M) in terms of these singular integrals. 

Perhaps the simplest example of a noncompact group is the group Z (or Zn) 
of integers. This group, with the usual distance and counting measure, is a 
space of homogeneous type. The spaces Hp are easily characterizable in terms 
of the discrete Hubert transform: 

{fk) E Hx if and only if 2 \fk\ < oo and 2 \fk\ < oo, 

where fk = %*kf}l(k -j). 
Various characterizations of the Fourier transform 
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J(0) = 2 A ^ 
can be given as before. 

This example shows that the differentiable structure of the group is not 
strictly necessary in order to obtain a singular integral characterization of the 
space H1. A striking illustration of this fact occurs in the /?-adic case (see 
example (12)). There, it turns out that there exists a system of singular integral 
operators, analogous to the Riesz transforms, which characterize Hl. (See [61] 
where it is also shown that some of the subharmonicity inequalities of Rn have 
an appropriate analogue.) 

3. Proofs of the principal results. In order to establish Theorem A we shall 
need to know some general facts about the geometry and analysis of spaces of 
homogeneous type X. Many of these facts are proved in [17]; when such a 
result is not contained in this monograph we shall give a proof of it here. 
Throughout this section A denotes the constant in the inequality (2.1) and K 
is the constant occurring in the "triangle inequality" satisfied by the quasi-
distance d. 

THEOREM (3.1) (VITALI-WIENER TYPE COVERING LEMMA). Suppose E is a 
bounded set (i.e. contained in a sphere) in X such that for each x E E there exists 
r(x) > 0 (thus, {Sr(x\(x)} is a covering of£), then there exists a sequence of points 
Xj E E such that \$r(x)(xj)} is a disjoint family of spheres while {S4Kr(x )(*/)} is 
a covering of E. 

(See Theorem (1.2) on p. 69 of [17].) 

THEOREM (3.2) (WHITNEY TYPE COVERING LEMMA). Suppose U Ç X is an 
open bounded set and C > 1. Then there exists a sequence of spheres {Sj} 
= {Ss(xj)} satisfying 

(Ï)Ù= UJSJ; 

(ii) there exists a constant M = M (A, C,K) such that no point ofX belongs to 
more than M of the spheres Sj == SCs.(xj); _ 

(iii) Sj H (X - U) T̂  0 for eachj, where Sj = S3KCs.(xj). 

PROOF. For each x, r(x) = (l/SCK2)d(x, U') = (l/%CK2)min{d(x,y): y 
£ U) > 0 since U is open and X - U = U' # 0 . By (3.1) we can find a 
mutally disjoint sequence of spheres {S^x.^(xj)} such that U is covered by the 
spheres S4Kr^x^(xj). On the other hand, ii y E S4KCr(x.)(xj) then 

d(xpy) < AKCr(xj) = (\/2K)d(xp I/') < d(xp [/')• 

It follows that if we put Sj = 4Kr(xj) we have SSJ(XJ) = Sj C SCSJ(XJ) = 3^ 
C U. Thus, 

(3.3) £ /= USj S US,- C U. 

In particular, (i) is established. Moreover, since 3KCsj = \2K2Cr(xj) 
= (3/2)p(xy, U') we must have Sj f) U' ¥= 0 and (iii) is established. 

In order to show that (ii) is valid we shall make use of the following 
geometric property of spaces of homogeneous type (see Lemma (1.1) on p. 68 
of [17]): 



624 R. R. COIFMAN AND GUIDO WEISS 

(3.4) There exists a constant N = N(A,K) such that Sr(x) cannot contain 
more than Nn points {xt} satisfying d(xhXj) > rl~n when i ¥*j(n = 1,2, 
3, . . . )-

Now suppose x Œ Sj. We claim that Csj < d(x, U') = R since 

ICKsj = d(xj, U') < K[d(xj9x) + d(x, U')] < K[Csj + d(x9 I/')]. 

Consequently, if y E Sj, d(x,y) < K[d(x,Xj) + d(xj,y)] < 2ATi? and we must 
have Sj C S2KR(X)- Moreover, 

R = </(*, U') < *[</(*,*,) + €/(jcy, U')\ < K[Csj + 2C/&,] 

and it follows that Sj > R/{\ + 2K)CK. 
If x also belong to S/, / ¥= j9 the same argument shows S; C S2 #ƒ*(*)• Thus, 

all such points xi9 xj9 . . . belong to S2KR(X). But £,.(* )(*,•) n S^.jOcy) 
= 0 when i # 7 and this implies 

1 /£ 
</(x„x,) > minW*,),/•(*,)} = ^minfs, ,*,} > ^ ^ + 2flV 

It now follows from (3.4) that there cannot be more than M 
< Awiog24C*2(i+2*) spheres Sj containing x and (ii) is established. 

Property (ii) will be referred to as the M-disjointness of the collection {Sj}. 
We shall make repeated use of the following extension to spaces of 

homogeneous type of the Hardy-Littlewood maximal function 

(W)(*) = S U P { -TcT j s \f\dp. S is a sphere,x E S j . 

One can show, by using (3.1), that SDÎ/ is defined and finite a.e.for fGLl(X); 
moreover, we have the weak-type inequality: 

THEOREM (3.5). Iff E l) (X) there exists a constant C0 = C0(A,K) such that 

li({x E X: ( W ) W > a}) < (Q/a) || ƒ Id. 

(See Theorem (2.1) on p. 71 of [17].) 
From this result and the obvious boundedness of this maximal operator on 

L00 one establishes the existence of a constant Ap such that 

(3.6) \\m\\P<A\\f\\p 

when p > 1 (one can prove this directly as is done in the second chapter of 
[57] or one can appeal to the Marcinkiewicz interpolation theorem). 

A useful variant of the Hardy-Littlewood maximal operator is ^Jlpof 
<= (2R| ƒ l^0)1^0. From (3.5) and (3.6) we obtain the inequalities 

(3.7) /*({*: WPof)(x) > a}) < C0(\\f\\pJa)p° 

and, for/? >/?0 , 

(3-8> W%A < <%Jf%-

file:///f/dp
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It is often useful to use the centered maximal function of/: 

The operators 5DÏ and 3KC are "equivalent" in the sense that 

(3.9) <WJ){x) < (W)W < D(Wcf)(x), 

where D = D{A,K). This follows from the simple observation that if x 
£ Sr{y) then Sr(y) C S2Kr(x) C SK{l+2K>{y). Thus, 

i r ,,,, r^^d+z^v^h i ç |f,. 
M(sr(^))^w mö/ t * I ri^GO) JriW*))-k*M m M 

and we obtain (3.9) by making use of inequality (2.1). 
The centered maximal function is useful, for example, in the proof the 

following geometric result: 

LEMMA (3.9). If ƒ E Ll(X) has support in S0 = S^XQ) then there exists 
C, = Cl(A,K)such that 

£/« = {* E X: (Wlf)(x) > a} C S2KrQ(x0) 

whenever a> C,m5o(|/|) = Q O M S Q ) ) SS0 l / l ^ 

PROOF. We first observe that if d(x,x0) > 2A>0andr < r0thenSr(x) H 50 

= 0 . To see this, suppose^ E Sr(x) D 5 0 . Then 

2Kr0 < rf(x,x0) < *[rf(x,.y) + d(y9x0)] < K[r + r0] < 2tf0 

which shows that such a >> cannot exist. On the other hand, if r — rf(x,*0) 
> r0 then S0 C S2#/•(*)• This is also immediate: if >> E SQ 

rf(x,j) < K[d(x,x0) + rf(^0^)] < ^[r + r0] < 2A>. 

From the first observation we see that if d(x,x0) > 2Kr0 then J s ^ \f\dfi 
= 0 if r < r0. Thus,Jhe centered maximal function of ƒ satisfies 

™™-xzmf*uW+-r>r0 

Since ƒ has support in 50 we have 

If /• > r0, the second observation implies (we also use (2.1)) 

ftëb) < f f e ^ M ) ^ .2+log2A: _ r 

l*Sr(x))* v(Sr(x)) * 

Thus, if r > r0, mSp(je)(|/|) < On^fl/I) and we see that if p > Cm^fl/I) 

file:///f/dfi
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then {x: (Wlcf)(x) > /?} C S2Kro(x). By (3.9) it now follows that if a 
> DCmSo(\ ƒ |) s Cj m5o(|ƒ |) then Ua C S^C*) anc^ ^ l e m m a is proved. 

We are now ready to prove Theorem A. We have already observed that 
ƒ/PA D HPCO for 0 < p < 1 < <?, p < q\ thus, we need to establish the 
opposite inclusion relation. We shall do so by showing that a (/?, ^-atorn a(x) 
has the representation 

(3.10) a = 2 /0 ,0 , 

where each aj is a (/?, oo)-atom and 2 lo/l^ ^ B, B independent of a. More 
explicitly, we shall show that the linear functional a and 2 / «/#/» acting on 
^(l/rt-p a r e eclual when/? < 1; when/? — 1 (3.10) is an equality in Ü{X). We 
shall give an inductive proof. In order to state the induction hypothesis we 
need to introduce some notation: 

For each positive integer n let Nn denote the «-fold cartesian product of the 
natural numbers N9 N° s {0}. We write jn to represent the general element of 
Nn

9 the support of a is contained in the sphere S0 (the three defining properties 
of a (p, <7)-atom are satisfied with respect to 50), and we set b = [ii{S0)]'pa. 
We shall apply Theorem (3.2) with the constant C = 2K\ thus, the M 
occurring in part (ii) of (3.2) depends_only on A and K. From (2.1) we can, 
therefore, deduce that the ratio ii(Sj)/fx(Sj) does not exceed^ some fixed 
constant k0 = k0(A, K). Given a sphere S of radius s, S and S will denote 
spheres with the same center as S having radii 2Ks and 6K2s respectively. 

The induction hypothesis we shall establish is the following one: 
There exists a collection of spheres {SJ^J) E Nl for I = 0, 1, . . . , such that 

for each natural number n 

(3.11) 6 = M/c 0 a2 1 a / 2 Wj)^^ + 2 *,„, 
/ - 0 J) EN1 Jl Jl jn£N» Jn 

where a = a(p, q,A,K) is sufficiently large {we shall be explicit later) and 
(I) aj{ is a (p, co)-atom supported in Sj, / = 0, 1, . . . , n — 1; 
(II) U ^ . S , , C {x: (mqb)(x) > a*/2}; 
(III) {S^} is an M'-disjoint collection; 
(IV) the functions hj are supported in Sj ; 
(V)fhjdn = 0; 
(Wl)\hj](x)\ <\b(x)\ + 2k^yxsj(xy, 

Let us first show that if these properties are valid for each n G N then (3.10) 
holds. We begin by proving 

(3.12) WM?- 2 a"P 2 vŒj.) < B, 
H{S0) „=o j„eN" J" 

where B is independent of a. From (II) and (III) we have 

2 li(Sj ) < k0 2 KS, ) < k0M"J U S, ) 

< fc0M>({;c: (3R,&)W > a"/2}). 
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From (3.7) we thus deduce that 

627 

Jn 
^nKSjn) < c0k0M"^y\\b\fq. 

Consequently, 

2 *np 2 ii(Sj) < C0/c02* 2 {Ma™)» 
«=0 i„eiv AI = 0 

i i f 

Since ||6||* < JU(SO) we obtain (3.12) with B depending on/?, q, A, Kand a (as 
long as ap~qM < 1) but not on a. 

From (VII) we have 

ƒ lAjrfji < /X(SJ2/C^V « Ca>(S,J; 

thus, if we let Hn = 2/-„e;y fy„> using the M"-disjointness of {SJn} and the 
above estimate for 2 /*($),,) w e s e e that 

[\Hn\dli< 2 riA/Jrf/i < Ca" 2 II(SJ) < C(Mal~«)n\ 
J jn^N»J Jn jneN" Jn 

%. 

This shows that if p = 1 (and, thus, # > 1) the first series on the right-hand 
side of (3.11) converges to b in l)(X). Equality (3.11) is to be interpreted in 
the following way when/? < 1: If / E Ê ,̂ /? = l/p — 1, then 

[bldii^ Mk0a
ni ak 2 [ltfjk)]

l/p[ajkldVL+ 2 M * ' 

Inequality (3.12) assures us that the double sum on the right is well defined. 
The fact that \\Hn\\{ < 2 llfyjli < oo and Hn has bounded support (this 
follows from (II), (IV) and (3.9) if aq > C\) imply that the last sum equals 
ƒ Hnld\i and is well defined. Theorem A is then proved if we show that 
lim^oQ ƒ H„ld\)L = 0. To see that this is true let Xjn be the center of Sjn and 
suppose | | / | r ' = 1. Then, using (V) and (VII) and the above estimate for 
2 itsj.) 

< 2 MSjnT
l+l/p 4 W < c«" 2 WjJ]l/p 

< Ca"[(Ma-")"||fr||^]I/'' = C||ô||J/>(Ma>-«)',/>. 

Since p < # the last term tends to 0 and the theorem is proved if the induction 
hypothesis is established. 

Let us show that the hypothesis is valid for n = 1. Let U" = 
{x £ X: (mqb)(x) > a). By (3.9) f/a C S0 provided a" > C,. Assuming this 
condition on a, we see that Ua is a bounded open set. By (3.7) we have 

itU*) < C0(||6||,/«)? < Coa-"ii(S0). 
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Hence, if aq > C0 (which we assume to be the case) ii(U«) < ii(S0) < fi(X) 
and X - Ua cannot be empty. We can, therefore, apply Theorem (3.2) and 
obtain a Whitney-type covering of Ua by spheres {Sj) satisfying conditions (i), 
(ii) and (iii) with C = 2K. Letting Xj be the characteristic function of Sj we 
define 

Xj{x) iîxeu*, 
r)j(x) = j 2x,(x) 

0 tixGU* 

(observe that the Af-disjointness of {Sj} implies that 2x,-(x) is a finite sum for 
each x E Ua). We then put 

p ( x ) iîxGU*, 
ë^x)-\^ms.(Vjb)xj(x) iixEU* 

and hj(x) = b(x)T)j(x) - ms(rijb)xj(x) for all x E X. It follows that 

(3.13) K*) = Sot*) + . 2 hj(x) 

and we shall show that, by an appropriate normalization, this is the represen-
tation (3.11) of b when n = 1. This equality is a version of the Calderón-
Zygmund decomposition of the function b into the "good" function g0 and 
"bad" function H = 2fy. The induction proof we are presenting will show 
how we can keep refining this decomposition by applying it repeatedly to the 
bad function. 

If x $ Ua then |g0(x)| = \b(x)\ < (Ttqb)(x) < a;30 while if x G Ua 

Igotol < 2 ~-Js Hldix < 2 ^ [ - 7 ^ fs \b\qdixV < 2 *0<* 
at most M^/ ) ^ ibid K^/ ) L M*/ J ^ J ibid 
A/terms 

< (M£0>*. 

This shows that 
(1) \g0(x)\ < (Mk0)a. 
We have already observed that Ua C So; for x &_Ua, g0(x) = b(x). These 

facts, together with the inclusions Supp i C S0 C S0 imply 
(2) the support of g0 is within 5 0 . 

We also clearly have: 
(3) the support of hj is within Sj ; 
(4)Shjdp = 0. 

Since \\hj\\x < 2||fcx/111 = 2 ƒ$. |fc| dp. and the spheres S) are M-disjoint we must 
have 

2 WhjWx < 2 S ƒ, I6|rf/i < 2M f |6|4i < 2M\\b\\ 
j j J*J JU 

< 2M]\b\\qHS0)]
W < 2MKSo). 

30 That |6(x)| < (97^ 6) (x) holds for almost every x is true if we assume that ft is a regular 
measure. This assumption is tacitly made throughout this paper. 
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In particular, this shows that the sum in (3.13) is convergent in the L'-norm; 
from (4) and ƒ bd\i = 0 we thus can conclude that 

( 5 ) / g 0 4 * - 0 . 
It follows that a0 s g0/Mk0a[ii(SQ)fp is a 0, oo)-atom. Thus, we can write 
(3.13) in the form 

b~Mk0a[ti(S0)]
l/pa0+ 2 hj 

JEN 

which is the special case n = 1 of (3.11). Moreover, property (I) has just been 
established. (3) and (4) are parts (IV) and (V) of the induction hypothesis when 
n = 1. Since 

g Sj = U" = {JC: (mqb)(x) > a] C {JC: (Wlqb)(x) > a/2} 

property (II) is also satisfied. Property (III) is a consequence of the Whitney-
type covering we are using (property (ii) of (3.2)). Since TJ7(.X) < 1 we have 

\hj(x)\ < \b(x)\ + \mSj(Vjb)\xj(x) < \b(x)\ + *oW«x/*) 

and, thus, property (VI) holds. Similarly, we obtain (VII): 

This shows that the induction hypothesis holds for AI = 1. We now assume it 
true for n and will show that this implies its validity f or n + 1. 

Let Ujn = {JC G X: (WlqhJn)(x) > an+l}. Hypothesis (IV) tells us that the 
support of hjn is within Sjn. It follows from (VII), provided ofl > 2qk0C{9 that 

Clms.(\hjf)<Cxk0(2a")"<a^
+i\ 

From Lemma (3.9), therefore, we obtain 

Ujn = {x E * : (ÜR|AJ« )(*) > a^ + 1 ) } C SJn. 

Let {S}„,/} be a Whitney covering for UJn with constant C = 2K (see Theorem 
(3.2)). From (3.3) and (3.2)(ii) we have ULS,W = Ujn C 3^ and {S,w} is M-
disjoint. Since, from (III), we know that {SjJ are Mrt-disjoint it follows that 
the totality of spheres in the family {Sj^} are Mn+l disjoint. This establishes 
hypothesis (III) for n + 1. 

We now put 

and 

h; (x) if x £ Ui, 
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h, t = 
h)A - msjJhJ^jMJx), 

where 7jjn(x) = X s ^ W / 2 / Xs,„,,(*) f o r * G uj„ a n d is 0 if x £ VJn. If 
x E U;, therefore, " 

1*/»! < 2 \ms MMM < koMa 

at most 
M terms 

while, if x G £^ then \gJn(x)\ = |^ (x) | < (WlqhJn)(x) < a^"1. In any case 
Hg/Jloo < ^o^*"*1- Since the support of /^ is within Sjn C S)n and Ujn C S)n 

it follows that the support of gJn is within SJn. Moreover, ƒ Â /rf/A = 0 (which 
shows that property (V) is valid for n + 1). In the same way we showed that 
2 llfylli < 2̂ 11̂ 11! when the case n = 1 was considered, we can show 
2 / llfywlli < 2MWhjnW\- li follows, therefore, that 

h/ = gj + 2 A/ / 

is valid in Ü (X) (it is also true a.e. since, for each x, the sum on the right has 
at most M terms) and ƒ gjHdii = 0. Hence 

<j.-8jJll<oM«"+l(l®j.))V'] 

is a (/?, oo)-atom supported in the sphere Sjn. From this it follows that the 
representation (3.11) is true for n + 1 and so is (I). Property (IV) is trivially 
true. We have, from the definition of hjni and (VI), 

< {|6(x)| + 2^ / 9a" + ^ a « + 1 } x j » 

< {|6(*)| + 2^a«+1}xjnW 

as long as a > 2. This establishes (VI) f or M + 1. Property (VII) has a similar 
proof: from the definition of hjni 

K,(l^/)] , /? < 2K,(l*j*)r* 

<2[A: 0 m^( | / ! / n n]^<2A:^a ' ' + ». 

Finally, we establish (II): From (VI) we have (WlqhJm)(x) < (Wqb)(x) 
+ 2k^an. Thus, if x £ Ujn 

a"+l < (a»,Ay.)W < (3», ft)to + 2^ / ?a". 

It follows that a"+,/2 < (SW-6)(x) if a > 4 ^ and, thus, 



EXTENSIONS OF HARDY SPACES 631 

USJnii = U ( u S y A CUUJnc(xE X: (Wlqb)(x) > ^-] 
JnJ Jn \ I / Jn K *" J 

and (II) is valid for n + 1. 
Observe that we used the fact that a exceeds each of the following numbers: 

4ktf«, 2, 2{k0Cx)
x,\ Ctfq, Mx,{q~p\ Mx,{q-X\ Each of these numbers depends 

on /?, q, A and K and are independent of n. Theorem A is, therefore, proved. 
Let us now pass to the study of the dual space of HP{X). We begin with the 

case p = 1 and, toward this end, we first make the following observation: 

LEMMA (3.14). IfbE BMOq, 1 < q < oo, then \b\ G BMOq. 

In order to see this we note that if a function b satisfies: for each sphere S 
there is a constant bs such that 

{^i | èw^W<c 

where C is independent of S then b E BMOq and IHI§AfO does n o t e x c e ed 2C, 
if [i(X) = oo, or 2C + \fx bd\x\ if \i(X) = 1. This follows from 

<c+{/sfe-s(J(,r^}'/,<2c 
Lemma (3.14) now follows from this and the inequality 

\\b(x)\-\ms(b)\\ < \b(x) - ms(b)\. 

Since the infimum (supremum) of two numbers x and y is 

(x+y-\x-y\)/2({x+y+\x-y\)/2) 

it follows immediately from (3.14) that BMOq is a lattice. In particular, the 
function 

bN(x) = 

belongs to BMOq if 6 does. Recall that \\bfS\fo equals 9^(6), if ti(X) = oo, 
or VlJb) + \f bdii\, if /jt(X) = 1. It follows from the above considerations that 

N 
b(x) 
-N 

if b(x) > N, 
if-JV <b(x) <N, 
ifb(x) <-N, 

file:////bfS/fo
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\ma(b) if n(X) = oo, 

if n(X) - 1. \K\tlLo < 331,(6)+ ƒ ^</M 

Thus, in either case, we have (from the dominated convergence theorem) 

(3-15) IIMKw < mtilio 
provided N is large enough. 

Let q' be the conjugate index to q: (l/q') + (l/#) = 1. We assume 1 < <? 
< oo and, thus, 1 < q' < oo. Suppose ƒ = 2 «/#/ belongs to Hhq\ where a, 
is a (l,#')-atom supported in the sphere Sj, 2 l«yi < °° and £ is a bounded 
function on X. Then, assuming ƒ a, d/A = 0 for ally (which is always true if 
itX) - oo). 

1/ fbdn I f I I c I 

J ajbdpl = 2 l«yl J <*j(b — ms.(b))dfi.\ 

< 2 |«,|(j | « /> ) * (41**) - m5,(6)|VM(*))' 

< 2 \«j\(jffifSj l*W - »*/*)l'<H*)) '* < ( s l«yl)stt,(6). 

From this we can easily deduce \ffbdn\ < II ƒ ||(j)?') II&IIAMO whenever ƒ 
E H1,9 and 6 E L00. From this last inequality and (3.15), therefore, we 
obtain 

(3.16) ffbNdi\ < 4 | | / | | ( 1^ ) | | è | |^ 0 

whenever ƒ E Zf1*', 6 E BMOq> and AT is sufficiently large. 
Let Lg' = {ƒ E £*'(*): Support of ƒ is bounded} and put <$ = Hx«' 

H Lg'. Then, the linear functional Lb mapping ƒ into ƒ y&djn is well defined on 
3) whenever b E iîMO^ (since Z> is locally in Lq). By the dominated conver-
gence theorem, 

for ƒ E <fc This equality and (3.16) give us \LJ\ < ^f^^bt^o for all 
ƒ E <3) and * E 5MC^. But ̂  is dense in T/*1^ (a partial sum 2? <*/<*/ of an 
atomic representation ƒ == 2 «/«/ with 2 |«/| < 0 + e)ll/lli^' can be used to 
approximate an ƒ E HXq by elements of <$). Thus, L̂ , has a unique bounded 
extension on Hx>q which we also denote by Lb. In this sense we have 

BMOq c {HXqf 

and the linear functional norm \\Lb\\9 b E BMOg9 satisfies 

(3-17) ||L6|| < 4\\b\\fM0. 

file:///K/tlLo
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Now suppose L is a bounded linear functional on Hl*\ Let ||L|| be the 
norm of L. If S is a sphere in X let Lg'(S) = { ƒ £ L«\S)\ fsfdp = 0}. It 
follows that, iff E Lg(5), then 

a{x)^f{xMS)]-^\ ÏÏLï(S) 

is a (l,9')-atom supported in S. From this we also have ||/|li^ < [/*(£)] 
11/IWcs)- Hence, Lf is defined and 

\Lf\ < \\L\MS)f*\\f\\L,(s); 

that is, L is a bounded linear functional on Lg (S). Consequently, using the 
Hahn-Banach theorem and the Riesz representation theorem we conclude that 
there exists / E LP (S) such that 

(3.18) U-fsM 
for all ƒ E Lg (S).31 The function / is uniquely determined up to a constant; 
or, equivalently, if j ' s f I dp = 0 for all ƒ E Lg (S) it follows that / is constant. 
To see this choose h in Lq (S); since A - ms{h) E Lg (S) we have 

0 - fs l(h - ms(h))dfL « fs h(l - ms(l))dp. 

Since this equality holds for all h E Lq\S) it follows that l(x) = ms(l) for 
a.e. x E S. 

Let {Sy}/Li be an increasing sequence of spheres converging to X. We obtain 
a function lj = / satisfying (3.18) for each S) and, from the above argument, 
we see that the condition fSi Ijdp = 0 gives us a function / for which (3.18) 
holds for any sphere 5. In particular, if a is a (l,<7')-atom supported in S we 
have 

||L|| > \La\ = \fsladii\ = \fs[l - ms(l)]ad^ 

Iff is supported in 5 and has 13 norm 1 then a = 2~~l[ii(S)]~l'q(f - ms(f)) 
is a (l,<7')"atom- Using this atom in the last expression and using the fact that 
l~- ms{l) has mean 0 on S we obtain 

WS)1W 
< 2||L||. 

Taking the supremum of the left side over all ƒ supported in S such that 
ll/ll,- = 1 we obtain 

U 1/ - «$(/)!< 
1/? 

< 2||L||. 

31 In order to apply the Riesz representation theorem we must assume q' < oo. This is not a 
restriction, however, since, by Theorem A, H1,00 — Hl,r for 1 < r < oo. 
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This shows that / G BMOq with 9^(/) < 2||L||. In case \x{X) ~ 1 we also 
must have \fx Idp] = \L>xx\ < 1- Thus, in general 

(3-18) \\l\\fM0 < 3||L||. 

The characterization of the dual of Hp for/? < 1 is simpler to obtain. Using 
Theorem A we see that we can restrict our attention to Hp'x. Let a = \/p - 1 
and suppose / E £ f l , Recall that the elements, h, of Hp%x are, by definition, 
continuous linear functionals in £*. Let us write </*, /> to denote the value of 
the linear functional h at / G £a. Then the mapping L/: h -» {hJ) is a well-
defined linear functional on HPil. If h = 2 «/#/ is an atomic representation 
of h in terms of (p, l)-atoms we then have (see the estimates preceding (2.3)) 

KM>I = |s «,-ƒ V M | < IMIW 2 K-l < ll/||(a)(s Kl")'7'. 

We see, therefore, that 

(3-19) \L,h\ < ||/||(a)||/*fr 

Now suppose L is a bounded32 linear functional on Hp,{. As was the case 
when p = 1 we can show the existence of a function /, bounded on each 
sphere, such that La = f la dp for each (/?, l)-atom a (we use the same 
argument as before except that now q' = 1 and q = oo). In particular, if ƒ is 
supported in a sphere S and Wf^ = 1 then (l/2)[/i(S)l l"1/p(/- /w5(/)) = a 
is a (p, l)-atom and, thus, 

\L\\ > \La\ = | fs [I ~ ™s(/)]arf/i| = 2-VS)]17'-11JT [/ - m 5 ( / ) ] / ^ 

Taking the supremum over all such ƒ we obtain 

hs(l-ms(l))L<2\\L\MS)]a. 

It now follows from a straightforward argument that there exists /0 = / a.e. 
for which 

Mx)-l0(y)\<4\\L\MS)]a, 

where S is any sphere containing x and y. We then have 

(3.20) Il/oïl" < 5||L|| 

whether the measure of X is finite or infinite. 
This establishes Theorem B. Inequalities (3.17), (3.18), (3.19) and (3.20) 

show that the norms of the functions representing the linear functionals are 
equivalent to the norms of the linear functionals. 

In the argument preceding (3.19) we showed that \(h91}\ < | |/ |r ' 2 Wjl for 

32 That is, there exists ||L|| < oo such that \Lh\ < ||L|| ||A||Jff. The space HpA is not a normed 
linear space, but it is obvious (by the usual arguments) that this notion of boundedness is 
equivalent to the continuity of L. 
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h G Hp'1. In view of this inequality it is not surprising that the space Bp C £* 
consisting of linear functionals of the form h = 2 «/#/> where 2 l«/l < <*> 
and dj are (/?, 1)- (or (/?, oo)-) atoms, has a dual that is also characterized by 
ta (with the norm \\h\yp' taken as the infimum over all sums 2 l«/l> where 
/? = 2 «/#/> 2?̂  is a Banach space). In the classical case X = T, Bp can easily 
be identified with the space of distributions h whose Poisson integral uh{z) 
= uh{x + /y) satisfies 

11%- ƒƒ kW|(l-M)^2A^<oo; 

moreover, the norm ||A|[p is equivalent to the infimum of all sums 2 l«/| arising 
from all the representations h = 2 o/tf/- From our point of view these spaces 
are not useful since the intermediate interpolation spaces between L2 and Bp 

are not LPo(T) spaces when p0 < 1 (in fact, they are spaces of harmonic 
functions in Ifo[(l - \z\)l/p°~2dxdy]. 

Let us now pass to the proof of Theorem D. We use the notation introduced 
in §2: in particular, B is a sublinear operator of weak-types (HPx,px) and 
(Pi'Pi) where 0 < px < 1 < p2 < oo, px < p2. Let us first suppose 1 </?, 
where \/p = t/px + (1 - t)/p2 (0 < * < 1). Choose # so that 1 < q < /? and 
let 90?̂  be the maximal function operator introduced just before inequality 
(3.7). Let ƒ G U{X) and, for a > 0, 

0* = {x G l : ( ^ / ) W > a } , 

As was the case in the proof of Theorem A we obtain a Calderón-Zygmund 
decomposition of ƒ from a Whitney covering of 0a by balls Sj satisfying (i), (ii) 
and (iii) in (3.2) with C = 2K: 

(3.21) ƒ = & + *« 

where ga(x) = g(x) = f(x) if x $ 0<\ ga(x) = g(x) = 2 / rnSj(y}jf)xj(x) when 
* G 0a, hj = /rjy - mSj(r}jf)xj and Z*a = A = 2 / fy- We then have 

(see the proof of induction hypothesis (VII) when n = 1; the constant 
c = 2k(/q depends only on X). It follows, therefore, that 

aj = hj/caMSj)f* 

is a (/>,,<7)-atom. Thus, A = ca 2 ; [|«(S/)]VAa, G / /^ (= # * « ) with norm 
\\h\\Pi ~ | |A |^ not exceeding 

(3.22) M * 2 K-S/) < M(ca)"V(Oa). 

Let us first suppose/>2 < oo. Then, the weak-type hypotheses imply 
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/>-' \\Bf% = /0°° a^viiy E Y: \(Bf)(y)\ > a})da 

< JT aP~]My e Y: \(BSa)(y)\ > a/2}) 
+ v{{y e Y: \(Bha)(y)\ > a/2}))da 

<X « " ( JT"*) ^ X aP {—) W!M*-

In order to estimate the second integral we make use of (3.22) and (3.8) in 
order to dominate it by 

M{2cMx)*f™ aP^^)da^p-xM{2cMxY'\\mqf\\P < (const)||/||/. 

In order to estimate the first integral we write 

Jo" aP~"2~2{fx \8a(x)\P2Mx)}doc 

=X°° «™- 2 {£ + J™. I * W I * * M } * . 

But, as in the proof of Theorem A, we can show that \g(x)\ < ca for all 
x E: X; thus, 

Jf a'~'2~2{.i i*toi**(*)}<k < (const)/0°° «^yo«)& 
= ( cons t ) | | ^ / | | ; < (const) ll/li;. 

Moreover, 

X00 aP"A_1{L-o. I S M I ^ W } ^ 

< ƒ* 1/wlP2{X/wi « ^ ' ^ M - ^ ƒ* l/WI'W. 

Collecting all these estimates we obtain the desired inequality \\Bf\\p < (const) 
• H/ljp and it is clear that the constant in this inequality depends on M\9 M2, 
P\,P2 and t9 but not on ƒ E LP(X). If p2 = oo the situation is simpler since 
ll̂ &Jloo < ^ H g J L < cM2<* and, consequently, {y E Y: \(Bga)(y)\ 
> cAf2«} is empty. Thus, 
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f*Pp-ip({yS Y:\(Bf)(y)\>fi})dfi 

< (2cM2)
pf™ ap~x[v{{y: \(Bga)(y)\ > cM2a}) 

+ *{y--\(Bha){y)\>cM2a})]da 

= (2cM2)
pfo°° ap~xv{{y: \(Bha)(y)\ > cM2a})da. 

Now we can use the assumed weak-type (HP],px) assumption and proceed 
with an argument similar to that used above to obtain the Lp-boundedness of 
B. 

The proof of the theorem for the case/? < 1 is simpler. It suffices to estimate 
\\Ba\\p when a is a (p, oo)-atom. When this is the case it is clear that 
a = [ix{S)yPx~~x'pb (S is a supporting sphere for a\ where b is a (p{ ,/?2)-atom. 
Thus \\a\\HPi < [ii(S)] Pl- Using this estimate and the weak-type hypotheses 
we then have, putting a = [f*(S)]"~ , 

p-x\\Ba\\p = /o°° ap~xv{{y: \(Ba)(y)\ > a))da 

= Mx
p/{p-px) + M{/{p2-p). 

The conclusion of Theorem D now follows easily from this. 
The proof of Theorem E, when p0 < p < 1, is an adaptation to spaces of 

homogeneous type of the argument given in [58] which dealt with the classical 
Hp spaces. When 1 < /? < px one can use an extension of the proof given by 
Fefferman and Stein in [29]. We shall not give a detailed proof of Theorem E 
(it is written up in [45]); rather, we shall indicate what is needed in order to 
extend these arguments to our situation. 

Let us first consider the case 1 < p < px. Here, as in [29], the theorem is 
obtained by showing that the adjoint operator Bf maps LP boundedly into LP . 
In order to achieve this one makes use of the just established duality result for 
Hx in order to convert boundedness from Hx to Ù into boundedness from L°° 
to BMO. By employing a maximal operator that is particularly well adapted 
to BMO functions one can then reduce the problem to a classical interpolation 
theorem involving only //-spaces. This maximal operator was introduced for 
this purpose by Fefferman and Stein [29] when X == Rw. Its definition and 
basic properties extend naturally to spaces of homogeneous type: Given a 
locally integrable function ƒ we let 

ƒ«(*) = S » P { ^ f s \f(y) - rns(f)\dix(y): x E s } 

(as usual, S denotes a ball in X). Clearly/» < 220Î/and H/*^ < | | / | | ^ 0 . A 
basic property of this maximal operator is that, for 1 < p < oo, it dominates 
the Hardy-Littlewood maximal operator. When fi(X) = oo, in fact, we have 
||/* |jp < Ap\\f%|jp. The precise general statement of this result and its use for 
the interpolation result are found in [45]. 
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When p0 < p < 1 this interpolation result was obtained independently by 
Calderón and Torchinski in the case dealing with R" endowed with the 
distance of example (2) of [3]. 

4. Further observations. We have seen how Hx can be used effectively as a 
substitute for l). It is natural to suppose that the space BMO plays the same 
role vis-a-vis L°°. The proof of Theorem E which we have just described 
furnishes us an example of this situation. In fact, many results can be obtained 
efficiently by making use of BMO. This point is fully exploited in the work of 
Fefferman and Stein [29]. We shall see further evidence of this situation after 
having made some comments concerning the functional analysis properties of 
HX(X) and BMO(X). Before doing this, however, we would like to express, 
again, our gratitude to Y. Meyer since many of the observations we shall make 
are either due to him or took place when discussing this work with him. 

It follows easily from property (3.4) that if X is complete with respect to the 
quasi-distance then it is locally compact (this was pointed out to us by R. 
Levy). Since this is the situation in all the examples we have given of spaces 
of homogeneous type, we shall assume henceforth that X is locally compact 
(or complete). It turns out that Hl is one of the few examples of a separable, 
nonreflexive Banach space which is a dual space. In fact, let KMO33 denote 
the closure in the BMO norm of the space C0(X ) of continuous functions with 
compact support. One can then prove the following result: 

THEOREM (4.1). H l is the dual of VMO. More precisely, each continuous linear 
functional on VMO has the form (fv) = Sxiv^ for a^ v e Q> where f 
E H\ and \\f\\H\ is equivalent to the linear functional norm. 

This result is a generalization of the theorem of F. and M. Riesz (see 
Sarason [52] in this connection). It shows that any Borel measure v satisfying, 
fori/ G CQ(X)9 

/ 
vdv < c\\v\ BMO 

must be absolutely continuous with Radon-Nikodym derivative in Hx 

Theorem (4.1) is a consequence of a general result in functional analysis ana 
a lemma that will be proved below. The functional analysis result (see Exercise 
41 on p. 439 of [22]) is the following: Let X be a locally convex linear topological 
space and T a linear subspace ofX*. Then T is X-dense in X* if and only if T is 
a total set of Junctionals on X. The lemma we need is: 

LEMMA (4.2). Suppose ||^||#i < 1, k = 1, 2, . . . , then there exists ƒ G H1 

and a subsequence (fk) such that 

Jim Jfkjvdix = Jfvd[i 

for all v G C0. 

33 These initials stand for "vanishing mean oscillation". A space VMO was introduced in the 
classical setting by Sarason [52]. It is somewhat different from ours; we adopted a modified 
version for which (4.1) holds. 
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In our case X = VMO and T = Hx. The fact that T is a subspace of AT* 
follows from the case p = 1 of Theorem B (since A" is a subspace of BMO). 
In particular, if < ƒ, i/> = 0 for all ƒ E / / * = T then v must be the zero element 
of VMO (C BMO). Thus, Tis total. By the above stated functional analysis 
result, it follows that Tis (weak*) dense in X*. Since the spaces we are dealing 
with are separable this is equivalent to the statement: if x* E X* then we can 
find a sequence {fk} in T(= Hx) such that (fk,v) -* (x*,v) for all v 
EL X {= VMO). By the Banach-Steinhaus theorem we can conclude that the 
sequence of norms \\fk\\H\ is bounded (this requires an elementary, but 
somewhat technical, argument showing that the supremum of \f vd\x\ over all 
v E C0 with IMIflMO < 1 defines a norm that is equivalent to \\f\\H\ whenever 
ƒ E Hx. The principal step in this argument involves showing that ||ôe||5MC> 
< c\\b\\BM0 where be(x) = [l//x(Se(x))] J5t(jc) *(^)«W^))- W e c a n n o w i n v o k e 

Lemma (4.2) to obtain a subsequence {fk) and an ƒ E Hx such that 

<x*,i/> = lim<4,t/> = Jim f̂ .i/rfjüi = f fa du 

for all v E C0. From this it follows that the linear functional x* is represented 
by ƒ and we obtain Theorem (4.1). 

In order to establish (4.2) we will need two lemmas. The first follows from 
a simple diagonalization argument: 

LEMMA (4.3). Suppose Xj > 0,y, k = 1, 2, . . . , satisfies 2/11 tf < 1 /<w 
eac/i /c = 1, 2, . • . , then there exists an increasing sequence of natural numbers\ 
k\ < k2 < • • • < kn < • • • such that l i m ^ ^ XĴ  = Xjfor eachj and 2 j^i fy 
< 1. 

The second lemma is of a geometric nature. For simplicity we consider the 
case where the spheres of radius r have measure r (and (̂A") = oo). By an 
"atom" we shall mean a (1, oo)-atom. 

LEMMA (4.4). Suppose n is an integer. Then X is the union of balls S", i = 1, 
2, . . . , of measure fln, where /? = /i(X) > 1, such that no point belongs to more 
than N of these balls (N is independent of n) and each ƒ E Hx has the 
representation 

00 00 

ƒ= 2 2 W . 
1=1 n—-oo 

where a" is an atom supported in S" and 2/,« \^H\ < cll/ll//i' 

We shall sketch the proof of this lemma. If B is any sphere and ÎB is the 
smallest sphere containing all those balls intersecting B and having the same 
radius as B then the ratio [i(B)/ii(B) is bounded independently of B. Let /? be 
such a bound. An argument similar to the one used to establish (3.2) shows 
that X can be covered with balls 5f, B\, . . . , B", . . . of measure fin that are 
almost disjoint. Moreover, this can be done in such a way that {bj} is a 
sequence of mutually disjoint balls and, for eachy, bj has the same center as 
Bj and a radius a fixed multiple (depending only on A and K) of the radius of 
Bj . Let ƒ == 2 ^kak' Without loss of generality we can assume each ak is an 
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atom supported by a sphere of measure /?" for some n (the infimum of 2 I Ay I 
over all such decompositions differs from \\f\\H\ by a constant multiple that 
depends on /? but not on/). We make our choice of the representation of ƒ so 
that 2 I Ay I < c\\f\\H\ (c independent of f). Let n = 0 and consider all atoms 
Gj whose supporting spheres have measure 1 and intersect i??. The sum of 
terms Xkak involving these atoms is supported in a sphere S\ of measure /î and 
can be written in the form X\ a\, where axx is an atom supported in S\. Now 
consider the remaining atoms whose supporting sphere has measure 1. Collect 
those intersecting B® and, similarly, obtain \\ a\. Continue inductively until all 
atoms supported by spheres of measure 1 are exhausted. Now let n = - 1 and 
do the same for atoms whose supporting spheres have measure /?"* and 
intersect B\X. We obtain A? a?, A ^ , Next, consider n = 1, etc. Observe 
that, by definition, X^aJ is a sum 2 \<*k = aj over only indices k such that 
ak has a supporting sphere of measure /?w~' meeting BJ~X. Thus, \\a.j\\^ 
< 2 W\fiX~n (the sum is over this set of indices). Hence, we let X" 
= ||a/Hooj^S/1) < ft 2 |A*|. By our construction, these indices occur only 
once. Thus, we obtain the last inequality in (4.4). The almost disjointness of 
the sequence S/1, Sf, . . . follows from the disjointness of the sequence 
b\~~l

9 bc*1, . . . and the fact that the balls in each of the two sequences have 
the same radius. 

We are now ready to prove Lemma (4.2). We write fk — 2/> tf(k)a"(k) as 
in Lemma (4.4). We can suppose that the coefficients A"(A:) are nonnegative 
and, applying Lemma (4.3) we can assume limk_+00X?(k) = X? exists for each 
(/, n) and 2/,« K < 2. For each fixed (/, n) the atoms af(k) are supported by 
the sphere S" for all k and are uniformly bounded. Thus, there exists a 
subsequence of af(1), off(2), ...9af(k)t . . . converging weakly to a function 
a? (that is 

Ssf < ( * > ^ ~* fsp
 a*VdV 

for all (p E l}(S")). Applying, again, a diagonalization argument we can 
assume a" (k) -» af as A: -* oo for all (i, w). We let ƒ = 2 X"a?. It is clear that 
ƒ E ƒ/*. It remains to be shown that l i m ^ ^ ƒ fkvd(i = ƒfvd\i for all v E C0. 
We write 

f W / * - ( 2 + 2 + 2 )2A?(*)fflf(*W/A-

The last sum is dominated by a constant multiple of fTN
 2 / Î>N 2 / A?(k) \\v\\i 

which is small provided N is large. Also if N is large we have \v(x) — v(xf)\ 
< e for x E S/1 if x" is the center of S? and « < -AT. Thus, the second sum 
is dominated by 

2 2X?(*) 
n<-iV i 

fa!(k)(x){v{x)-v(x!)}dp(x) < e . 

The first sum involves only a finite number of terms, independently of k (here 
we use the almost disjointness, for each «, of the spheres S" and the fact that 
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the compact support of v can only meet a finite number of these spheres since 
their radii range only from fi~N to fiN)> Thus, the first sum tends to 
S Œ-N^n^N 2 / )tfa")vdii which, for the above reasons, is close toffvdn if N 
is large. This establishes (4.2) and, consequently, Theorem (4.1) is proved. 

This theorem shows, in particular, that whenever L1 (A" ) is not a dual space34 

Hl(X) is a basically different space. Another way to see that HX(X) differs 
from l} (X) is to exhibit an unbounded function in BMO{X). For a wide class 
of spaces of homogeneous type we obtain a collection of such functions by 
letting g = log v*, where v is a nonnegative locally finite measure such that 

p*(x) = sup ^—{ < oo 

for almost every x (with respect to /x). In particular, if v is a point mass at x0 

then log m(x,x0) E BMO (here m denotes the "measure distance" mentioned 
in footnote 20). These functions cannot be bounded unless x has a finite 
number of points. 

Let us recall, once again, that a most basic result in the theory of Hp spaces 
is their characterization in terms of maximal averages (in the classical case we 
are referring to [2]; for the «-dimensional case see [29]). During the course of 
a conversation with Y. Meyer, the three of us observed that a recent proof of 
the duality result between Hx and BMO, due to L. Carleson [8] can be 
extended to the general setting of spaces of homogeneous type provided a 
certain geometric assumption is added. From this one can then obtain a 
"maximal function" characterization of H{. The result of Carleson, in the 
general setting, can be formulated in the following way: 

Let {kr(x, y)}, r > 0, be a family of nonnegative valued functions on X X X 
satisfying 

(1) kr(x9y) = 0 if d(x9y) > r\ 
(2) there exists constants c and C such that for all x, y e X 

k^x)>WM and MvKffl : 

(3) fx K(x»y)^y)== * f° r a " x G X; 
(4) there exists an a > 0 such that for all x^, x2> y E X 

IMw)-Mw>K^p^]". 
When X = R such a family is obtained by choosing a nonnegative "bell-
shaped" Lipschitz function <p supported by the interval (-1/2,1/2), having 
integral 1 and putting kr(x9y) = (fyV)<p((x - y)/r). The more general geomet-
ric assumptions needed for constructing such a family can be stated in terms 
of the measure distance m as follows: there exists e > 0 such that 

34 This is, in fact, the usual situation. The space Û of absolutely summable sequences is 
exceptional: it is the dual of CQ, the space of sequences converging to 0. The proof we have just 
given, among other things, shows that HX{X\ in general, is similar to Z1. 
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whenever Bx(By) is a ball containing x(y). If this condition is satisfied 
Carleson's duality proof is based on a characterization of BMO functions: 

THEOREM (4.5). Suppose <p E BMO has support within a ball B C X then 
there exists a constant C = C(X) > 0, a measurable function r(y) > 0 and two 
bounded functions b, \p such that 

(a) q>(x) = ƒ kr{y){x,y)b{y)dix{y) + \P(x); 
(b) IHL < C\\q>\\BM0 <*nd U\[» < C\\cp\\BM0; 
(c) //ze supports of b and \f/ are within B. 

The maximal function of ƒ, with respect to the family {kr} is defined by 
letting its value at x E A" be 

rM-snpfkr(x,y)f(y)dii(yl 

Making use of (4.5) one can show that an integrable ƒ belongs to H] if and 
only if/* E V(X). 

It is not clear to us to what extent the above geometric condition is 
necessary for the validity of this characterization of H K Moreover, the original 
one-dimensional methods in [10] and their extension to n dimensions by Latter 
are applicable in several of the examples of spaces of homogeneous type we 
have presented here; they yield a direct atomic decomposition of these 
"maximal function" Hp spaces, even for some p < 1. It would be of interest 
to clarify this situation further. 

Before ending this presentation we would like to say a few words about an 
important class of Hardy spaces for which an "atomic" theory has not been 
developed. These are the Hp spaces on the polydiscs, orginally introduced by 
Zygmund [64], and their extensions to Reinhardt regions and tubes (see [57] 
and [51]). It is reasonable to suppose that, in R", these spaces are related to an 
atomic Hx space generated by atoms whose support lies within rectangles with 
sides parallel to the axes and the cancellation properties occur along each axis. 
For example, a rectangular (1, oo)-atom on R2 is a function supported in the 
rectangle R, satisfying |a(*,.y)| < VIR l for all (x,y) E R2 and 

/
00 /*00 

a(x9y)dy = 0 = / a{x,y)dx. 
-oo J—oo 

These atoms generate a subspace § ! of our "cubic" Hl(R2). The latter is 
characterized by the Riesz transforms. It is easy to see that § ! is invariant 
under the iterated Hubert transforms. Carleson and Fefferman showed, 
however, that this property does not characterize §\ Nevertheless, it may turn 
out to be another useful substitute for L1. A natural question is to see if the 
interpolation theorems we have considered in this exposition are valid here. A 
positive result along these lines would certainly imply some interesting 
multiplier theorems. Another question is to see if there are "natural operators" 
characterizing §1, 
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