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1. Introduction. In this paper, the projective metric of Hilbert(1) is applied

to prove various extensions of Jentzsch's theorem on integral equations(2)

with positive kernels. In particular, it is shown that Jentzsch's theorem re-

duces to the Picard fixpoint theorem(3), relative to this projective metric.

A natural setting for generalizing Jentzsch's theorem seems to be provided

by the theory of vector lattices(4). A bounded linear transformation P of a

vector lattice L into itself will be called uniformly positive if, for some fixed

e>0 in L and finite real number K, independent of/, we have

(1) Xe ̂  fP g K\e for any/ > 0 and some X = X(/) > 0.

Theorem 3 below shows that Jentzsch's theorem applies, in generalized form,

to any such operator P.

The method is also applied to various other cases: in §5, to a class of

integro-functional equations to which the usual proof would not be applica-

ble; in §8, to a class of semigroups including various multiplicative proc-

esses^).

2. Projective metrics on line. For convenient reference, we derive some

basic formulas regarding the effect of projective transformations on projective

metrics. In homogeneous coordinates, the first positive quadrant joins (0, 1)

with (1, 0) by "points" (/i, fi). This is mapped onto the hyperbolic line

— oo <u< + oo by the correspondence Ln(/2//i) =«. We define

(2) 6(f, g) =   | Ln v - Ln u |   =   | Ln (f2gi/figi) \ .

Since f2gi/fig2 is the cross-ratio R(f2/fi, gi/gi', 0, oo), 0(f, g) is invariant under

all projective transformations mapping the interval 0 <f2/fi < + °° onto itself.

We next consider a general projective transformation

Presented to the Society, December 29, 1955; received by the editors June 30, 1956.

(*) Math. Ann. vol. 57 (1903) pp. 137-150. For a modern exposition, see H. Busemann
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(3) P: y= xP = (ax + b)/(cx + d), * = ft/fu

which maps 0<x< °o onto a proper subinterval of 0<y< oo. Without loss

of generality, since y—>l/y is an isometry for 6(y, y'), we can assume that

order is preserved. That is, we can assume x>x' implies xP^x'P. Since

0P = b/d, clearly b and d have the same sign; since xP = 0 has no positive

solution, b and a have the same sign; since xP = qo has no positive solution,

d and c have the same sign. Hence we can assume a, b, c, d positive in (3).

Furthermore, since

(4) y' = dy/dx = (ad - bc)/(cx + d)2,

we can assume ad>bc.

We now consider the ratio of hyperbolic distance differentials d6(y)/dd(x)

= xdy/ydx. By (3) and (4), this is d8(y)/d6(x) = (ad — bc)x/(ax+b)(cx+d).

By the differential calculus, the maximum of this (i.e., the minimum of its

reciprocal) occurs when ac = bdx~2, or x = (bd/ac)112. Substituting above and

simplifying, we see that P contracts all hyperbolic distances, by a factor whose

supremum is

(5) N(P) = V~ ,      where v = (ad/bc) > 1.
v + 2(v)1'2 + 1

We call N(P) the projective norm of P. Because of its definition, as the

supremum of distance ratios

(6) N(P) = suP [e(fp, gP)/e(f,g)},

we have immediately

(6') N(PP') ^ N(P)N(P').

Also, if X = Ln (ad/bc) is the length of the segment onto which P maps the

first quadrant, then by (5), we have

„i/4_„i/4      2sinh(X/4) X
(7) N(P) = -= --— = tanh — •

v1>i+ vlli      2cosh(X/4) 4

The intervention of hyperbolic functions is most appropriate!

3. Convex cones. Now let C be any bounded closed convex cone of a real

vector space L, of finite or infinite dimensions. It is convenient to make a

central projection of Conto its (convex) intersection C(~\H with a hyperplane

H, cutting each ray of C in exactly one point; we can then discuss C and

CC\H interchangeably, as subspaces of projective space.

Since C is a bounded closed convex set, every line intersects C in a closed

segment. Hence, if f^g in H, the intersection of the line l(f, g) with C can be

mapped onto the line 0 ^x ^ oo of §2 so that/4 <gA by a unique affine trans-

formation A. We define
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(8) e(f,g;C)=d(JA,gA).

If / or g is a boundary point, B(f, g; C)= <*>. We call 8(f, g; C) the projective

metric associated with C.

The following result is well-known(6).

Lemma 1. For any aEC, the set A of rays f EC satisfying 8 (a, /; c) < + oo is

a metric space relative to the distance 8(f, g; C).

It is well known(6) that, if CC\H is an ellipsoid, then 0(f, g; C) makes Cinto

a hyperbolic geometry. It seems not to have been observed, however, that the

following example leads to the Perron-Frobenius(7) theory of positive mat-

rices.

Example 1. Let C be the cone R of "positive" /^0 satisfying/ij&0, • • • ,

/n=iO in real «-space, and let 77 be the hyperplane S/i = l. In this case, the

disconnected components of CC^H are the interiors of its cells, where CC\H

is regarded as a simplex.

The theorem of Jentzsch can be deduced very simply, as we shall see be-

low, from the following special case.

Example 2. Let L be the space of continuous functions, in the usual Ban-

ach lattice norm ||/|| =sup \f(x)\, and let C be the cone L+ of non-negative

functions. Then the functions which are identically positive form a connected

component under 6(f, g; L+).

Similarly, generalizations of Jentzsch's theorem can be deduced by con-

sidering other special cases, such as the following.

Example 3. Let B be the Banach space of bounded measurable functions

on the unit interval, with the norm ||/|| =sup \f(x) |. For any positive constant

M, let C be the cone of functions satisfying

0 < sup/(x) g Minff(x).

We omit proving that the cones in question are closed in the relevant

Banach spaces, if the origin is included.

4. Fixpoint theorem. Let P be any bounded linear transformation of a

Banach space B, which maps a closed convex cone C of B into itself. The

C-norm N(P; C) of P is defined as

(9) N(P; C) = sup [0(fP, gP; C)/6(f, g;Q],

for pairs/, gEC with finite 8(f, g;C).

Lemma 1. If the transform CP of C under P has finite diameter A under

8(f, g; C), then

(9a)_ N(P, C) = tanh (A/4) < 1.

(6) See the refs. of Footnote 1.

(7) G. Frobenius, Sitzungsberichte der Berlin Akad. Wiss. (1908) pp. 471-476 and (1909)

pp. 514-518 and references given there.
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Proof. If 6(f, g; C) < + =o, then/ and g lie on a segment s(a, b) of C. The

image segment s(aP, bP) ^ CP; hence 0(aP, bP; C) ^A. By (7), we infer

6(fP, gP; C)/6(f, g; C) ^ tanh (A/4).

Hence, by (9), N(P, C) ^tanh (A/4). To show that equality holds, we take

a sequence of inverse images /„, g„ of suitable nearby pairs of points on seg-

ments s(c„, dn) of lengths A — 2~n or more, and use (7) again.

If CP has infinite diameter, then similar considerations show that N(P, C)

= 1. (The fact that N(P, C) g 1 is immediate from (7).)

Theorem 1 (Projective contraction theorem). Let N(Pr; C) <1 for

some r, and let C be complete relative to d(f, g; C). Then, for any fEC, the se-

quence of fPn converges geometrically to a unique fixpoint (characteristic ray)

cEC.

Proof. If N(Pr; C)<1, then CPr has a finite hyperbolic diameter, by

what we have just seen. Hence 6(fPr, /Pr+1; C) < + <*>. More generally, if

g>0 is the integral part of (n/r), then (writing 6(f, g; C) as d(f, g))

6(fPn, fP"+1) ^ N(Pr;C)"-l8(fPr,fPr+1).

Hence, as in the proof of Picard's Fixpoint Theorem(3), {/Pn} is a Cauchy

sequence. By the assumption of completeness, the Cauchy sequence con-

verges to a limit cEC. Since P is bounded, cP = c, and

||/P» - c\\ < Kp",

where p = A7(Pr; C)l/T, and K< + oo. The uniqueness of c is immediate, since

cP = c and c*P = c* imply

6(c, c*) = 6(cPr, c*Pr) ^ N(Pr, C)6(c, c*),

all relative to C. Since N(Pr, C) <1, this implies B(c, c*) =0.

Corollary 1. If some CP* has finite projective diameter relative to C, then

the conclusion of Theorem 1 holds.

5. Applications. To apply Theorem 1, one must verify that the cone C

involved is complete in the projective metric 8(f, g; C). This is obvious in the

case of Example 1, from the known(6) facts about finite-dimensional projec-

tive metrics. The cases of Examples 2—3 are also easily covered. We now give

some applications of Theorem 1 based on these special examples.

If P is the linear transformation corresponding to a matrix ||p,y|[, with

positive entries, then RP is a compact subset interior to R. The rays L touch-

ing R, in Example 1 of §3, are also a compact set, and the lengths 8(LP) of

their transforms vary continuously with L; hence RP has finite projective

diameter. We conclude, by Theorem 1, that P admits a positive eigenvector

cER, with cP = yc. Obviously, it is sufficient that P be non-negative, and

some power P* positive.
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Again, as in Jentzsch's theorem, let P be the operator defined by [/P](x)

=foP(x, y)f(y)dy, p(x, y)>o, with

(10) 0 < 7 = inf p(x, y) ^ sup p(x, y) = KI = S.

Choose L as in Example 2 of §3. Then, if e(x) = l, and/(x)^0 with ff(x)dx

= <p>0, clearly (I<p)e^fP^(S<p)e. Hence6(e,fP; L+) gLn K, and Theorem 1

applies to show that/Pn—>c, where cP=yc, c£2?.

Note that the preceding proof does not assume Fredholm's theory of

integral equations. It will be generalized in Theorem 3 below.

Projective metrics can be applied flexibly(8) to a variety of positive trans-

formations. The following application is fairly typical.

Theorem 2. Let p(x, y) satisfy (10); let Tx, • • • , Tn be any one-one Borel

transformations of the unit interval onto itself, and let ax, • • ■ , a„ be positive

constants with sum A. Then the integro-functional equation

(11) \fP](x) =  f P(x, y)f(y)dy + £ aif(xTi)

admits a unique positive characteristic function, such that

(12) I    p(x, y)c(y)dy + £ a{c(xTi) = yc(x).
Jo

Proof. Choose any M>K, and let B and C be defined for this Af as in

Example 3 of §4. Then, if f(x)EC and g(x) = [fP](x), we have

sup g(x) g Klj f(y)dy + MA inff(x),

inf g(x) ̂  I f f(y)dy + A inf /(*).

In view of the inequality ff(y)dy^inff(x), we infer

supg(x)      KI+MA
-^-< M, if K < M.
inf g(x) 2 + .4

Hence, the projective contraction theorem applies, and so the conclusion of

Theorem 2 follows.

6. Banach lattices. In a different direction, one can generalize Jentzsch's

(8) In this respect, the technique of projective metrics is analogous to the Leray-Schauder

technique applied by E. Rothe, Amer. J. Math. vol. 66 (1944) pp. 245-254, and by M. G.
Krein and M. A. Rutman, Uspehi Matemati&skih Nauk. vol. 3 (1948) pp. 3-95, to prove other

generalizations of Jentzsch's theorem. It differs from the Leray-Schauder technique in being

constructive and in not assuming complete continuity of P.
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theorem  to Banach lattices.  In making this generalization,  the following

lemma will prove convenient.

Lemma 2. Iw any vector lattice L, let L+ denote the cone of positive elements.

If f and g are in the same connected component of L+, then they are strongly

comparable in the sense that

(13) \f ^ g g R\f   and   pg £ f ^ Ruf, R < + ».

Actually, the smallest such R = exp [d(f, g; L+)].

Proof. The plane through/ and g intersects L+ in a domain affine equivalent

to a quadrant of the (x, y)-plane, with g2/gi ^f2/fi. In this quadrant, we easily

calculate (/i, f2) ^ (/i, g2fi/gi) ^R(fi, f2), etc. To complete the proof, consider

the (x, y)-plane as a projective line.

Corollary 1. On the unit sphere of any Banach latticed) L, we have

(14) ||/- g\\ g e" - 1, where 6 = 6(f, g;L+).

Proof. Suppose ||/|| =||g[| =1 in (13). Then by the monotonicity of ||/|| as a

function of |/|, X^l ±=1?X. Consequently

ll/-«ll =\\fVg-fr\g\\ £\\KKf-\f\\ = (R - 1)X||/||.
Since R = ee and X^l, the proof is complete.

Corollary 2. In the metric 6(f, g; L+), any 6-connected component of the

unit sphere of any Banach lattice is a complete metric space.

Theorem 3. /Iwy uniformly positive bounded linear transformation P of a

Banach lattice L into itself admits a unique positive unit vector c such that

(15) cP = yc, y> 0.

For any />0, ||(/Pn/||/P"!|) — c|| <Mp",for some finite M and positive p<l.

Proof. Choose C as the set L+ of positive elements. By Theorem 1 and

Corollary 2 of Lemma 2, it suffices to show that CP has finite projective diam-

eter. Since 6(fP, gP; C) =6(fP/\(f), gP/\(g); C) we can assume that X(f)

=X(g) = l in (1). Hence, if K is defined by (1), the segment (Kf-g, (K-l)f,

(K — l)g, Kg—f) is in C. But, by the projective invariance of cross-ratios,

R(Kf -g,(K- l)f, (K - l)g, Kg-f) = R(-l, 0,K-l, K),

since the two quadruples are perspective. Hence(1) 6(fP, gP; C) ^Ln K, and

the projective diameter of CP is at most Ln K. This completes the proof.

7. Complementary invariant subspace. Let P be again any uniformly

positive linear operator on a Banach lattice L, and let c he the associated

positive characteristic vector, with positive characteristic value y. For any

positive/>0, we can define X„ and p„ as the largest and smallest real numbers,

respectively, such that
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(16a) X„7nc ^ fP" ^ Unync.

Clearly, 0<X„^Mn, for all w^l (see also (16d) below). Applying P to (16a),

we get \nyn+lc^fPn+l^uyn+1c, whence

(16b) X„ ^ Xn+i g nn+i = pn, or Xn |     and    ii„ j.

Now consider rn=fPn—\nync and sn = unync—fP". Clearly, 0^r„, 0^s„, and

r„ + 5n = (pn—X„)7"c. By (1) and Lemma 2 of §6, a„>0 and p\>0 exist (the

case rn = sn = 0 is trivial), such that

(16c) anc g rnP ^ eAanc    and    pV ^ s„P ^ eA/3„c,

whence

(16d) (a, + fin)c ^ (rn + sn)P = t"+1(Mh - X„)c ^ eA(a„ + fin)c.

On the other hand, (16c) implies

(Xn7"+1 + ctn)c ^ (X„7Bc + r„P) = /P»+l = (Mn7"c - 5„P) ^ (u„7"+1 + /3n)c,

whence X„+i^Xn+7~"~1a„, p„+i^p„— y~n~1fi„. Subtracting these inequalities,

and using (16d), we get

ju„+i - X„+1 ^ (m„ - X„) - y~n-l(<xn + fin) £ (1 - e-A)(nn - \n).

Induction on n gives (un+i— X„+i) ^ (1 — e_A)n(pi— Xi), so that X„ f Af and

Uni M for some finite M=M(f). Now, referring back to (16a), we conclude

Lemma 3. For each />0, there exist positive constants M=M(f), K = K(f),

and p=(l — e_A)7<7 independent of f, such that

(17) | fPn - Mync |   ^ Kpnc, 0 ^ p <y.

But now, /=/++/- for any f EL, where /+ =/W0 ^0 and /-=/CW^0.
Writing fPn=f+Pn+f-Pn, we deduce the following

Corollary. 77fe inequality (17) holds for each f EL, and M(f) is a positive

linear functional.

Theorem 4. ylwy uniformly positive linear operator P, acting on a Banach

lattice L, decomposes L into an invariant axis with positive basis-element (eigen-

vector) c and associated positive eigenvalue y, and a complementary invariant

subspace S on which the spectral norm(*) of P is at most (1 —e~A)y <y.

Proof. Let S be the subspace on which Af(/)=0. Then, by (17) with

.Af = 0, SP^S. The last conclusion also follows from Lemma 3.

8. Multiplicative processes. We now consider one-parameter semigroups

{Pt} of non-negative linear operators, like those involved in multiplicative

processes(6). For simplicity, we shall consider only one-parameter semigroups

(9) L. Loomis, Abstract harmonic analysis, p. 75. The conclusion holds in any vector lattice

which is complete in d(f, g; L+).
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on Banach lattices, though the method can easily be adapted to other cases.

Accordingly, let Pt (t>0) map a Banach lattice L linearly into itself, so

that

(18) /> 0 implies fP, > 0.

We assume the (Chapman-Kolmogorov) semigroup condition (fPt)PT =fPt+T-

The special case

(19) f(x; I + t) = J p(x; y; r)f(y; t)dR(y),

with p(x,y; t) >0 for all t>0, is typical for many applications (e.g., to multi-

group diffusion).

Theorem 5. If, for some t=T, PT is uniformly positive, then there exists a

positive eigenvector c>0 awo" a unique "asymptotic growth coefficient'" 8, such that

(20) \\fPt - eum(f)c\\ g K*e", 0 ^ cr < 8,

for every f, a suitable "effective initial size" m(f), and fSiT.

Proof. By Theorem 4, the discrete semigroup of P? = P„r has the desired

property; m(f) is given by (17), with eST = y. Furthermore, if C is the "cone"

of non-negative/=/+ in L, then CPt has finite projective diameter A. Hence,

for any t>nT, we have

(21) A[CP(] = A[(CPt-nT)Pnr] ^ A[CPnr] -» 0

where A [S] =sup },g<=.s8(f, g; L+), denotes the projective diameter of a cone 5.

It follows that the c for Pt (in the sense of Theorem 3) is the (unique) c for

Pt, which is also "uniformly positive," and with the same 5.

Finally, we can write f = c+r, where r is in the complementary invariant

subspace of §7. Applying (17), with M = m(f), we get

| fPT - m(f)yc |   ^ Kpnc, 0 ^ p < y.

Hence, for any t with (»-fT)F^<(ra-r-2)F, we have

ll/P, - eUm(f)c\\ = \\(fPr - m(f)y c)P^nT)\\ ^ Kpn\\c\\ •||P,_r||.

The uniform boundedness of |[P<_nr|| follows, however, from (16d). There

follows

(22) ||/P( - e8,w(/)c|| g K*e", 0 ^ a < ,8,

where X* = (l?/p2)||c||sup7'S«2r ||P<||. and e"T =p. This completes the proof.

Theorem 5 should be compared with the main result of Everett and

Ulam(6). Our assumption of "uniform positivity" corresponds to uniform
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mixing at a finite stage. For various physical applications, it would be desirable

to weaken this hypothesis.

Remark. It is perhaps worth noting that all the preceding results apply

to complete vector lattices(10). The essential step is the following extension

of Corollary 2 of Lemma 2, §6.

Lemma 4. Let L be any complete vector lattice. Relative to 8(f, g; L+), any

connected component of L+ is a complete metric space.

Proof. From any convergent subsequence {gk}, we can extract a hyper-

convergent subsequence {/„} = {£*<„)}, such that 0(/„,/n+ii L+)<2~n. There

follows, as in (13),

| /n+1   ~fn |     ^   ((Rn)1'2   ~   1) | /» |     <   2~%, /„   =     | /„ |     £  L+.

By the triangle inequality and induction, \fn+h—fn\ ^fm/2n~l for any m^n;

hence all /„ satisfy 0</„<4/i. The vector lattice being complete, /«,= Vfn

therefore exists, and \fx —fn\ ^ |/n| /2"-2^/i/2n~4, whence/„—>/«, in the sense

of relative uniform convergence and in the intrinsic topology.

Harvard University,

Cambridge, Mass.

(10) In the sense of G. Birkhoff, Lattice theory, Chap. XV, §3.
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