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Abstract — We consider the following ways of extending a family of languages
K to an “enriched ” family X(K): (i) hyper-algebraic extension (X = H) based on
iterated parallel substitution, (ii) algebraic extension (X = A) obtained by nested
iterated substitution, (iii) rational extension (X = R) achieved by not self-embedding
nested iterated substitution, and (iv) a few subrational extensions (X = M,C, S, P, F )
based on several kinds of substitution. We introduce full X-AFL’s, i.e., nontrivial
families closed under finite substitution, intersection with regular sets and under X,
which turn out to be equivalent to well-known full AFL-structures such as full hyper-
AFL (X = H), full super-AFL (X = A), full substitution-closed AFL (X = R), full
semi-AFL (X = S), etc. Then we establish Canonical Forms for the smallest full X-
AFL X̂ (K) containing K, i.e., we decompose the operator X̂ into simpler operators.
Using Canonical Forms for full X-AFL’s we obtain expressions for the smallest full
X-AFL containing the result of substituting a family of languages into another family.

1 Introduction

In studying closure properties of language families major progress was made since 1969
when Ginsburg, Greibach & Hopcroft [10] introduced the concept of Abstract Family of
Languages (AFL) denoting any family closed under the regular operations (union, con-
catenation and Kleene +), homomorphism, inverse homomorphism and intersection with
regular sets. Using this concept we consider language families as algebras which enables
us to deal with closure properties in a more abstract fashion.

As usual in algebra, structures with more restrictive and, on the other hand, more gen-
eral properties have been considered. Ginsburg & Spanier [11] investigated substitution-
closed AFL’s generalizing a well-known property of the regular languages, and Greibach
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[14, 15] studied AFL’s closed under nested iterated substitution (super-AFL’s) featuring
a property of the context-free languages. In the theory of parallel rewriting (in particular
in the case of ETOL languages; cf. [21]) AFL’s closed under iterated parallel substitution
(hyper-AFL’s) were intensively investigated [24, 23, 4, 2]. On the other hand many theo-
rems originally proved for AFL’s also hold for weaker structures like semi-AFL (inspired
by the linear context-free languages) and trio. For the main results on trio, (semi-)AFL
and substitution-closed AFL we refer to a survey by Ginsburg [9].

Van Leeuwen [24] and Salomaa [23] originally introduced (full) hyper-AFL’s and a
related rewriting system called K-iteration grammar, where K refers to an arbitrary family
of languages. A K-iteration grammar is essentially an ETOL system [21] in which each
table (i.e., finite substitution) has been replaced by an arbitraryK-substitution. The family
of languages generated by K-iteration grammar is called the hyper-algebraic extension of
the family K and will be denoted by H(K). According to [24, 23, 2] a nontrivial family
K is a full hyper-AFL if and only if (i) K is closed under finite substitution, (ii) K is
closed under intersection with regular sets, and (iii) K is hyper-algebraically closed, i.e.,
H(K) = K. In [2] it was shown that the smallest full hyper-AFL Ĥ(K) containing the
family K equals the hyper-algebraic extension of the smallest prequasoid Π(K) (i.e., the
smallest nontrivial family satisfying (i) and (ii)) containing K, i.e., Ĥ(K) = HΠ(K). This
“Canonical Form Theorem” means that the operator Ĥ can be decomposed into a single
product (composition) of the simpler operators H and Π.

In this paper we investigate similar ways of connecting other well-known AFL-structures
with rewriting systems (like restricted kinds of K-iteration grammars such as, e.g., context-
free K-grammars introduced in [25]), in such a way that

(A) the corresponding extension X (i.e., the family of languages generated by that partic-
ular kind of restricted iteration grammars) —which may be considered as an operator
on families of languages— characterizes the original AFL-structure by means of the
conditions: (1) containment of a nontrivial language, (2) closure under finite sub-
stitution, (3) closure under intersection with regular sets, and (4) closure under the
operator X. A family satisfying (1)–(4) will be called a full X-AFL. Thus K is a full
X-AFL when Π(K) = K and X(K) = K.

(B) a Canonical Form Theorem for X̂ (K) (i.e., the smallest full X-AFL containing K)
holds or, equivalently, it is possible to factorize the operator X̂ into a single product
of X and Π: X̂ (K) = XΠ(K).

The particular types of AFL-structures that will be considered in this paper are full
trio, full semi-AFL, full pseudo-AFL (i.e., full semi-AFL closed under concatenation), full
Kleene-AFL (i.e., full trio closed under Kleene ?), full AFL [9], full substitution-closed AFL
[11], full super-AFL [14, 15], full hyper(1)-AFL [24, 4, 8] and full hyper-AFL [24, 23, 4, 2].

From (A) it should be clear that X̂ (K) =
⋃
{Ω(K) | Ω ∈ {Π, X}?}, or in a more

algebraic notation, that X̂ (K) = {Π, X}?(K). Thus the Canonical Forms as mentioned in
(B) imply that instead of the infinite set of operators {Π, X}? we only need to consider
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the application of one single operator XΠ. Therefore Canonical Forms can be successfully
used in proving certain families to be full X-AFLs and in establishing properties of X̂ (K).

All extensions in this paper are obtained either “directly” by natural generalizations
of basic families (like ETOL, EOL, context-free and regular languages) or “indirectly” by
fixing parameters in extensions already defined in a “direct” way. Investigating extensions
of language families instead of basic families enables us to uncover structural features and
arguments for the rewriting mechanisms involved, rather than strictly combinatorial proofs
usually given in dealing with basic families. This rather algebraic approach to language
theory does not only provide a unifying framework for investigating closure properties
(to which the present paper is mainly restricted) but has also succesfully been applied in
other areas of formal language theory; cf. e.g., [25, 26, 27]. This approach also emphasizes
again the principal role played by the concept of prequasoid (or, equivalently, the notion
of nondeterministic generalized sequential machine with accepting states; cf. [18], Chapter
9) in dealing with families closed under several kinds of (iterated) substitution [2, 8, 12,
15, 19, 23, 24, 26].

This paper is organized into five sections of which this introductory section is the
first. Section 2 contains preliminaries from formal language theory, definitions of the basic
rewriting systems, the corresponding extensions and full X-AFL’s. We conclude Section
2 with proving basic properties of these extensions and with a few examples. In Section
3 we establish Canonical Forms for full hyper-AFL, full hyper(1)-AFL, full algebraic AFL
(i.e., full super-AFL) and full rational AFL (i.e., full substitution-closed AFL). Canonical
Forms for the other cases (i.e., ful trio, full semi-AFL, full pseudo-AFL, full Kleene-AFL,
full AFL) are proved in Section 4. The results of Section 3 and 4 are applied in Section 5 to
the family obtained by substituting languages from a family into languages from another
family. Section 5 also contains a few generalizations of results of Section 4 and a example
of the application of Caninical Forms and related theorems in proving certain families to
be particular kinds of full AFL-structures.

2 Definitions and Basic Properties

For terminology and basic results in formal language theory we refer to [22] or to [18].
Moreover, the reader is assumed to be familiar with standard concepts from the theory of
parallel rewriting [17] and from AFL-theory [9].

Let Σω be an arbitrary but fixed countably infinite set of symbols. A family (of lan-
guages) is a collection of languages over finite subsets, called alphabets, of Σω.

Let λ denote the empty word. A language L is nontrivial if L is nonempty and L 6= {λ}.
A family is called nontrivial when it contains at least one nontrivial language.

Let ONE be the family consisting of all singletons, i.e., ONE = {{w} | w ∈ Σ?
ω},

and let SYMBOL be the subfamily containing all singletons of length 1, i.e., SYMBOL =
{{α} | α ∈ Σω}. Moreover, we define the families ALPHA and STAR by ALPHA =
{{α1, . . . , αn} | n ≥ 1, α1, . . . , αn ∈ Σω} and STAR = {{α?} | α ∈ Σω}, respectively. We
denote the families of finite, regular (rational), context-free (algebraic), OL-, EOL-, TOL-,
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ETOL- and indexed [1] languages by FIN, REG, CF, OL, EOL, TOL, ETOL and INDEX,
respectively.

Let K be a family. A K-substitution τ is a function on an alphabet V such that for
each α in V , τ(α) is a language in K. The function τ is extended in the usual way to
words by τ(λ) = {λ}, τ(α1 · · ·αn) = τ(α1) · · · τ(αn) with α1, . . . , αn ∈ V (n ≥ 1), and to
languages by τ(L) =

⋃
{τ(w) | w ∈ L} for each L ⊆ V ?. A K-substitution τ : V → K

with τ(α) ⊆ V ? for each α in V is called a K-substitution over V .
A ONE-substitution is usually called a homomorphism, and in case K equals FIN or

REG, τ is called a finite or regular substitution, respectively.
With K1/K2 we denote the family obtained by all K1-substitutions applied to K2-

languages, i.e., K1/K2 = {τ(L) | τ is a K1-substitution and L ∈ K2}. This binary oper-
ation on families is neither commutative, nor associative, i.e., neither K1/K2 = K2/K1,
nor K1/(K2/K3) = (K1/K2)/K3 holds in general [11]. But the inclusion K1/(K2/K3) ⊆
(K1/K2)/K3 does hold [11], whereas equality holds whenever K2 is closed under isomor-
phism (i.e., renaming of symbols) [11]. In the sequel the operator / will be often applied
to families closed under isomorphism and consequently parentheses in expressions will be
omitted which results for instance in K1/K2/K3.

A family K2 is closed under K1-substitution if K1/K2 ⊆ K2. The closure of K2 under
K1-substitution is the smallest family containing K2 and closed under K1-substitution.
The family K1 is closed under substitution into the family K2 if K1/K2 ⊆ K1. The closure
of K1 under substitution into K2 is the smallest family containing K1 and closed under
substitution into K2. A family is substitution closed when K/K ⊆ K. The substitution
closure of K is the smallest substitution-closed family K∞ containing K.

Let [K1/]
0K2 = K2 and by induction [K1/]

n+1K2 = K1/(
⋃n
i=0[K1/]

iK2) (n ≥ 0) and let
[K1/]

?K2 =
⋃∞
n=0[K1/]

nK2. Similarly let K1[/K2]
0 = K1 and by induction K1[/K2]

n+1 =
(
⋃n
i=0K1[/K2]

i)/K2 (n ≥ 0) and let K1[/K2]
? =

⋃∞
n=0K1[/K2]

n.

Lemma 2.1. [11]

(1) [K1/]
?K2 is the closure of K2 under K1-substitution.

(2) K1[/K2]
? is the closure of K1 under substitution into K2.

(3) K∞ = K[/K]?.

(4) If K ⊆ K/K, then K∞ = [K/]?K. �

We define the following operators on families of languages: Θ(K) = ONE/K, Φ(K) =
FIN/K, and ∆(K) = {L ∩R | L ∈ K, R ∈ REG}.

The notion of prequasoid was defined in [2] as a slightly weaker variant of the quasoid
introduced by Van Leeuwen [24].

Definition. A family K is a prequasoid if

(1) K is nontrivial,

(2) K is closed under finite substitution, i.e., Φ(K) ⊆ K,

(3) K is closed under intersection with regular languages, i.e., ∆(K) ⊆ K.

A quasoid is a prequasoid containing at least one infinite language. �
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Each (pre)quasoid contains all regular (finite, respectively) languages. Consequently
REG (FIN respectively) is the smallest (pre)quasoid, and FIN is the only prequasoid which
is not a quasoid [2]. For the smallest prequasoid Π(K) containing K we have

Lemma 2.2. If K is a nontrivial family, then Π(K) = Θ∆Φ(K).

Proof. It is well known that a nontrivial family is a prequasoid if and only if it is closed
under mappings induced by a-NGSM’s (nondeterministic generalized sequential machines
with accepting states; cf. [18] for definitions and details). Moreover each a-NGSM mapping
T can be written as T (L) = h(f(L) ∩ R), where h is a homomorphism, R is a regular set
and f is a finite substitution [18]. Since a-NGSM mappings are closed under composition
[7], we have Π(K) =

⋃∞
n=0(Θ∆Φ)n(K) = Θ∆Φ(K). �

The relation between substitution and the operator ∆ is given by the following result
established by Ginsburg & Spanier [11].

Lemma 2.3. [11]

(1) ∆(K1/K2) ⊆ ∆(K1)/∆Φ(K2),

(2) ∆(K1)/∆(K2) ⊆ Θ∆((FIN ∪K1)/Φ(K2)). �

The family K is closed under iterated (parallel) substitution if for all finite sets U of
K-substitutions and for all L in K, U?(L) =

⋃
{τ1 · · · τn(L) | n ≥ 0, τ1, . . . , τn ∈ U} is in

K. The family K is closed under single iterated (parallel) substitution, when U?(L) is in
K for each L in K and for each singleton U = {τ}, i.e., when

⋃
{τn(L) | n ≥ 0} ∈ K. A

K-substitution τ over V is called nested, if for each α in V , α ∈ τ(α). If for each L in a
family K and each nested K-substitution τ ,

⋃
{τn(L) | n ≥ 0} is in K, then K is said to

be closed under nested iterated substitution.

A full trio is a nontrivial family closed under homomorphism, inverse homomorphism
and intersection with regular sets. A full semi-AFL is a full trio closed under union. We
call a full semi-AFL closed under concatenation a full pseudo-AFL. Thus a full AFL is a
full pseudo-AFL closed under Kleene ?. We call a full trio closed under Kleene ? a full
Kleene-AFL. In [9] it has been shown that each full Kleene-AFL closed under either union
or concatenation is a full AFL. Similarly it is straightforward to show that each full trio
closed under concatenation is a full pseudo-AFL. A full substitution-closed AFL [full super-
AFL, full hyper(1)-AFL, full hyper-AFL] is a full AFL closed under substitution [nested
iterated substitution, single iterated substitution, iterated substitution, respectively]. Let
M̂, Ĉ, Ŝ, P̂ , F̂ , R̂, Â, Ĥ1 and Ĥ denote the least full trio, full Kleene-AFL, full semi-AFL,
full pseudo-AFL, full AFL, full substitution-closed AFL, full super-AFL, full hyper(1)-AFL
and full hyper-AFL containing K, respectively. In Sections 3 and 4 we will show that all
these AFL-structures are different.

Ginsburg & Spanier [11] proved the following

Lemma 2.4. If K is a quasoid, then K∞ is a full substitution-closed AFL. �

We now come to the main definitions. They paraphrase and slightly generalize the
original definitions introduced by Van Leeuwen [24, 25] and Salomaa [23] (cf. [2]), in order
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to fit standard AFL-structures in the framework of family extensions; cf. Section 3 and 4.

Definition. Let K1, K2 and K3 be families. A language L is called hyper-algebraic over
(K1, K2, K3) when there exist (i) an alphabet V , (ii) a terminal alphabet Σ, (iii) an initial
language L0 ⊆ V ? in K1, (iv) an initial K2-substitution τ0 over V , and (v) a finite set U
of K3-substitutions over V such that L = U?(τ0(L)) ∩ Σ?. If each τ in U is nested, then
L is called algebraic over (K1, K2, K3), whereas such an algebraic L is called rational over
(K1, K2, K3) when U is not self-embedding, i.e., if for all u in U? and for all α in V the
implication

w1αw2 ∈ u(α)⇒ (w1 = λ or w2 = λ)

holds, where w1, w2 ∈ V ?. The hyper-algebraic [algebraic, rational, respectively] extension
H(K1, K2, K3) [A(K1, K2, K3), R(K1, K2, K3)] of (K1, K2, K3) is the family of all languages
hyper-algebraic [algebraic, rational] over (K1, K2, K3). �

We are mainly interested in several less general extensions which are easily obtained as
particular cases.

Definition. Let K be a family. The hyper-algebraic, algebraic and rational extension of
K are respectively

H(K) = H(SYMBOL, SYMBOL, K),

A(K) = A(SYMBOL, SYMBOL, K), and

R(K) = R(SYMBOL, SYMBOL, K). �

Let K1 = K2 = SYMBOL and K3 = K. Let V , Σ, U , τ0 and L0 be as in the previous
definition. The construct G = (V,Σ, U, S), where {S} = τ0(L0) is called a K-iteration
grammar, if U is a finite set of K-substitutions over V . We call G a context-free K-
grammar [regular K-grammar] if each τ in U is a nested K-substitution over V [and U is
not self-embedding]. The grammar G generates a language L(G) = U?(S) ∩Σ? which is a
member of H(K) [A(K), R(K), respectively].

The m-restricted extensions Hm(K), Am(K) and Rm(K) are the subfamilies of
H(K), A(K) and R(K) respectively, generated by grammars containing at most m K-
substitutions (m ≥ 1).

Another type of less general extensions are the following, which we call the subrational
extensions of K:

M(K) = R(SYMBOL, K,FIN),

C(K) = R(STAR, K,FIN),

S(K) = R(ALPHA, K,FIN),

P (K) = R(FIN, K,FIN),

F (K) = R(REG, K,FIN).

We call a family K σ-simple when (i) K contains a SYMBOL-language, and (ii) K is
closed under isomorphism (“remaining of symbols”). A σ-simple family closed under union
with SYMBOL-languages is called α-simple. Clearly, SYMBOL [ALPHA, respectively] is
the smallest σ-simple [α-simple] family and it is contained in each σ-simple [α-simple]
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family. Obviously, each prequasoid is σ-simple. Consider a nontrivial language L ⊆ Σ?

from a prequasoid K. Let f be a finite substitution and h a homomorphism defined by
f(a) = {a, b, e} for each a in Σ, e /∈ Σ and h(e) = λ, h(α) = α for α ∈ Σ ∪ {b}. Then
L ∪ {b} = h(f(L) ∩ (Σ? ∪ be?)) is in K. Hence each prequasoid is α-simple.

Our first result deals with the relation between extensions and the corresponding m-
restricted variants.

Theorem 2.5.

(1) If K is σ-simple, then H2(K) = Hm(K) = H(K) for each m ≥ 2.

(2) If K is α-simple, then A1(K) = Am(K) = A(K) and R1(K) = Rm(K) = R(K) for
each m ≥ 1.

Proof. (1) was already estiblished in [2]. Thus it remains to show that for each m ≥ 1,
A(K) ⊆ Am(K) ⊆ A1(K) and similarly for R, since the converse inclusions are obvious.

Let G = (V,Σ, U, S) be a context-free K-grammar with U = {τ1, . . . , τm} for some
m ≥ 2. Define for each k with 1 ≤ k ≤ m an isomorphism ϕk(α) = αk (α in V ; all αk’s are
new symbols) and extend these isomorphisms in the usual way to words and languages.
Define a new alphabet V0 = V ∪ {ϕk(α) | α ∈ V, 1 ≤ k ≤ m}. Consider the context-free
K-grammar G0 = (V0,Σ, τ, S) where the nested K-substitution τ over V0 is defined by

τ(α) = {α, α1} α ∈ V ,

τ(αk) = {αk} ∪ Ck ∪ τk(α) with Ck = ∅ iff k = m,

and Ck = {αk+1} iff ≤ k ≤ m−1.

The basic idea of the simulation of G by G0 is the following: each occurrence of each
symbol β in V0 may be object to the following replacements (in an “asynchronous way”):
(i) changing into αk+1 (if β = αk, 1 ≤ k ≤ m−1) or into α1 (if β = α), i.e., from from α we
can reach αj for each j (1 ≤ j ≤ m), (ii) substituting τj(α) into that particular instance of
β = αj, i.e., we simulate the application of τj on that occurrence of αj while the subscript
j is removed.

By this construction we obtain L(G0) = L(G) and hence A(K) ⊆ Am(K) ⊆ A1(K)
for each m ≥ 1. Since the construction preserves the not self-embedding property of the
grammar, a similar conclusion holds in the rational case. �

Note that 2.5(2) is obvious, whenever K is closed under union. In the hyper-algebraic
case 2.5(1) is the best possible result, i.e., in general one cannot reduce the number of
substitutions in a K-iteration grammar to one [21, 8].

By relating subrational extensions to (finitely repeated) substitutions we obtain a con-
siderable simplification.

Theorem 2.6. R(K1, K,FIN) = REG/(K/K1), and consequently

M(K) = REG/K,

C(K) = REG/(K/STAR),

S(K) = REG/(K/ALPHA),
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P (K) = REG/(K/FIN), and

F (K) = REG/(K/REG),

whereas the parentheses may be omitted whenever K is closed under isomorphism.

Proof. Suppose L ∈ REG/(K/K1) and let L = ρτ0(L0) where L ⊆ ∆? is inK1, τ0 : ∆→ K
is a K-substitution with τ(α) ⊆ B? for each α in ∆, and ρ : B → REG is a regular
substitution with ρ(β) ⊆ Σ?

β (β ∈ B), and Σ =
⋃
{Σβ | β ∈ B}. For each β ∈ B, let

(Vβ,Σβ, Pβ, β) be an ordinary regular grammar generating ρ(β) such that all nonterminal
alphabets Vβ − Σβ are mutually disjoint. Let U = {τ} where τ is a substitution over⋃
{Vβ | β ∈ B} ∪∆ defined by

τ(γ) = {γ} ∪ {w | (γ, w) ∈ Pβ} ∈ FIN iff γ ∈ Vβ − Σβ (β ∈ B),

τ(γ) = {γ} otherwise.

Clearly, U is not self-embedding and therefore we have L = ρτ0(L0) = U?(τ0(L0))∩Σ? ∈
R(K1, K,FIN).

Conversely, let L ∈ R(K1, K,FIN), i.e., there exist alphabets V and Σ, a language
L0 in K1, a K-substitution τ0 over V , and a finite set U of finite substitutions over V ,
such that L = U?(τ0(L0)) ∩ Σ?. Since FIN satisfies the conditions required in 2.5(2) we
can (by a similar argument as in the proof of 2.5(2)) restrict our attention to the case
U = {τ}. Consider for each α in V the grammar Gα = (V,Σ, τ, α). Since each Gα is not
self-embedding and τ is a finite substitution, L(G) = (

⋃
{τn(α) | n ≥ 0}) ∩ Σ? is regular

(cf., e.g., [22]). Hence there exists a regular substitution ρ : V → REG with ρ(α) = L(Gα)
(α ∈ V ) and consequently L = ρτ0(L0) ∈ REG/(K/K1). �

With each extension introduced above we associate a full AFL-structure as follows.

Definition. Let X be a symbol from {H,H1, A,R, F, P, S, C,M}. A family K is a full
X-AFL if

(i) K is a prequasoid, i.e., Π(K) = K, and

(ii) K is equal to its X-extension, i.e., X(K) = K. �

In the subsequent two sections we relate full X-AFL’s to well-known AFL-structures.

Examples. (1) H(ONE) = EDTOL; H(FIN) = H(REG) = ETOL; H(INDEX) =
INDEX, hence ETOL and INDEX are full H-AFL’s [24, 23, 4].
(2) H1(ONE) = EDOL; H1(FIN) = EOL [24].
(3) A(FIN) = A(REG) = A(CF) = CF [25, 26, 14, 15], hence CF is a full A-AFL.
(4) R(FIN) = R(REG) = REG (cf. 2.6 and 3.3 below), hence REG is a full R-AFL.
(5) For each X from {M,C, S, P, F}, we have X(FIN) = X(REG) = REG (cf. 2.6) and
consequently REG is a full X-AFL. �

3 Canonical Forms for Full H-, H1-, A- and R-AFL’s

In [2] it was already shown that a family is a full H-AFL if and only if it is a full hyper-AFL
(cf. Section 1, [24, 23]). By a similar argument we obtain that a family is a full H1-AFL
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if and only if it is a full hyper(1)-AFL. It is straightforward to show that the notions of
full algebraic AFL (i.e., full A-AFL) and full super-AFL are equivalent; cf. [14]. However,
establishing the equivalence between the concepts of full rational AFL (i.e., full R-AFL)
and of full substitution-closed AFL is more complicated. The proof is based on two lemmas
which are of some interest on their own.

Lemma 3.1. If K is α-simple, then K∞ ⊆ R(K).

Proof. Since SYMBOL ⊆ K we have K ⊆ K/K and hence by 2.1(4), K∞ = [K/]?K.
Moreover K ⊆ K/K also implies [K/]n+1K = K/(

⋃n
i=0[K/]

iK) = K/[K/]nK.
In order to establish the inclusion K∞ ⊆ R(K) we show that for all natural numbers

p, [K/]pK ⊆ R(K). The proof is by induction on p.

Initial step (p = 0): [K/]0K = K. Let L0 ⊆ Σ? be in K and consider the context-free K-
grammar G = (V,Σ, {τ}, S) where V = Σ ∪ {S}, S /∈ Σ, τ(S) = {S} ∪ L0 and τ(a) = {a}
for each a in Σ. Clearly, G is not self-embedding and L(G) = L0 is in R(K).
Induction step: Suppose [K/]pK ⊆ R(K), then we have to show that [K/]p+1K ⊆ R(K).
By the induction hypothesis we obtain [K/]p+1K = K/[K/]pK ⊆ K/R(K). Thus it only
remains to prove that K/R(K) ⊆ R(K).

Let L′ ⊆ Σ? be a language in R(K) generated by the regular K-grammar G =
(V,Σ, {τ}, S), and let g be a K-substitution on Σ with

⋃
{g(α) | α ∈ Σ} ⊆ Σ?

0 for some
alphabet Σ0. Without loss of generality we may assume that V ∩ Σ0 = ∅. Consider the
context-free K-grammar G0 = (V0,Σ0, U0, S) where V0 = V ∪ Σ0, U0 = {τ0, τ1} with

τ0(α) = {α}, for α in V0 − Σ,

τ0(α) = {α} ∪ g(α) , for α in Σ,

τ1(α) = τ(α), for α in V ,

τ1(α) = {α}, for α in Σ0.

Then clearly, G0 is a not self-embedding context-free K-grammar and L(G0) =
g(L(G)) = g(L′) ∈ R(K).

This completes the induction and establishes the inclusion K∞ ⊆ R(K). �

Lemma 3.2. If K is a prequasoid, then R(K) ⊆ K∞ ∪ REG.

Proof. If K is a prequasoid but not a quasoid, then K = FIN and hence R(FIN) =
REG ⊆ K∞ ∪ REG.

Let K be a quasoid, then REG ⊆ K ⊆ K∞. By 2.5(2) we only have to prove that
R1(K) ⊆ K∞. We first show that R1(K∞) ⊆ K∞. The proof of this inclusion is a gener-
alization of the argument that each non-self-embedding context-free grammar generates a
regular language; cf. [22].

Consider a 1-restricted regular K∞-grammar G = (V,Σ, {τ}, S). Without loss of gen-
erality we may assume that τ(a) = {a} for each a in Σ. (Otherwise, we introduce for each
a in Σ a new nonterminal symbol Aa and we define an isomorphism ϕ(a) = Aa (a ∈ Σ),
ϕ(α) = α (α ∈ V −Σ). We replace τ by τ0 with τ0(α) = ϕτ(α) iff α ∈ V −Σ, τ0(a) = {a}
iff a ∈ Σ, τo(Aa) = {Aa, a} ∪ ϕτ(a) for each a in Σ.)
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Moreover we assume that for each α in V there is a sequence u in τ ? such that there is
a word in u(S) that contains an occurrence of α. Otherwise we can remove α from V and
intersect all languages involved in G with (V − {α})? (due to the fact that K∞ is a full
AFL by 2.4), without affecting L(G). We consider the following cases:

Case 1: For each A in V − Σ, there is a sequence u in τ ? such that u(A) contains a word
in which S occurs.

If w ∈ τ(A) is an arbitrary word containing a nonterminal symbol, then it is of one of the
four forms: (i) w = ϕBψ, (ii) w = ϕB, (iii) w = Bψ, or (iv) w = B, where ϕ and ψ are
nonempty words over V , and B ∈ V −Σ. If w satisfies (i) we must have by the assumption
of Case 1: there exist sequences u1 and u2 in τ ? such that

u1u2τ(A) ⊇ u1u2(ϕBψ) ⊇ u1(ϕϕ1Sψ1ψ) ⊇ {ϕϕ1ϕ2Aψ2ψ1ψ}
for some (possibly empty) words ϕ1, ϕ2, ψ1 and ψ2 over V . But then, since ϕ and ψ are
nonempty, G is a self-embedding context-free K∞-grammar which contradicts the assump-
tion that G is regular. We obtain the same contradiction if τ(A) contains words of both
forms (ii) and (iii). Thus if τ(A) contains a word of the form (ii), then all words of the
form (ii) contained in τ(A) the word ϕ is in Σ?. (Otherwise τ(A) would also contain a
word of the form (i) or (iii).) Hence G is a “right-linear” context-free K∞-grammar, i.e.,
for each A ∈ V −Σ, we have τ(A) ⊆ Σ?(V −Σ) ∪Σ?. By a similar argument we conclude
that if τ(A) contains a word of the form (iii), then G is “left linear”, i.e., for each A in
V − Σ, τ(A) ⊆ (V − Σ)Σ? ∪ Σ?.

So if G is right linear, then we have τ(A) =
⋃
{LAX{X} | X ∈ V − Σ} ∪ LA for

each A in V − Σ, where LA and LAX are languages over Σ. (The left-linear case is
similar.) Note that LAX is empty whenever X does not occur in τ(A). Since K∞ is a full
AFL (by 2.4), we have that LA, and each (nonempty) LAX are in K∞ and, consequently,
R1(K∞) ⊆ K∞/REG = K∞; cf. 2.4 and [9, 11].

Case 2: There exists a nonterminal symbol A such that for no words ϕ and ψ in V ? and
for no sequence u in {τ}?, ϕSψ ∈ u(A).

The proof of L(G) being in K∞ proceeds by induction on the number of nonterminal
symbols m. For m = 1, there is nothing to prove because λ(S) = {S}.

Assume that the assertion holds for m = n. Let the number of nonterminal symbols in
V − Σ be n+ 1. Consider the context-free K∞-grammar G1 = (V − {S},Σ, τ1, A) with

τ1(α) = τ(α) ∩ (V − {S})? α 6= S

and the context-free K∞-grammar G2 = (V,Σ ∪ {A}, τ2, S) with

τ2(A) = {A},
τ2(α) = τ(α) α 6= A.

Then both G1 and G2 are not self-embedding grammars having n nonterminal symbols.
Now both of the languages L(G1) and L(G2) are in K∞; either by the induction hypothesis
or by Case 1. But L(G) is the result of substituting L(G1) for A in L(G2). The fact that
K∞ is substitution closed implies that L(G) is in K∞. This completes the induction and
establishes the inclusion R1(K∞) ⊆ K∞.

Finally, together with K ⊆ K∞, this yields R1(K) ⊆ R1(K∞) ⊆ K∞. �
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Theorem 3.3.

(1) If K is a prequasoid, then R(K) = K∞ ∪ REG.

(2) K is a full R-AFL if and only if K is a full substitution-closed AFL.

Proof. (1) Lemmas 3.1 and 3.2.

(2) Let K be a full R-AFL. Then FIN ⊆ K and consequently REG ⊆ R(K) = K. Now
3.3(1) implies R(K) = K = K∞. Hence by 2.4 K is a full substitution-closed AFL.

Conversely, let K be a full substitution-closed AFL. Obviously, K is a prequasoid and
by (1): K = K∞ = R(K), i.e., K is a full R-AFL. �

Let H0
1 (K) = K, Hn+1

1 (K) = H1H
n
1 (K) for n ≥ 0 and H?

1 (K) =
⋃∞
n=0H

n
1 (K). In

the remaining part of this section X will denote a symbol from {H,H?
1 , A,R}. Let X̂ (K)

be the least corresponding full X-AFL containing K (i.e., X̂ equals Ĥ, Ĥ1, Â and R̂,
respectively).

We now prove the main result of this section, i.e., we will decompose the operator X̂
into simpler operators like X, Π, ∆ and Φ. Some other factorizations were already known.
E.g., Greibach [14] established a result that may be interpreted as Â(K) = ∆AF̂(K).
Similarly, from 2.4 due to Ginsburg & Spanier [11] we can infer that R̂(K) equals the
substitution closure of Π(K) provided K contains an infinite language.

Theorem 3.4. (Canonical Form Theorem for Full H-, H?
1 -, A- and R-AFL’s)

(1) X̂ (K) = XΠ(K).

(2) If K is nontrivial, then X̂ (K) = X∆Φ(K).

Proof. (1) We distinguish the following cases:

X = H: In [2] we proved that H(K) is a full H-AFL, provided K is a prequasoid. Hence
Ĥ(K) ⊆ HΠ(K). Conversely, we have K ⊆ Ĥ(K) which implies HΠ(K) ⊆ HΠĤ(K) =
Ĥ(K).

X = H?
1 : Similar to the previous case it suffices to show that H?

1 (K) is a full H1-AFL,
whenever K is a prequasoid. So let K be a prequasoid. Obviously, H?

1 (K) is H1-closed
and thus it remains to prove that H?

1 is a prequasoid. This will be done by induction. Since
FIN ⊆ K, we have H1(EOL) ⊆ H2

1 (K). Applying a result from [23] yields that H2
1 (K) is a

full AFL. Suppose Hn
1 (K), n ≥ 2 is a full AFL. Then Hn+1

1 (K) = H1H
n
1 (K) is also a full

AFL [23], which completes the induction.

X = A: Let K be a prequasoid. We will show that A(K) is a full A-AFL. Since the proof
that A(K) is a prequasoid is rather standard (cf. [26, 2]) and the inclusion A(K) ⊆ AA(K)
is trivial, it remains to establish that AA(K) ⊆ A(K).

Let G = (V,Σ, τ, S) be a context-free A(K)-grammar, i.e., τ is a nested A(K)-sub-
stitution. For each α in V , let Gα = (Vα, V, τα, Sα) be a context-free K-grammar (i.e.,
each τα is a nested K-substitution) such that L(Gα) = τ(α). Obviously, we may assume
that all nonterminal alphabets Vα − V are mutually disjoint. Thus we have to show that
L(G) ∈ A(K).

We modify each Gα in such a way that τα(β) = {β} for each β in V (cf. the proof of
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3.2). Consider the context-free K-grammar G0 = (V0,Σ, U0, S) where V0 =
⋃
{Vα | α ∈ V }

and U0 = {σα | α ∈ V } with for each α in V :

σα(β) = τα(β) β ∈ Vα − V ,

σα(β) = {β, Sβ} β ∈ V ,

σα(β) = {β} β ∈ V0 − Vα.

Clearly, L(G0) = L(G) and hence L(G) is in A(K).

X = R: The fact that R(K) is a full R-AFL whenever K is a prequasoid directly follows
from 3.3 and 2.4.

(2) By (1) and 2.2, we have Ĥ(K) = HΘ∆Φ(K). Therefore it suffices to show that
HΘ∆Φ(K) ⊆ H∆Φ(K).

Let L ⊆ Ω? be a nontrivial language in the family K. Define a finite substitution f by
f(α) = {λ, ω} for each α in Ω, where ω is an arbitrary but fixed word. Then clearly {ω} =
f(L)∩{ω} is in ∆Φ(K), i.e., ONE ⊆ ∆Φ(K), which enables us to replace homomorphisms
(according to Θ) by ∆Φ(K)-substitutions as follows. Let G = (V,Σ, U, S) be a Θ∆Φ(K)-
iteration grammar and consider the ∆Φ(K)-iteration grammar G0 = (V0,Σ, U0, S) where
V0 =

⋃
{ϕατ (V ) | α ∈ V ; τ ∈ U} with each ϕατ is an isomorphism such that all alphabets

in this union are mtually disjoint. For each τ in U , we define a substitution τ ′ in U0 by
τ ′(α) = Lατ if and only if α ∈ V , Lατ ⊆ (ϕατ (V ))? is in ∆Φ(K) (Note that ∆Φ(K) is
closed under isomorphism.) and hατ (Lατ ) = τ(α) where hατ is the relative homomorphism
according to Θ:

τ ′(α) = hατ (α) if α ∈ ϕατ (V ),

τ ′(β) = {β} if β ∈ V0 − V − ϕατ (V ).

By this construction we have L(G0) = L(G) and consequently Ĥ(K) = H∆Φ(K) for
each nontrivial K.

Since this construction preserves the number of substitutions and the not self-
embedding property, whereas nesting can also be incorporated, the same conclusion holds
in the other cases. �

As each prequasoid contains FIN, and FIN is the smallest prequasoid we have

Corollary 3.5. Let X be a symbol from {H,H?
1 , A,R}. Then

(1) each full X-AFL contains the family X(FIN);

(2) X(FIN) is the smallest full X-AFL. �

This corollary implies that H(FIN) = ETOL is the smallest full H-AFL [4], A(FIN) =
CF is the smallest full A-AFL [14], and R(FIN) = REG is the smallest full R-AFL [11].

An improvement in the H1-case to Ĥ1(K) = H1Π(K) instead of H?
1Π(K) is impossible

because H1(FIN) = EOL is not even a full AFL [16]. Starting with quasoids rather than
prequasoids indeed yields full AFL’s [23] but no full H1-AFL’s or even full R-AFL’s [4].
Recently Engelfriet [8] showed that the iteration of H1 (applied to Π(K)) cannot be reduced
to a finite power since H?

1 (FIN) (i.e., the smallest full H1-AFL) gives rise to an infinite
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hierarchy of full AFL’s:

H2
1 (FIN) ⊂ H3

1 (FIN) ⊂ · · · ⊂ Hn
1 (FIN) ⊂ · · ·.

For X equal to H, H1, A and R we denote the class of all full X- AFL’s over Σω by
X-AFL.

Corollary 3.6. R-AFL ⊃ A-AFL ⊃ H1-AFL ⊃ H-AFL.

Proof. From the definitions in 2 it is clear that

R-AFL ⊇ A-AFL ⊇ H1-AFL ⊇ H-AFL.

Since the smallest full X-AFL’s for X ∈ {R,A,H1, H} are mutually different (i.e., REG ⊂
CF ⊂ H?

1 (FIN) ⊂ ETOL (cf. 3.5 and [21, 8]) the inclusions are also proper. �

4 Canonical Forms for Subrationally Closed Full AFL’s

Let X be a symbol from {M,C, S, P, F}. First we relate full X-AFL’s to well-known
AFL-structures.

In this section we only give detailed proofs for a few typical cases. The other arguments
are obtained by straightforward modifications and are left as simple exercises.

Theorem 4.1.

(1) K is a full M-AFL if, and only if, K is a full trio.

(2) K is a full C-AFL if, and only if, K is a full Kleene-AFL.

(3) K is a full S-AFL if, and only if, K is a full semi-AFL.

(4) K is a full P -AFL if, and only if, K is a full pseudo-AFL.

(5) K is a full F -AFL if, and only if, K is a full AFL.

Proof. (5) Let K be a full F -AFL, i.e., K is a prequasoid and K = R(REG, K,FIN).
By 2.6 we have K = REG/K/REG. This implies (i) K is closed under ∆, (ii) REG ⊆ K,
because SYMBOL ⊆ K, (iii) REG/K ⊆ K and K/REG ⊆ K, since SYMBOL ⊆ REG,
which means that K is a full AFL [11].

Conversely, let K be a full AFL. Clearly, K is a prequasoid. Moreover, K/REG ⊆ K
and REG/K ⊆ K hold [11]. Applying 2.6 yields R(REG, K,FIN) = REG/K/REG ⊆ K,
whereas the opposite inclusion is obvious. �

Let X̂ (K) denote the least full X-AFL containing K, i.e., if X equals M , C, S, P or
F , then X̂ is euqal to M̂, Ĉ, Ŝ, P̂ or F̂ , respectively. With respect to Canonical Forms
the case X = C differs from the other cases and will be treated separalely; cf. 4.4.

Theorem 4.2. (First Canonical Form Theorem for Full M -, S-, P - and F -AFL’s.)
Let X be a symbol from {M,S, P, F} and let K be a family of languages. Then

(1) X̂ (K) = XΠ(K).

(2) If K is nontrivial, then X̂ (K) = X∆Φ(K).

Proof. (1) X = S: Similar as in the proof of 3.4 it suffices to show that S(K) is a
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full S-AFL provided K is a prequasoid. So let K be a prequasoid, then by 2.6 S(K) =
REG/K/ALPHA and hence

(i) ΦS(K) = FIN/REG/K/ALPHA = REG/K/ALPHA = S(K);

(ii) ∆S(K) = ∆(REG/K/ALPHA) ⊆ ∆(REG)/∆Φ(K/ALPHA) = REG/∆(K/ALPHA)
= REG/{(

⋃
i Li) ∩ R | Li ∈ K;R ∈ REG} = REG/{

⋃
i(Li ∩ R) | Li ∈ K;R ∈ REG} =

REG/K/ALPHA = S(K) (The inclusion is obtained by 2.3(1); i goes through any finite
index set.);

(iii) SS(K) = REG/REG/K/ALPHA/ALPHA = REG/K/ALPHA = S(K).

(i), (ii) and (iii) imply that S(K) is a full S-AFL.

X = F : Apart from taking REG instead of ALPHA, the cases (i) and (iii) are the
same as above. So it remains to show that ∆F (K) ⊆ F (K). Applying 2.3(1) twice
yields: ∆F (K) = ∆(REG/K/REG) ⊆ ∆(REG)/∆Φ(K/REG) = REG/∆(K/REG) ⊆
REG/∆(K)/∆Φ(REG) = REG/K/REG = F (K).

(2) Let KX be SYMBOL, ALPHA, FIN and REG for X equal to M , S, P and F , respec-
tively. By (1), 2.2 and the fact that ∆Φ(K) is closed under isomorphism we obtain X̂ (K) =
XΠ(K) = XΘ∆Φ(K) = REG/ONE/∆Φ(K)/KX = REG/∆Φ(K)/KX = X∆Φ(K). �

From 2.6 and 4.2(1) we may infer other Canonical Forms like F̂(K) = M̂(K)/REG or
Ŝ(K) = M̂(K)/ALPHA which were originally established in [10] and [19] respectively; cf.
[12, 20].

Theorem 4.3. (Second Canonical Form Theorem for Full M -, S-, P - and F -AFL’s.)

If K is σ-simple, then X̂ (K) = ΠX(K) = Θ∆X(K) for each X from {M,S, P, F}.

Proof. The inclusion K ⊆ Π(K) and 4.2 imply X(K) ⊆ XΠ(K) = X̂ (K) and hence
Θ∆X(K) ⊆ ΠX(K) ⊆ ΠX̂ (K) = X̂ (K). Thus it remains to show that X̂ (K) ⊆ Θ∆X(K).
Distinguish the following cases.

X = M : According to 4.2, 2.6 and 2.3(2) we have

M̂(K) = REG/∆Φ(K) ⊆ Θ∆((REG ∪ FIN)/ΦΦ(K)) = Θ∆M(K).

X = S: By 4.2 and the previous case we have Ŝ(K) = {
⋃
i Li | Li ∈ M̂(K)}; 1 ≤ i ≤

n} = {
⋃
i Li | Li ∈ Θ∆M(K); 1 ≤ i ≤ n}, i.e., Li = hi(L

′
i ∩ Ri) with L′

i ∈ M(K),
Ri ∈ REG and hi is an arbitrary homomorphism. We may assume that Li ⊆ Σ?

i where all
the Σi are mutually disjoint alphabets. Let R =

⋃
i(Ri ∩ Σ?

i ), 1 ≤ i ≤ n and let h be the
homomorphism defined by h(α) = hi(α) for each α in

⋃
i Σi. It is straightforward to show

that
⋃
i hi(L

′
i ∩ Ri) = h((

⋃
i Li) ∩ R), 1 ≤ i ≤ n, which implies that Ŝ(K) ⊆ Θ∆{

⋃
i L

′
i |

L′
i ∈M(K); 1 ≤ i ≤ n} = Θ∆S(K).

X = P (and similar for X = F ): From 4.2 and 2.6 we obtain P̂(K) = REG/∆Φ(K)/FIN.
Applying 2.3(2) twice yields: P̂(K) ⊆ REG/Θ∆((Φ(K) ∪ FIN)/Φ(FIN)) = REG/
∆(Φ(K)/FIN) ⊆ Θ∆((REG ∪ FIN)/Φ(Φ(K)/FIN)) = Θ∆(REG/K/FIN) = Θ∆P (K).

�

Other Canonical Forms like F̂(K) = M̂(K/REG) and Ŝ(K) = M̂(K/ALPHA) (cf.
[19, 20]) for σ-simple K, directly follow from 4.3.
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In case X = C it is possible to establish a Canonical Form like Ĉ(K) = ΠC(K) =
Θ∆C(K) (cf. 4.3) provided K is σ-simple and Lα is in K for each L in K and each symbol
α not occurring in any word of L. In order to avoid further restrictions on K we will
however follow another approach.

A substitution τ : V → K is called marked if τ(α) ⊆ ∆?α for each α in V, and the
alphabets ∆ and V are disjoint. Let K1/K2 denote the family obtained by applying marked
K1-substitutions on languages from K2, i.e., K1/K2 = {τ(L) | L ∈ K2; τ is a marked K1-
substitution}; cf. [19]. We now redefine the C-extension by C(K) = REG/(K/STAR);
cf. 2.6. Notice that 4.1(2) remains valid. In the sequel we only consider this redefined
extension, for we which we prove

Theorem 4.4. (Canonical Form Theorem for Full C-AFL’s.)

Ĉ = ΠC(K) = Θ∆C(K).

Proof. Since Ĉ(K) is closed under Π and C, we have ΠC(K) ⊆ Ĉ(K). In order to
establish the converse inclusion it suffices to show that ΠC(K) is a full C-AFL containig K.
Obviously, ΠC(K) is a prequasoid and it is easy to prove thatK ⊆ ΠC(K). Thus it remains
to show that ΠC(K) is closed under C. The proof is based on 2.2, 2.3(2) and the following
inclusions (i) ∆(K)/STAR ⊆ Θ∆(K/STAR), (ii) (K/STAR)/STAR ⊆ ∆Φ(K/STAR).

Let L ⊆ Σ? be in K, R ∈ REG and let a, b and c be symbols not in Σ. Define
a homomorphism h and a finite substitution f by h(b) = a, h(α) = α for α ∈ Σ, and
f(c) = {a, ab}, f(α) = {α} for α ∈ Σ. It is straightforward to prove that ((L ∩ R)a)? =
h((Lb)? ∩ (Rb)?) and ((La)?b)? = f((Lc)?) ∩ (Σ ∪ {a, b})?b, which establish (i) and (ii),
respectively.

Applying respectively 2.2, (i), 2.3(2), (ii) and 2.3(2) yields

CΠC(K) = REG/∆ΦC(K)/STAR ⊆ REG/Θ∆(ΦC(K)/STAR ⊆
Θ∆(REG/ΦC(K)/STAR) = Π(REG/(K/STAR)/STAR) ⊆
Π(REG/∆Φ(K/STAR)) ⊆ Π(REG/Φ(K/STAR)) = ΠC(K),

i.e., ΠC(K) is C-closed and hence Ĉ(K) = ΠC(K). Finally, we have

ΠC(K) = Θ∆(FIN/REG/(K/STAR)) = Θ∆C(K). �

From 4.2–4.4 we obtain

Corollary 4.5. Let X be a symbol from {M,S, P, C, F}. Then

(1) each full X-AFL contains the family X(FIN);

(2) X(FIN) = REG is the smallest full X-AFL. �

By X-AFL we will again denote the class of all full X-AFL’s over Σω (for X ∈
{M,C, S, P, F}).
Theorem 4.6.

(1) M -AFL ⊃ S-AFL ⊃ P -AFL ⊃ F -AFL ⊃ R-AFL;

(2) M -AFL ⊃ C-AFL ⊃ F -AFL;

(3) C-AFL is incomparable with S-AFL and P -AFL.
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Proof. We will establish the existence of a full C-AFL K0 which is not closed under union.
Together with well-known results (cf. [9, 10]) this implies 4.6(1)–(3).

Let K1 and K2 be incomparable full AFL’s. (The existence of K1 and K2 is guaranteed
by [13].) Let L1 ⊆ Σ?

1 be in K1−K2 and let L2 ⊆ Σ?
2 be in K2−K1 such that Σ1∩Σ2 = ∅.

For i = 1, 2, define homomorphisms hi on Σ1 ∪ Σ2 by hi(α) = α if α ∈ Σi and hi(α) = λ
if α /∈ Σi.

We define K0 = K1 ∪ K2, which is a full C-AFL [3]. Suppose K0 is closed under
union. Then according to [9, 10], K0 is also closed under concatenation and, consequently,
L1L2 ∈ K1 or L1L2 ∈ K2. But then we have h2(L1L2) = L2 ∈ K1 or h1(L1L2) = L1 ∈ K2,
respectively, contradicting the choice of L1 and L2. �

5 Substituting Families into Families

In this section we apply Canonical Forms of Sections 3 and 4 to the family obtained by
substituting K1-languages into languages from K2 (5.1–5.3). Then we discuss a generaliza-
tion of 4.2–4.4 and 5.2 (5.4–5.5) and finally, we consider an example of the application of
Canonical Forms and related results in proving a certain family to be a full X-AFL (5.7).

We first consider substituting a prequasoid into a prequasoid.

Lemma 5.1. If K1 is σ-simple and if K2 is nontrivial, then

Π(K1/K2) ⊆ Π(K1)/∆Φ(K2) = Π(K1)/Π(K2) = Π(K1/FIN/K2),

whereas equality holds whenever, either K1 is closed under substitution into FIN (i.e., under
union and concatenation), or K2 is closed under finite substitution.

Proof. An application of 2.2 and 2,3(1) yields Π(K1/K2) = Θ∆(Φ(K1)/K2) ⊆
ONE/∆Φ(K1)/∆Φ(K2) = Π(K1)/∆Φ(K2) ⊆ Π(K1)/Π(K2). By 2.2 and 2.3(2) we have

ONE/∆Φ(K1)/ONE/∆Φ(K2) ⊆ Θ∆(Φ(K1)/Φ(ONE))/∆Φ(K2) =

Θ∆(Φ(K1)/FIN)/∆Φ(K2) ⊆ Θ∆(Φ(K1))/FIN/Φ(K2) = Π(K1/FIN/K2).

Using the former inclusion we just established with FIN/K2 instead of K2, we obtain
Π(K1/FIN/K2) ⊆ Π(K1)/∆Φ(K2). �

From 5.1 it directly follows that substitutiong a prequasoid into a prequasoid yields a
prequasoid. A similar well-known conclusion for full trio, full semi-AFL, full AFL [9, 11]
and also for full Kleene-AFL and full pseudo-AFL can be inferred immediately from

Theorem 5.2. Let K1 and K2 be σ-simple families. If K2 is also closed under finite
substitution, then

(1) Ĉ(K1/K2) = M̂(K1)/∆(K2/STAR),

(2) M̂(K1/K2) = M̂(K1)/∆(K2),

(3) Ŝ(K1/K2) = M̂(K1)/∆(K2)/ALPHA,

(4) P̂(K1/K2) = M̂(K1)/∆(K2)/FIN,

(5) F̂(K1/K2) = M̂(K1)/∆(K2)/REG.
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Proof. (1) By 4.4 and 5.1 we have Ĉ(K1/K2) = Π(REG/K1/K2/STAR) = Π(REG/K1)/

∆Φ(K2/STAR), and hence by 4.3, Ĉ(K1/K2) = M̂(K1)/∆(K2/STAR).

(2) According to 4.2 and 5.1 we obtain M̂(K1/K2) = REG/Π(K1/K2) = REG/
Π(K1)/∆Φ(K2) = M̂(K1)/∆(K2).

Together with 2.6 and 4.3 this implies (3)–(5). �

In the remaining cases we even obtain

Theorem 5.3. Let X be a symbol from {R,A,H?
1 , H}. Then

(1) X̂ (K1 ∪K2) = X(Π(K1) ∪ Π(K2)) = X(Π(K1)/Π(K2)) = X(Π(K2)/Π(K1)).

(2) X̂ (K1/K2) = X̂ (K2/K1) = X̂ (K1 ∪K2) provided both K1 and K2 are σ-simple.

Proof. (1) For reasons of symmetry it suffices to show the former two equalities. By 3.4(1)
and [3] we have X̂ (K1∪K2) = XΠ(K1∪K2) = X(Π(K1)∪Π(K2)). From 3.6 and 3.3(2) we
obtain that each full X-AFL is a substitution-closed prequasoid (for X ∈ {R,A,H?

1 , H}),
which implies Π(K1)/Π(K2) ⊆ X̂ (K1 ∪K2). Since each prequasoid includes SYMBOL, we
also have K1 ∪K2 ⊆ Π(K1)/Π(K2) ⊆ X̂ (K1 ∪K2). Applying 3.4(1) and 5.1 (with Π(Ki)
instead of Ki, i = 1, 2) yields X̂ (K1 ∪K2) = XΠ(Π(K1)/Π(K2)) ⊆ X(Π(K1)/Π(K2)) ⊆
X̂ (K1 ∪K2).
(2) If both K1 and K2 are σ-simple, then K1 ∪ K2 ⊆ K1/K2 ⊆ X̂ (K1 ∪ K2). Hence
X̂ (K1 ∪K2) = X̂ (K1/K2). �

We may also consider 4.2–4.4 and 5.2 as particular instances of more general results (cf.
5.4 and 5.5 below). We call a family K a full [K ′, K ′′]-structure if K is a prequasoid which is
closed under K ′-substitution and under substitution into K ′′, i.e., K ′/K/K ′′ ⊆ K; cf. [19].
If K ′′ = STAR, we demand, as in Section 4, that K is closed under marked substitution
into STAR, i.e., K ′/K/STAR. Let [K ′, K ′′](K) denote the smallest full [K ′, K ′′]-structure
containing K.

Theorem 5.4. Let K ′ be a prequasoid and let K ′′ be either a prequasoid or equal to
SYMBOL or ALPHA. Then

(1) [K ′, STAR](K) = Π(K ′
∞/(K/STAR)) = Θ∆(K ′

∞/(K/STAR));

(2) [K ′, K ′′](K) = K ′
∞/Π(K)/K ′′

∞ = K ′
∞/∆Φ(K)/K ′′

∞ = Π(K ′
∞/K/K

′′
∞) =

Θ∆(K ′
∞/K/K

′′
∞), provided K is σ-simple. �

The proof of 5.4 consists of a straightforward modification of the arguments used in
establishing 4.2–4.4 and it will therefore be omitted. Note that SYMBOL and ALPHA are
substitution closed, i.e., K ′′

∞ ⊆ K ′′.
From 5.1 and 5.4 we can infer in a way similar to 5.2

Theorem 5.5. Let K ′ be a prequasoid and let K ′′ be either a prequasoid or equal to
SYMBOL or ALPHA. If K1 and K2 are σ-simple families and, if K2 is closed under finite
substitution, then

(1) [K ′, STAR](K1/K2) = Π(K ′
∞/K1/K2/STAR) = Θ∆(K ′

∞/K1/K2/STAR);

(2) [K ′, K ′′](K1/K2) = K ′
∞/Π(K1/K2)/K

′′
∞ = K ′

∞/Π(K1)/∆(K2)/K
′′
∞. �
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Taking K ′ (and K ′′) equal to a quasoid instead of a prequasoid implies that K ′
∞ (and

K ′′
∞) is a full R-AFL (cf. 2.4) and that 5.4 and 5.5 yield full (pseudo-)AFL. In particular

we have P̂(K) = [REG,FIN](K) and F̂(K) = [REG,REG](K), whereas full M -AFL, full
S-AFL and full C-AFL correspond to the cases K ′ = REG, K ′′ = SYMBOL, ALPHA and
STAR, respectively (provided we apply a marked substitution in the last case).

When we take K ′ = FIN instead of REG, we can obtain (1) prequasoids (K ′′ =
SYMBOL), (2) prequasoids closed under union (K ′′ = ALPHA), (3) prequasoids closed
under concatenation [and union] (K ′′ = FIN), (4) quasoids closed under Kleene ? (K ′′ =
STAR), and (5) quasoids closed under Kleene ?, union and/or concatenation (K ′′ = REG).
It is straightforward to show that results similar to 4.2–4.6 and 5.2 also hold for these
structures.

Canonical Forms and theorems like 5.2–5.5 could serve as a useful tool in showing
certain families to be a (particular kind of) full AFL or a full [K ′, K ′′]-structure. We
conclude this paper with an application.

A language L is called hyper-sentential [27] over a family K, if there exist (1) an
alphabet V , (2) an initial language L0 ⊆ V ? in K, (3) a finite set U of K-substitutions
over V , such that L = U?(L0). The hyper-sentential extension $(K) of K consists of all
languages hyper-sentential over K. Clearly, L ∩ Σ? is in H(K) when L is in $(K). The
hyper-algebraic extension H(K) has been characterized in terms of $(K) by Van Leeuwen
& Wood [27].

Theorem 5.6. Let K be a family closed under isomorphism and under intersection with
Σ? for each finite alphabet Σ. If ONE ⊆ K, then H(K) = (SYMBOL ∪ {λ})/$(K). �

In the finite case even a stronger result holds: ETOL = SYMBOL/TOL and EOL =
SYMBOL/OL (cf. [5, 6]; note that $(FIN) = TOL). A SYMBOL- [or a SYMBOL ∪ {λ}-]
substitution is sometimes referred to as a [weak] coding.

We show how to obtain full AFL’s from $(K).

Theorem 5.7. Let K be a full trio. If K0 is a prequasoid, then K/$(K0) is a
[REG, Ĥ(K0)]-structure and consequently, it is a full AFL.

Proof.

[REG, Ĥ(K0)](K/$(K0)) = (K is a full trio)

[REG, Ĥ(K0)](K/(SYMBOL ∪ {λ})/$(K0) = (5.6)

[REG, Ĥ(K0)](K/H(K0)) = (5.5(2), 3.4)

REG/K/H(K0)/H(K0) = (K is a full trio, 3.4)

K/H(K0) = (5.6)

K/(SYMBOL ∪ {λ})/$(K0) = K/$(K0) (K is a full trio),

i.e., K/$(K0) is a [REG, Ĥ(K0)]-structure. �

If K is contained in H(K0), then clearly K/$(K0) = H(K0) and consequently it is a
full H-AFL. Thus 5.7 is only interesting if K is not included in H(K0). When K0 = FIN,
5.7 yields: K/TOL is a full AFL provided K is a full trio, which was originally established
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by Salomaa [23, 4]. Using EOL = SYMBOL/OL [5] one can prove in a way similar to 5.7
that K/OL is a full AFL whenever K is a full trio [23, 4].
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