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EXTENSIONS OF LINEAR DISCRIMINANT ANALYSIS FOR STATISTICAL 

CLASSIFICATION OF REMOTELY SENSED SATELLITE IMAGERYt 

Paul Switzer 
Stanford University 

ABSTRACT 

Linear discriminant analysis is a commonly used statistical tool for 

classification of surface features using staellite surface reflectance 

data. Extensions of this basic tool promise substantial improvements. 

In particular, we examin~ the added effectiveness of integration of spatial 

autocorrelation into the discriminant model, resolution of nonhomogeneous 

pixels, and data based prior probability estimates of class membership, 

and the use of unclassified pixels ~s part of the discriminant function 

"training" set. 

tPresented to the International Geological Congress, Paris, July 1980. 
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INTRODUCTION 

Digitized imagery from the Landsat earth satellite consists of an 

integrated energy measurement for each of four wavelength bands. This 

four-tuple, the data vector, is reported for surface·area elements, pixels, 

which are about an acre in size. The statistics of the data vector are 

expected to depend on physical properties of the surface so that the data 

vector might be used to classify pixels according to surface type •. This 

will usually require an ensemble of "training" pixels of known surface type 

for each of the contemplated categories to which pixels might be assigned. 

A convenient method for extracting some of the classification information 

in the ·training data is multiple linear discriminant analysis, in parti

cular when no single data channel seems able to distinguish the surface 

categories of interest. 

The method of linear discriminant analysis is in common use for this 

purpose, although it is sometimes recognized that it does not extract all 

the classification information that may be available. However, the ready 

availability of packaged software for linear discriminant analysis probably 

implies its longevity. This paper will examine how this standard analysis 

can be adapted using slight modifications to enhance its power in certain 

situations where the geographic alternation of surface categories is slow 

relative to pixel size, where the alternation is rapid enough that single 

pixels are frequently mixtures of two surface categories, and where the 

surface·category frequencies are likely to vary $Ubstantially from one 

scene, or portion of a scene, to another. 
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The refinements discussed in this paper ~re not likely to yield 

dramatic improvements in the form of sharply reduced classification error 

rate. They are certainly secondary in importance to, say, careful pre

processing of data (nonlinear transformations of the data vector such as 

taking logarithms, forming ratios between channels, etc.), careful defi

nition of surface categories, use of time repetition, careful selection 

of training pixels, and suitable geographic scale for a si~gle analysis. 

Also, this paper dOP.fi not cii Af'llRR whRt T r:·~ll "rnany-paramQtor" olnooi

fication schemes such as quadratic discrimination or density estimation 

methods. Sometimes they are much better than standard linear discriminant 

analyses, but since tney are much more finely tuned to the training data, 

care must be taken not to exaggerate their performance in practice. Indeed, 

in seeking to modify standard linear discriminant analysis, an important 

goal has been to keep the dimensionality, i.e. number of adjustable para

meters, as small as possible. 

EXPLOITING SPATIAL CONTINUITY IN MULTI-PIXEL C1ASSIFICATION 

It is usual to classify a given pixel at position (x
1

,x?.) using 

only the four-channel data vector ~(x 1 ,x 2 ) for that pixel. However, 

the alternation of surface types is commonly on a scale larger than that 

of a single pixel. This spatial continuity of surface types should be 

exploited in the classification proces$. One possible approach is to 

explicitly augment the four-channel data attached to a given pixel by 

using additional variables corresponding t;o the four-channP.l data for 

neighboring pixels. 
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* As an example we may introduce the augmented data vector Z with 

eight components for a pixel at position (x
1

,x
2

) thus: 

where 

That is, ~e(x 1 ,x 2 ) is the average four-channel data vector for the four 

neighboring pixels as shown by the hatched area in Figure 1. In a like 

manner we could also define as the average of the data vectors 

for the neighboring pixels as shown by the shaded areas of Figure 1 and 

thereby further augment the length of the available data for classifying 

the pixel at (x
1

,x
2
). 

One virtue of this approach is that we may apply standard methods of 

linear discriminant analysis to the higher-dimensional augmented data 

Figure 1. Scheme of neighbor pixels to be used in classification. 
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* vectors Z , just as we might have done with the unadorned vectors z. 

Furthermore, the augmented vector method is an approximation to an exact 

posterior analysis in the context of a particular probabilistic model, 

viz. 

where ~i is a spatially correlated random indicator function for the 

surface category i, K = tot;gJ, number of categnr:i P.S intn whi ('h d.<!!!Pillifi-

cation can be made, ~i is the mean four-channel vector for category i 

and ~ is a four-dimensional spatially correlated zero-mean random noise 

function. Now suppose the noise process £ is modelled to be Gaussian 

with a locally spatially isotropic covariance and that the degree of 

spatial continuity is such that the probability is close to 1 that a 

pixel and its immediate neighbors all belong to the same category. Then 

the logarithms of the posterior probabilities that oi(xl,x2) = 1, i.e. 

that the pixel at (x
1

,x
2

) belongs to category i, for i=l, 2, ••• , K, 

given the augmented data 
'H 

~ (x
1

,x
2
), is given approximately by the output 

* of a standard linear discriminant analysis applied to the Z data with 

specified prior probabilities. It is the local isotropy of the noise 

process which leads one to average the neighboring pixels and' thus to 

reduce the dimension of the analysis immediately from 20 to 8. 

A further reduction is possible when the noise covariances can be 

approximately factored in the following way (or equivalently the within-

category covariances of the data vectors): the covariances between 

channel pairs for a single pixel are diminished by a constant factor 

for channel pairs from neighbor pixels. If is the covariance 
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between channels j and k within the same pixel, then the covariance 

k of different pixels would be ysjk' where 

y is an attenuation factor depending only on the distance between the 

between channels j and 

two pixels. 

In particular, the within-category covariance matrix for the aug

* mented eight-dimensional data vector z would then have the form 

where is the original four-channel within-category covariance 

matrix and a, S (a > S) are scaling constants between z.ero and one. 

One implication of this factorization is that the linear discriminant 

coefficients applicable to the channel data from neighbor pixels are 

proportional to the coefficients for the central pixel. It follows that 

a standard linear discriminant analysis may be performed on four-channel 

** data Z which is a fixed linear combination of the central pixel data 

and the neighbor data, viz. 

** e Z (a-S)Z + (1-S)Z 

Hence the factored structure reduces the analysis further to a four-

dimensional problem. [This reduction ignores the fact that the K 

category mean vectors for the neighbor pixels will be somewhat closer 

together than the category mean vectors for the central pixels. This 

happens because the neighbor pixels will not all belong to the same cate-

gory as the corresponding central pixel. A more detailed analysis would 

result in diminished weights for neighbor pixels and would be consequential 

for spatially patchy classifications.] The v.irtue of such an approach is 
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that the standard methods may be used on a low-dimensional analysis while 

exploiting spatial continuity in a moderately rigorous way. 

Such factored covariance structure is not uncommon. Kowalik (1979) 

* has calculated S for three-category data comprising 322 pixels. The 

* ground-truth map is shown in Figure 2. His S matrix showed the factored 

structure with a= 0.70 and B = 0.60, approximately. The closeness of 

a and B in this example indicates that the average of the neighboring 

pixels will get substantially mote weight in the linear discriminant 

analysis than the central pixel. 

** The standard discriminant analysis based on· Z for thQ Kowalik 

example gives an overall error rate of 34%. This should be compared with 

an error rate of 44% using only the central pixel for classification, i.e. 

ignoring spatial continuity. Alternate rows of pixels comprised the train-

ing data for this example and classification error rates were estimated 

independently from the intervening rows. The resulting estimated classi-

fications are shown in Figure 3 and should be compared with each other and 

with ground-truth in Figure 2. 

The gain is modest here but, in general, there is potential for sub-

stantial improvement in the error rate. In the Gaussian model it is 

possible to predict the improvement once the factors a·, B have been 

estimated. This is illustrated most easily for the two-category case: 

if E is the error rate associated with using only the central pixel, 

then the inclusion of the neighbor pixels should reduce the error to 

where 
2 2 v = (l-2B+a)/(a-B ) , 

and ~ is the standard Gaussian cumulative distribution function. For 

example, if a= 0.70 and B = 0.60, the above formula would have pre-

dieted that an error rate of 30% would be reduced to 26% using neighbor 

data in a two-category problem. 
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Key for Figures 2
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Figure 2. True rock type 
outcrop map. 

Figure 3. Rock type map estimated 
using the four Landsat channels, 
central pixels only. 

Figure 4. Rock type map estimated 
using the four Landsat channels, 
central pixels are adjacent neighbor 
pixels. 



SPATIAL DISCONTINUITY: HETEROGENEOUS PIXELS 

The framework of linear discriminant classification presupposes that 

each pixel has a unique category identification corresponding to one of 

the training categories. This is a reasonable framework when the scale 

of geograph~c continuity of category types is large relative to the pixel 

size. However, when a substantial number of pixels are likely to be mix-

tures of more than one category type another approach will be needed. 

A number of ad hoc methods ·for the resolution of single-pixel mixtures 

have been tried. There is one method which corresponds to a maximum like-

lihood approach in the context of a multivariate Gaussian model. For 

example, consider the resolution of a pixel into two categories having 

multi-channel mean vectors 
~A 

and ~B' respectively. Suppose and 

TIR (TIA+TIR = 1) are the corresponding unknown areal proportions of the 

two categories for the given pixel. Then the multi-channel mean vector 

would hP ·n· ]I + TI u )I u • 
A-A u-u 

It is difficult, however, to model exactly the appropriate multi-

channel covariance matrix for mixed pixels and in principle this covariance 

could depend on TIA' TIB. A great simplification results if the covariance 

S is assumed to be approximately the same for any mixture proportions. 

This covariance simplification may be justified under certain circumstances 

but its main virtue is that it leads to tractable maximum likelihood esti-

mates of the unknown single-pixel proportions for the two categories. In 

particular, for an observed pixel data vector 
2 

~' let D (~, ~A) and 

be the squared Mahalanobis distances between Z and each of the 
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category mean vectors and let be the squared Mahalanobis 

distance between·the two mean vectors, i.e., 

n 2 (z,~) = (Z-~)' S-l (Z-~) , etc. - -
Then the maximum likelihood estimates of the proportions-are given by 

If either or turns out negative, it is truncated to zero. 

The implementation of this estitnation procedure for the resolution 

of mixtures requires estimates of the separate category mean vectors 

~A' ~B and the within-category covariance matrix S •. Such estimates -
would be available in situations where the training data included homo-

geneous pixels. After training on the homogeneous data one would then 

perform an ordinary two-category linear discriminant analysis on the 

mixed pixels in which the n
2 

values for each pixel are part of the 

usual output. These n2 
values from the standard analysis would then 

be used in the simple calculation indicated above to get estimates of 

mixture proportions for each pixel. 

As an example, Marsh et al. (1980) considered the classification 

of 17 pixels in Garfield Flat, Nevada, which were mixtures (in varying 

proport~ons) of a clay-silt playa interspersed with phreatophyte vegeta-

tion mounds. The training data consisted of 40 homogeneous pixels of 

unvegetated playa and a similar number of homogeneous phreatophyte pixels. 

The results using the estimation procedure of this section on the 17 
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p:tx~ls is summarized in Table 1, demonstrating another use of linear dis-

criminant ~nal~sis foJ; nonstandard problems. 

TABLE 1 

GARFIELD FLAT 
%vegetation, 

ACTUAL ESTIMATED ACTUAL ESTIMATED 

36.0 32.0 30.5 31.0 

23 .• 0 25.5 41.0 36.0 

38.5 38.0 25.5 26.5 

36.0 36.0 15.5 23.5 

31.0, 29.0 28.0 32~5 

28.5 36.5 41.0 40.5 

33.5 23.0 54.0 64.0 

25.5 16.0 43.5 48.0 

36~0 29.0 

There is. another way in which a modification of the '\lsual prob~bilistic 

model leads to an easily performed modification of standar4 linear d,iscrilJI""' 

i~ant analysis! Suppose that some classes are much more disper~e~ about 

their mean v~ctors than other classes. The simplest formalization of thi~ 

co~cept say~ that the cb,annel-to-channel covat:-fanc:-.e matrix for ~1.1,rf~ce 

category i has the form 

S. = S/C. 
-~ - l. 

wheJ;e the ci are positive constants determined up to a proport::l-onality 

factor. 
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In the usual model the. log-probability that a pixel with data vector 

Z belongs to category i is a fixed linear function of the Mahalanobis 

distance 
2 

D (Z, ~.) 
- -1 

between z. 
-1 

and the category i mean vector 

With the above modification of the model this log-probability becomes a 

fixed linear. function of 

So the usual output of Mahalanobis distances from a standard linear dis-

criminant analysis should be modified in cases where the C 's 
i 

are 

grossly unequal. For example, if one notices that the four-channel 

variances are approximately in the same proportion for all categories, 

then ratios of these variances will provide estimates of the Ci's. 

One reason why some categories could be more dispersed about their 

mean vectors than other categories is that some categories are more generic 

in nature than others. An argument can be made, in such contexts, for 

treating a group of similar categories as a single category in the initial 

linear discriminant analysis. If a pixel is assigned to this supercategory 
! 

then another linear discriminant analysis is needed to further refine the 

assignment. This hierarchical use of linear discriminant analysis has 

the advantage that each stage involves discrimination among only a few 

classes, but great care is needed in estimating error rates for hierarchi-

'cal procedures. 

ESTIMATION OF PRIOR PROBABILITIES WITH LINEAR DISCRIMINANT ANALYSIS 

Standard linear discriminant analysis approximates a Bayes optimal 

classification rule in the context of the usual Gaussian model when the 
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categories are equally likely ~ priori and where the objective is to maxi-

mize the total number of correct classifications. It is equivalent to the 

rule which assigns a pixel with data vector Z to category i if the 

2 
D (Z, l-1.) 

- -l. 
between z and the category i mean Mahalanobis distance 

vector lli is smaller than it is for any other category j I i. 

Now suppose the classes are not equally likely but are represented 

in proportions p
1

, p
2

, ••• , pK for the group of pixels to be classified. 

The Bayes rule is modified in this case as follows: 

Aooign Z to category i 

n2 (z, l-1.) + 2l~n p. I for all j I i • 
... "VJ J 

Of course the category frequencies p
1

, p
2

, ••• , pK are not known. 

Furthermore, they will be different from one scene to another and, except 

in special cases, it would not be appropriate to use the category fre-

quencies of the training set of pixels. 

However; it is possible to obtain estimates of the p., for a given 
J 

scene, from a first pass of a standard linear discriminant analysis which 

assumes (tentatively) that the pj are equal. Suppose this first pass 

assigns the proportion p' 
k 

of the current scene to category k. From the 

training data we already would have estimates of the proportion of category 

j pixels which would (erroneously) be assigned to category k, say 

Then it follows from the law of total probability that 

}';. p. p.k. 
J J J 

of Hence to obtain estimates of the unknown 

one solves the linear oyotem 

K 

Pk = I PJ. pJ.k' 
j=l 

k=l, 2, ••• , K • 

12 
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Having obtained estimates of the category frequencies p
1

, p
2

, ••• , pK' 

for a given scene, the approximate Bayes rule may now be used for that 

scene: the Mahalanobis distances obtained from the usual linear discrim

inant analysis are modified by the addition of 2ltn pj I· Some standard 

packaged programs, such as BMDP7M, allow "prior probabilities" to be 

specified, in which case the modification is automatically made by a 

second pass through the program using the estimated category frequencies 

as prior probabilities. 

An important issue in the use of category frequency estimates is the 

size of the scene or pixel ensemble for which separate frequency estimates 

should be obtained. By successively applying the above method to small 

contiguous ensembles of about 25 pixels, say, one has an alternative 

approach to capturing the information contained in spatial continuity -

although category frequency estimates may then become statistically unstable. 

In any event, such estimation of frequencies is heavily dependent on having 

the class mean vectors remain unchanged and may, therefore, not be robust. 

It could also happen that the solution of the above linear system may give 

estimates of the which are out of the range of possible values, hence 

requiring special fix-ups. 

Of course the Bayes rule which tries to maximize the total number of 

correct category assignments may not be what is really wanted where certain 

misassignments are more serious than others. In particular, when one tries 

to discern infrequent categories against a pervasive background then such 

Bayes rules will commonly assign all pixels to background. The problem is 

not with the rule but rather with a poor specification of the objective. 

It is usually worthwhile to try to specify an actual "loss" table where 

13 
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~j is the loss associated with assigning a k-type pixel to the category 

J. Presumably Ljj would be a negative number, not necessarily the same 

for all j. 'flte Bayes rule which minimizes the expected loss per pixel is 

Assign z to category i 

K 

if .k~l [Lkj-~i] • p > 0 
k 

for all categories j ~ i 

where Pk is the posterior probability that a pixel with data vector z 

belongs to the category k. This rule will not necessarily make assign-

ments to the categories which are most probable. 

GEOGRAPHICAL DISPLAYS OF PIXEL ASSIG~ffiNTS 

One usually would wish to display the results of discriminant analyses 

in the form of geographic maps, especially for surfaces possessing a degree 

of spatial continuity. The most straightforward display assigns a color 

to each of the possible surface categories and colors each pixel according 

to its linear discriminant assignment. Figure 3 is an example of such 

maps. However, such maps suppress a great part of the information con-

tained in the linear discriminant analysis since they convey no information 

about the certainty of category assignments. This shortcoming can be cor-

rected by displaying a separate shade print map for each category i where 

the grey-level of a pixel is proportional, say, to the Mahalanobis distance 

between the pixel data vector and the category i mean vector. Figure 4 

shows an example of such shade prints for the Kowalik data. 
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The foregoing is not to be confused with the usual graphical output 

of a linear discriminant analysis in which each pixel is plotted as a point 

in the plane of the first two canonical variables. While these plots show 

the scatter and overlap of the data for the various categories, the geo

graphic relationships among the pixels is completely ignored in these 

plots. Canonical variable plots are, therefore, not so useful for geo

graphic ensembles. 
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